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Cross-linked hydrogel substrates have garnered attention as they

simultaneously enable oxidoreductase reactions in a control volume

extended to adsorption of redox capacitors for amplification of

electrochemical signals. In this study, the effect of catalase immobilization in

mold-casted alginate-based thin films (1 mm × 6mm × 10mm) containing

multi walled carbon nanotubes (MWCNT) coated with chitosan has been

studied via amperometry. The amperometric response was measured as a

function of peroxide concentration, at a fixed potential of −0.4 V vs. SPCE in

phosphate-buffered saline (pH = 7.4). Results indicate substrate detection is not

diffusion-limited by the 100 μm thick chitosan layer, if the cationic

polyelectrolyte is in contact with the sensing carbon electrode, and the

linear detection of the enzyme absent in solution is enabled by

immobilization (R2 = 0.9615). The ferricyanide-mediated biosensor exhibited

a sensitivity of 4.55 μA/mM for the optimal formulation at room temperature

comparable to other nanomaterial hybrid sensing solution namely amine-

functionalized graphene with an average response time of 5 s for the

optimal formulation. The suitability of the optimized chitosan-coated

alginate slabs nano-environment for co-encapsulation of catalase and

carbon nanotubes was confirmed by cyclic voltammetry.
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1 Introduction

Alginate is one of the most abundant anionic biopolymers first extracted from

marine algae and subsequently isolated from differentiated bacteria (Slack and

Nichols, 1981; Nordgård and Draget, 2021). Due to this fact, its biocompatibility

(Wong and Chang, 1991; Lee and Mooney, 2012; Bochenek et al., 2018) and

biodegradability the applications span the food, climate and health nexus (Shaari

and Kamarudin, 2015; Nesic and Seslija, 2017; Gao et al., 2020; Gheorghita Puscaselu

et al., 2020). Due to bioresorbable properties under physiological conditions, alginate is

the most assayed polyelectrolyte in hard and soft tissue engineering where bioerosion
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is regulated by crosslinking the polymer into networks using a

multitude of bio-fabrication methods (Matricardi et al., 2013;

Kim and Kim, 2015). Enhancement strategies for regulating

the mechanical and conductive properties include the

incorporation of several amounts of carbon nanomaterials

(CNMs), such as carbon nanofibers (CNFs), graphene oxide

(GO) (Llorens-Gámez and Serrano-Aroca, 2018; Serrano-

Aroca et al., 2018; Llorens-Gámez et al., 2020; Hurtado

et al., 2022), and other graphene-based materials have been

proposed (Ahadian et al., 2014; Golafshan et al., 2017; Liu et al.,

2018; Fu et al., 2019; Li et al., 2019). Chitosan, a polycationic,

bacteriostatic biopolymer extracted from crustaceous shells

(Croisier and Jérôme, 2013; Goy et al., 2016), is widely used

with alginate as a coating applied by physical adsorption

(Abbaszadeh et al., 2014) across the above-mentioned

applications. Chitosan is used in polymer blends as a filler

to improve the dielectric properties of the mixture (Johns and

Nakason, 2011; Bonardd et al., 2018) and in hydrogels

nanocomposites as a biomimetic conductor (Croisier and

Jérôme, 2013; Mihic et al., 2015; Cui et al., 2018).

The development of conductive hydrogels comprised of

alginate, chitosan and carbon nanotubes has great potential in

cutting edge bioelectronics that allow the application of

electrostimulation, smart bandages and stretchable electronics

as healthcare converging towards telemedicine and decentralized

trials (Lin et al., 2016; Gilshteyn et al., 2019; Yuk et al., 2019;

Derakhshandeh et al., 2020). Among these developments,

physiological measurements can be used to determine

different types of responses in the body namely reactive

oxygen species (ROS) that are generated in cells as endpoints

during injury and wound healing when basal concentrations of

hydrogen peroxide (H2O2) shed light on the different stages.

Elevated levels of hydrogen peroxide are therefore a biomarker of

possible infection (Serra et al., 2008; Robinson, 2022; Lipcsey

et al., 2022). The use of synergetic effects of oxidoreductases

namely fungal Manganese Peroxidase, horseperoxidase (HRP)

and catalase (CAT) mixed with a cocktail of other enzymes has

also been investigated in bioremediation by means of lignolytic

enzyme activity, a specific example being the environmental

friendly production of 2,5-Furandicarboxylic acid (FDCA),

one of the top lignocellulosic-derived value-added chemicals

as a substitute to petroleum-based plastics (Babič et al., 2012;

Cajnko et al., 2020).

Among the ROS products superoxide (O2
−) is formed as a

direct result of cellular metabolism the concentration of which is

regulated by superoxide dismutase converting the substrate into

oxygen (O2) and hydrogen peroxide. The peroxide can be

oxidized by HRP or reduced by CAT. In vitro, the

overpotential generated by the electrochemical reaction can be

reduced by use of the potassium hexacyanoferrate (II)/(III)

complexes for which the direction of the equilibrium

(Dunford and Hasinoff, 1970; Berglund et al., 2002; Berlung

et al., 2002; Sitnikova et al., 2014; Berglund et al., 2022; Sugadev et

al., 2022) as illustrated in Figure 1.

Many studies have investigated immobilization of catalase on

sensor surfaces in order to promote electrocatalytic activity.

Catalase immobilized on nanocomposite modified electrodes

exhibit high sensitivity, low detection limit and improved

catalytic activity (Schubert et al., 1991; Li et al., 1996; Chen

et al., 2007; Prakash et al., 2009; Hong et al., 2013). Many

methods have been explored to detect hydrogen peroxide,

such as UV-vis spectrophotometry, titrimetry,

chemiluminescence and electrochemistry to name a few (Cui

et al., 2007; Huang et al., 2011; Woo et al., 2012; Pundir et al.,

2018; Soto et al., 2021; Ahmad et al., 2022). Various

electrochemical biosensors for H2O2 sensing have been

explored by immobilizing protein and enzyme in different

materials such as immobilization of multi-wall carbon

nanotubes (CNT) (Salimi et al., 2005), catalase with single-

walled carbon nanotubes-chitosan (Jiang et al., 2008), catalase

(CAT) with amine-functionalized graphene (graphene-NH2) and

gold nanoparticles (AuNPs) (Huang et al., 2011), iron

nanoparticles with graphene’s layers on multi-wall carbon

nanotubes (Cui et al., 2007), enzymes immobilized on poly

(glycidyl methacrylate-co-vinylferrocene) (Şenel et al., 2010;

Şenel et al., 2011). Toward the goal of developing a highly

sensitive catalase-based sensor for hydrogen peroxide

detection, a screening of driving forces comprised of chitosan

conductivity and immobilization kinetics was conducted to

derive the optimal composition and stacking order of the

nanocomposite thin films based on amperometric detection

sensitivity.

2 Materials and methods

2.1 Materials

The following chemicals and materials used to make the

sensors were purchased from Millipore-Sigma (Burlington, MA)

low-molecular-weight chitosan (44,886–9, 75% deacetylated,

3.8–6.0 kDa), alginic acid sodium salt (71,238), catalase

(C40, ≥10,000 units/mg protein, MW = 250 kDa), horseradish

peroxidase (P8250, 150–250 units/mg protein, MW = 44 kDa),

carbon nanotubes (698,849, multi-walled,>98% carbon basis, O.D.

x L 6–13 nm x 2.5–20 μm). Potassium ferricyanide (P232500),

potassium ferrocyanide trihydrate (P236500) and hydrogen

peroxide (H312-500) as well as all other reagent grade salts,

solvents, were procured from Fisher Scientific (Pittsburgh, PA).

Screen-printed electrochemical sensors (DRP 110) and the boxed

connector for the sensors (DRP-DSC) were purchased from

Metrohm Dropsens (Oviedo, Spain). The electrochemical

sensors consist of carbon working, silver reference, carbon

counter electrodes abbreviated as SPCE.
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2.2 Preparation of nanocomposite sensing
platform

2.2.1 Composition
Components of nanocomposite gels and respective controls

(w/wo enzyme, w/wo CNT) were prepared according to the

following steps. Carbon nanotube powder (CNT) at the

concentration of (0.12 mg/ml) was added to 3.0% sodium-

alginate (A) solution dissolved in 0.9% (w/v) NaCl (saline)

followed by vigorous mixing for 1 h. Horseradish peroxidase

(HRP) or catalase (CAT) were added to the blend and allowed to

mix for an additional 30 min for final concentrations of 5 mg/ml

(114 μm) and 1 mg/ml (4 mM), respectively. Hydrogel shrinkage

estimated at 30% was measured volumetrically to determine the

final concentrations of enzyme and CNT. Chitosan was dissolved

at 1% (w/v) in a sodium acetate buffer solution (pH = 4).

2.2.2 Biosensor fabrication
Alginate slabs and respective controls (w/wo enzyme, w/woCNT)

averaging 1mm in thickness (area � 10mm× 6mm)were fabricated

by polyelectrolyte complexation of alginate after incubation into a

1.5% (w/v) of CaCl2 for 20 min followed by saline washes using a

previously established method (Mobed-Miremadi et al., 2013a). A

subset of the mold-casted films were immersed into a chitosan bath

for 20 min to conduct the coating step by physical adsorption enabled

by the electrostatic attraction of the amine groups to the alginic acid.

Successful adsorption was verified using microscopy (Leica model #

DMI3000 B, Wetzlar, Germany) where the coating adds

approximately 100 μm to the thickness of the slabs as presented in

Figure 2. CNT incorporation was measured using visual inspection at

1X. The dimensions of the slab were measured using a caliper

(Mitutoyo model #500–196–30, Kawasaki, Japan). The sensors

were left in PBS until testing to avoid shrinkage. Approximately,

60 s before testing hydrogel films transferred into H2O2 bath of

varying concentration in order to reduce diffusion limitations.

2.3 Electrochemical testing setup

The SPCE sensor was connected to an electrochemical

analyzer (CH Instruments, Austin, TX). Measurements were

conducted at a pH of 7.4 and room temperature ranging

between- 20–25°C. Presented in Table 1 are sensor

composition, stacking order with respect to SPCE contact, and

associated nomenclature.

2.3.1 Amperometry

For detection of HRP and catalase activity amperometry was

performed in the range of 0.1 V to −0.4 V. For each test a new

electrochemical sensor was used.

For detection of enzyme activity in solution, a 10 μl solution

of HRP (5 mg/ml = 4 μm) or CAT (1 mg/ml = 114 μm) was

added onto the sensor surface followed by 20 μL of mediator

solution (50 mM hexacyanoferrate (II) (Ferro) or

hexacyanoferrate (III) (Ferri) in 0.1 M PBS, pH 7.0) to which

20 μL of 0.1 M PBS was added to make a final volume of 50 μL.

The reaction was initiated by adding a 200 mM H2O2 of

solution at an increment of 1 μL until an upper substrate

concentration of 3 μL was reached. For detection of enzymes

immobilized in nanocomposite slabs, 20 μL of mediator was

added, followed by addition of 30 μL of 0.1 M PBS for

deposition onto the sensor followed by incremental substrate

addition as described above.

The signal to noise ratio (S/N) given by Eq. 1, defined as the

ratio of the maximum current at a given substrate concentration

(Imax@S) by the maximum current in the absence of substrate

(Imax@S=0) at a given voltage was used to evaluate optimal voltage

for kinetic evaluations.

(S /

N) � Imax@S

Imax@S�0
(1)

The response time corresponding to the steady-state current

(ISS) across scanned voltages per immobilization state was recorded.

Cyclic voltammetry

Cyclic voltammetry was only performed on nanocomposite

slabs with a voltage sweep between 0.5 V and −0.8 V at a rate of

100 mV/s. Peak current was observed at −0.4 V where the

FIGURE 1
Redox reactions and associated mediators for the electrochemical detection of catalase (A) (left) Oxidation of hexacyanoferrate (II) by HRP, (B)
(right) reduction of hexacyanoferrate (III) by H2O2. Molecular structure of the enzymes obtained from the protein database (Berglund et al., 2022;
Sugadev et al., 2022).
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maximum (S/N) was registered for catalase. Specifically, the slope

from −0.6 V to −0.2 V was constructed and subsequently the

corresponding peak current was measured and reflected in plots.

A single sensor was used for all comparisons. Similar to

amperometry, 20 μL of mediator was added, followed by addition

of 30 μL of 0.1 M PBS to make a final volume of 50 μL mixture for

deposition onto the sensor. TheH2O2 substrate at a concentration of

200 mMwas added at an increment of 1 μL until an upper substrate

concentration of 3 μL was reached.

3 Results and discussion

3.1 Amperometric detection of HRP and
catalase

Shown in Figure 3 is a sample amperogram for HRP captured at

multiple voltages for the lowest substrate concentration of 4mM for

the determination of the maximum current (Imax@S). The signal to

noise ratios for the multiple configurations of the nanocomposite

sensors as compared to the free enzymes are presented in Table 2

and Figures 4A–E. The voltage at which the (S/N) ratio was highest

for the free enzyme at the lowest substrate concentration tested

(4 mM = 1 μL of H2O2) was chosen for reporting the kinetic

activities. The voltage chosen for catalase is −0.4 V in agreement

with literature (Prakash et al., 2009). The highest signal intensity

with reference to the background noise was recorded at 0 V,

however a voltage of −0.1 V was chosen for comparative

purposes to previously reported findings (Sekar et al., 2015). This

low potential for H2O2 sensing is preferable as it minimizes potential

interferences compared to direct oxidation of H2O2 near 0.7 V

vs. SCE.

Effect of chitosan conductivity and
nanocomposite layer stacking order

A common observation for both enzymes is that chitosan

contact with the electrode (S stacking configuration)

improves the lower limit of detection (LOD) of H2O2 to

1 μL equivalent to 4 mM for the nanocomposite films

(Figures 5B vs. Figure 5C; Figures 6B vs. Figure 6C). For

FIGURE 2
Surface coating of nanocomposites (A) Alginate control film containing SWCNT, (B) Chitosan coated alginate film containing SWCNT with a
100 μm added thickness captured at ×40 magnification; (C) Nanocomposite film prior (translucent) and post (translucent green) electrochemical
processing; (D) Screen-printed sensor with carbon working, silver reference, carbon counter electrodes and nanocomposite film used for H2O2.
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HRP, implementation of the immobilization scheme (Figures

5C vs. 5A) does not improve the lower limit of detection

(LOD), however the sensitivity ratio calculated based on the

slopes of SHRP (6.27 μA/mM) vs. Free HRP (0.3545 μA/mM)

above the LOD was determined to be 17.0. The calibration

curve for the free enzyme is linear (R2 = 0.9656) with an LOD

of 1 μL.

As for CAT, immobilization in a specific geometric orientation

where the chitosan is in contact with the electrode (SCAT) enables

the LODof 4 mm (Figure 6C) absent in the non-linear free enzyme

signal (R2 = 0.5965) presented in Figure 4A. The sensitivity for the

SCAT sample has been determined to be 4.55 μA/mM)

characterized by a coefficient of determination of 0.9615.

Table 3 summarizes the recent study of nanocomposite-based

H2O2 sensors, and the calculated sensitivity from this study

performs within the range without the need of functionalizing

the electrode nor cross-linking the enzyme (Salimi et al., 2005; Cui

et al., 2007; Jiang et al., 2008; Hong et al., 2013; Pundir et al., 2018;

Ahmad et al., 2022).

Effect of immobilization on reaction kinetics
For the free enzymes, the discrepancy in the linear detection

behavior could be attributed to the ratio of Stokes’ radii, where

catalase (rCAT = 4.6 nm) is twice the size of horseradish peroxidase

(rHRP = 2.5 nm) (Fournier, 2012). Catalase overcrowding at the

electrode may have contributed to diffusion limitations at higher

substrate concentrations resulting in lack of linearity for the free

HRP although experimental provisions were taken to set the ratio

of the enzyme concentrations 5:1 (HRP:CAT).

The twofold advantages of a control volume enabled by

immobilization result in signal amplification at higher substrate

concentrations. The reactions are not diffusion-limited and the

chitosan enhances the conductivity of the nanocomposite layer

when in contact with the carbon electrode. In the stacking order

referred to as reverse sandwich (RS), chitosan acts as a diffusion

barrier at lowest concentration of 4mM of H2O2.

With regards to the differences in computed sensitivities in

the optimal stacking configuration specifically for SHRP and

SCAT, the molecular weight cutoff of the nanocomposite

membrane established by multiple sources to be 3 nm

(Mobed-Miremadi et al., 2013b) may suggest two different

kinetic mechanisms for the ROS enzymes. While the HRP

TABLE 1 Sensor composition and stacking order with respected to contact with SPCE.

Amperometry Voltammetry

Nomenclature Number of polymer
layers

Layer in contact with
SPCE

Nomenclature Number of polymer
layers

Layer in contact with
SPCE

Free HRP N/A H2O2 + HRP + Ferro A 1 A

RSHRP 2 A/CNT + HRP (RS) AE 1 A/CAT

SHRP 2 Chi (S) A/CNT 1 A/CNT

Free CAT N/A H2O2 + CAT + Ferri A/CNT + E 1 A/CNT + CAT

RSCAT 2 A/CNT + CAT (RS) A/CNT/Chi 2 Chi (S)

SCAT 2 Chi (S) A/CNT/Chi + E 2 Chi (S)

FIGURE 3
(A) (top) Superimposed sample amperograms for Free HRP
and 8 mM of H2O2 recorded at multiple voltages for a total scan
time of 10 s using which the steady state sampling times were
estimated. (B) (bottom) Outset dashed magnified region for
the determination of the maximum current (Imax@S) used for the
signal to noise estimations.
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may diffuse out of the membrane for a surface reaction to occur,

CAT kinetics are driven by substrate diffusion. The response time

to reach the steady state current was less than 5 s across enzyme

immobilization states for both enzymes based on amperometric

curves.

Other means to deconvolute kinetic and diffusing driving

forces would be to control the reaction temperature. The

dependence of amperometric current on temperature in an

initial region can be expressed as an Arrhenius relationship

(Thirsk and Harrison, 1972; Wu et al., 2017). In alignment

with the optimal catalysis temperature under physiological

conditions of 37°C, amperometric studies of catalase and

horseradish peroxidase immobilized on poly (glycidyl

methacrylate-co-vinylferrocene) for H2O2 detection have been

characterized by optimal kinetic performance between 40–45°C

(Şenel et al., 2010; Şenel et al., 2011) for a pH range between

7.0–7.4 comparable to the current study.

In order to further establish the suitability of the catalase

biosensor in the presence of diffusion limitations and confirm the

optimal geometry and composition of the sensor platform, cyclic

voltammetry was conducted using additional controls. When the

adsorbed chitosan was the constituent of the sensor films, the

experiments were conducted in the S configuration where the

electrode comes into contact with the cationic polyelectrolyte.

3.2 Cyclic voltammetry of catalase activity

Applied voltage is critical in the response of mediated

biosensing applications (Tatka and Kim, 2016; Wu et al., 2017).

To that effect cyclic voltammetric response of the above sensors

was measured in the range of 0.5 V to −0.8 V at a rate of 0.1 V/s.

Effect of various nanomaterial composites in the
electrochemical response

The pair of redox current peaks observed for each modified

sensing platform were measured in the absence and presence of

catalase. Specifically, from these voltammetric measurements

(Figure 7), the peak current was identified relative to the

background currents and translated into current vs substrate

volume Figure 8. For all nanocomposite platforms, the peak

current increased from 2.15 μA (A) to 8.43 μA (AE), from

3.21 μA (A/CNT) to 9.47 μA (A/CNT + E), and from 2.52 μA

(A/CNT/Chi) to 11.19 μA (A/CNT/Chi + E = SCAT) respectively

(Figure 8). All of these current values were taken with 2 μL of

H2O2 added for comparison, which corresponds to a final

concentration of 8 mM as the current values typically saturate

at this concentration. In all three cases, CAT-immobilized

nanocomposite platform resulted in a higher current value of

the H2O2 reduction peak with respect to the bare nanocomposite

platform. Such responses show the enhanced catalytic activity

from the immobilized enzyme in agreement the amperometric

study findings. As suggested by evidence, nanomaterial modified

sensors (Figures 8E,F) are superior to nanomaterial-free sensors

(AE) in terms of conductivity. Specifically, CNTs have the large

surface area and porosity interacting with CAT for enhanced

electron transfer as proven by literature (Salimi et al., 2005; Chen

et al., 2007; Huang et al., 2011; Woo et al., 2012; Hong et al., 2013;

Soto et al., 2021; Ahmad et al., 2022). Among various

nanocomposites, alginate with CNT and chitosan (SCAT)

showed the highest peak current in agreement with the

amperometric measurements. Peak currents at −0.4 V for 2 μL

of H2O2 (8 mM) are presented in Figure 9.

The conductivity of alginate hydrogels without any fillers can

modulated from 0–1 mS/m with the upper end representing

TABLE 2 Signal-to-Noise values for amperometric measurements.

Voltage (V) FREEHRP SHRP RSHRP Voltage (V) FREECAT SCAT RSCAT

1 μL [H2O2] = 4 mM 0 24 9 2 -0.1 0.24 26 6.5

−0.1 16 5 1 -0.2 0.50 16 5.0

−0.2 9.3 5 2 -0.3 1.1 9 4.1

−0.3 2.7 5 2 -0.4 1.7 6 3.7

2 μL [H2O2] = 8 mM 0 40 77 71 -0.1 0.18 100 26

−0.1 26 24 30 -0.2 0.5 50 16

−0.2 14 22 58 -0.3 1.1 27 14

−0.3 3.5 18 21 -0.4 1.8 15 10

3 μL [H2O2] = 12 mM 0 90 160 120 -0.1 0.18 220 56

−0.1 43 45 52 -0.2 0.46 95 29

−0.2 19 35 48 -0.3 0.96 51 20

−0.3 4.1 28 34 -0.4 1.7 29 16
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superionic capacitors as a function of the crosslinking state,

divalent cross-linker ion, ionic strength of the medium and

temperature (Esch et al., 1999; Khairou and Hassan, 2002;

Kaklamani et al., 2018; Ji et al., 2022). In the current study,

mediator-less conductance measurements enabling direct

comparisons with the above-mentioned were not made.

Graphene oxide (GO), reduced graphene oxide (RGO) and

MWCNT have been used to modulate hydrogel conductivity

(Golafshan et al., 2017; Liu et al., 2018; Serrano-Aroca et al.,

2018; Fu et al., 2019; Li et al., 2019; McNamara et al., 2020;

FIGURE 4
Voltage vs. current based on amperometric data for the estimation of the signal to noise ratio. (A) Free enzyme; (B) RSHRP nanocomposite film
where chitosan is not in contact with the SPCE; (C) SHRP nanocomposite film where chitosan is in contact with the SPCE; (D) Free enzyme denoted
as FreeCAT; (E) RSCAT nanocomposite film where chitosan is not in contact with the SPCE; (F) SCAT nanocomposite film where chitosan is in
contact with the SPCE.
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FIGURE 5
Amperometric studies of horseradish peroxidase measured at −0.1 V using H2O2 as substrate and corresponding layer stacking configurations
(not drawn to scale). (A) Free enzyme; (B) RSHRP nanocomposite film where chitosan is not in contact with the SPCE; (C) SHRP nanocomposite film
where chitosan is in contact with the SPCE.

FIGURE 6
Amperometric studies of catalase measured at -0.4 V using H2O2 as substrate and corresponding layer stacking configurations (not drawn to
scale). (A) Free enzyme denoted as FreeCAT; (B) RSCAT nanocomposite film where chitosan is not in contact with the SPCE; (C) SCAT
nanocomposite film where chitosan is in contact with the SPCE.
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Raslan et al., 2021). While RGO and MWCNT are

hydrophobic and GO is hydrophilic, all nanomaterials

have exhibited the same level of teratogenicity in zebrafish

(Liu et al., 2014; Shu et al., 2020). Relevant cyclic

voltammetry studies range from optimal design of fiber-

based capacitors the volumetric capacitance of MWCNT

was approximately quadrupled for an RGO/MWCNT

mixture (4 F cm−3) (Raslan et al., 2021) to mediated

enzymatic reactions where chitosan and graphene were

blended to measure metabolic activity (Feng and Wang,

2021). However, neither of the studies above emulate the

nanocomposite stacking, diffusion limitations and the

potassium hexacyanoferrate (II)/(III) complexes mediated

conditions used in the current study.

In the absence of reaction (Figure 8, peak current increases

with the addition of the MWCNT (A/CNT) to the alginate slab

(A) confirming that MWCNT increases gel conductivity. The

current reverts back to the baseline (A) with the physical

adsorption of the polycationic chitosan (A/CNT/Chi). With

regards to the kinetic mechanisms (Figures 8A,B), there is

TABLE 3 Sensitivity of hydrogen-peroxide nanosensors.

Authors Electrode composition Sensitivity (μA/mM) Response time (s)

K.J. Huang et al.50 CAT/graphene-NH2 and AuNPs 13.4 2

D. Soto et al.51 Fe/graphene/CNTs 7.41 Not reported

A. Salimi et al.55 MWCNTs/GCE 3.30 <2
H.J. Jiang et al.56 CAT/SWNTs-Chi/GCE 6.30 Not reported

M. Şenel et al.57 CAT/(poly (GMA-co-VFc)) 1e-3 <7
M. Şenel et al.58 HRP/(poly (GMA-co-VFc)) 7.36e-4 <4
Current Finding SCAT/Amperometry 4.55 <5
Current Finding SHRP/Amperometry 6.27 <5

FIGURE 7
Voltammograms of nanocomposite biosensing films performed with a voltage sweep between 0.5 V and −0.8 V at a rate of 100 mV/s on
controls and corresponding reactive catalase immobilized slabs in the top and bottom rows, respectively. (A) alginate slabs; (B) alginate slabs with
CNTs (A/CNT); (C) alginate slabs with CNTs and chitosan (A/CNT/Chi); (D) alginate slabswith CAT (AE); (E) alginate slabs with CNTs andCAT (A/CNT+
E); (F) alginate slabs with CNTs, chitosan and CAT (A/CNT/Chi + E).
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distinct difference between the peak currents observed in the

absence of substrate (0 μL) with (5.41 μA) and without (2.96 μA)

the MWCNT incorporation (Figures 7D,F) suggesting enzyme

adsorption onto nanotubes via π-π interactions detected by CV

studies of proteins on RGO [ 71] and electrochemical impedance

spectroscopy (Chen et al., 2018). This change in formulation has

also resulted in the flattening of the voltammogram peaks

at −0.4 V. Chitosan incorporation has restored the shape of

the voltammogram to that of the alginate enzyme (Figure 7F

vs. Figure 7D) as well as the zero-substrate concentration peak

current. Conductivity for samples with extremely low CNT

loading values, which present no connectivity or close

proximity between CNT bundles as is the case for the

nanocomposites under observation (Figure 2B), showing an

electrical conductivity characterized by a current/voltage

dependence (Figure 8B) has been demonstrated for resistive

polymer matrices (Earp et al., 2019). Since the electrical

percolation limit for MWCNT immobilized in alginate has

not been documented, future experiments will entail varying

the nanofiller concentration to elucidate the conductive

mechanism of MWCNT with the nanocomposite slabs.

Effect of H2O2 concentrations in the
electrochemical response

Typically, the peak current values measured from

nanocomposite electrodes without catalase remained constant

with increasing concentrations of H2O2 (Figures 8A–C). In the

presence of catalase, the peak current values initially increased

with increasing concentrations of H2O2 and eventually saturated

with 2 μL of H2O2 added, which corresponds to a final

concentration of 8 mM of H2O2 (Figures 8D–F). It could be

hypothesized that the zero-order kinetic behavior observed is due

the background signal subtraction absent in the case of

amperometry measurements.

FIGURE 8
Peak current at −0.4 V relative to the background signal from the voltagrams of nanocomposite biosensing films, performed with a voltage
sweep between 0.5 V and −0.8 V at a rate of 100 mV/s on controls and corresponding reactive catalase immobilized slabs in the top and bottom
rows, respectively. Main plots capture substrate ranging from (0–3 µL) while insets contrast the overlay between (0and3 µL): (A1) alginate slabs (A),
(A2, inset); (B) alginate slabs with CNTs (A/CNT), (B2, inset); (C) alginate slabs with CNTs and chitosan (A/CNT/Chi), (C2,inset); (D) alginate slabs
with CAT (AE), (D2,inset); (E) alginate slabs with CNTs and CAT (A/CNT+ E), (E2, inset); (F) alginate slabs with CNTs, chitosan andCAT (A/CNT/Chi + E),
(F2,inset).
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The appearance of the anodic peak at −0.4 V in the presence

of substrate is illustrated in Figures 7D,F.

Among different nanocomposite electrodes, the catalase

immobilized sensor on alginate with CNTs and chitosan

showed the highest current increase (1.13 μA/mM) as

compared to the other formulations. The comparatively lower

current increase for A/CNT + E (0.51 μA/mM) electrode was

attributed to the higher current value in the absence of H2O2 as

reflected by a baseline value of 5.41 μA (Figure 8F).

Effect of SPCE stability on the measurements
A single SPCE was used to conduct the voltammetry

measurements in order to reduce the effect of sensor to

sensor variability. The use of the DropSens identical to the

current study for oxygen detection in room-temperature ionic

liquids has been reported (Murugappan et al., 2011; Junqiao

et al., 2017). In both cases, the C-SPEs were far inferior

(i.e., higher LODs, large capacitive currents, more signal

deterioration) compared to their Pt counterparts. In a

parallel study, the root cause of the deterioration was

investigated in the reverse reaction where reduction of

oxygen was detected by voltammetry associated with the

formation of H2O2 and water (Nissim and Compton, 2013).

However, an additional signal was seen on the carbon paste

electrode attributed to the initial formation of the superoxide

radical anion, O2_
-, suggesting that the predominant source of

oxygen for this reaction was that dissolved in the carbon paste

material rather than the aqueous solution.

Although the reduction of H2O2 is reversible, no additional peak

was detected in the voltammograms associated with superoxide

generation (Figures 8D,E). In the event that equilibrium shifts

towards the reversible reaction, the hydrogel nanocomposite slab

on the surface of which reaction occurs shields the SPCE from

superoxide diffusion into the carbon paste. Replication is needed to

ascertain this hypothesis but preliminary inspection of the SPCE

sensor shown in Figure 2D support the above-stated hypotheses.

4 Conclusion

In this study, an electrochemical H2O2 biosensor based on screen

printed carbon electrodes was developed by employing co-

encapsulated catalase and multi-walled carbon nanotubes in

alginate films coated with chitosan. Conditions for the fabrication

and geometry of the sensors were optimized, and the thin films were

systematically investigated for diffusive and electrical properties. The

optimal sensor design demonstrated desirable traits such as high

sensitivity (4.55 μA/mM) comparable to parallel detection CNT-

based nano-environments, facile fabrication by polyelectrolyte

complexation, and is made of proven biocompatible materials.

The proposed sensing platform has a potential to be further

developed as a third-generation biosensor where it promotes

FIGURE 9
Peak current at −0.4 V relative to the background signal from the voltammograms of nanocomposite biosensing films for 2 μl of H2O2 (8 mM).
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direct electron transfer without the need for an electron transfer

mediator to be verified by cyclic voltammetry and electrochemical

impedance spectroscopy. After determination of the electrical

percolation limits using MWCNTs incorporation of other

nanofillers namely transition metal dichalcogenides with proven

sub nM H2O2 detection limits in cancer cells (Dou et al., 2018)

will be investigated to improve the LOD. Future development may

integrate microneedle arrays with the current sensing platform to

detect hydrogen peroxide, glucose, or lactate in the subcutaneous

tissue towards continuous health status monitoring under simulated

physiological conditions.
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