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The origin of Aboriginal Australians has been a central question of palaeoanthropology since its inception during the 19th Century.
Moreover, the idea that Australians could trace their ancestry to a non-modern Pleistocene population such as Homo erectus in
Southeast Asia have existed for more than 100 years, being explicitly linked to cranial robusticity. It is argued here that in order
to resolve this issue a new program of research should be embraced, one aiming to test the full range of alternative explanations
for robust morphology. Recent developments in the morphological sciences, especially relating to the ontogeny of the cranium
indicate that character atomisation, an approach underpinning phylogenetic reconstruction, is fraught with difficulties. This leads
to the conclusion that phylogenetic-based explanations for robusticity should be reconsidered and a more parsimonious approach
to explaining Aboriginal Australian origins taken. One that takes proper account of the complex processes involved in the growth
of the human cranium rather than just assuming natural selection to explain every subtle variation seen in past populations. In
doing so, the null hypothesis that robusticity might result from phenotypic plasticity alone cannot be rejected, a position at odds
with both reticulate and deep-time continuity models of Australian origins.

1. Introduction

The origin of modern humans remains a core topic of palae-
oanthropology. Although four major models are presently
being debated, only the out-of-Africa suite has received
strong support from interpretations of both the fossil record
and DNA [1–6]. Yet, the evolutionary origin of Aboriginal
Australians remains controversial owing to the presence of
considerable variability in cranial morphology during the
Pleistocene and interpretations of its possible phylogenetic
importance [1, 2, 7–18]. Moreover, there is sharp disagree-
ment about the possible alternative causes of this variation
and its significance to a global understanding of the evolu-
tionary history of modern Homo sapiens [1, 2, 11, 12, 17, 18].

Long before a human fossil record was known for
Australia, various speculative evolutionary sequences were
devised linking nonmodern hominins to Aboriginal Aus-
tralians. In particular, it was proposed that Pithecanthropus
(Homo erectus) or the late-surviving Ngandong popula-
tion of this species (sometimes referred to H. soloensis
[14]) played a role in their origins. This idea has been

an enduring theme of palaeoanthropology for more than
100 years: from Klaatsch [19] through to Westaway and
Groves [18]. A recent major review of the question of
modern human origins [1] identified three major issues
for Australian palaeoanthropology to be resolved: (1) the
relationship of the first Australians to later inhabitants of
the continent, (2) whether late Pleistocene morphological
diversity may have been accentuated by the severity of the
last glacial maximum, leading to isolation and the forcing
of morphological change in some Australian populations,
and (3) if archaic populations such as those known from
Ngandong did survive into the late Pleistocene, an analogous
situation to that in Europe might have existed, raising the
possibility of gene flow with dispersing H. sapiens. All three
points are clearly interrelated. Regarding the first, the very
earliest fossil remains from Australia (e.g., Willandra Lakes
Human 3) do seem to fit metrically and morphologically
within the range of living Aborigines [8]. Stringer’s [1] points
2 and 3 relate to the possible cause(s) of cranial robusticity
in some Pleistocene/early Holocene Australians. That is,
whether such features arose as a result of natural selection
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acting on populations within Australia or were brought
here by people who evolved from, or hybridised/admixed
with, a nonmodern population in Southeast Asia (i.e., the
Solo/Ngandong hominins).

Australian palaeoanthropological theory and method
continues to be dominated by adaptationist accounts [20]
of robusticity and population history. The assumption that
the cranium is optimised part by part and that atomising its
form into traits assumed to be heritable units, functionally
discrete, to have been shaped by natural selection and,
therefore, positively associated with reproductive success,
remains the core proposition of the field. In the present
contribution, it is argued that the failure to fully consider
alternative (nonadaptationist) approaches is a major reason
why the interrelated issues of firstly, the cause(s) of cranial
robusticity and, secondly, its relevance to reconstructing the
origins of Aboriginal Australians remain unresolved. This
paper commences with a review of the history of ideas
regarding cranial robusticity and the origins of Aboriginal
Australians. Then, an alternative to atomisation, herein
called the ontogenetic approach, is described and some
key concepts underpinning it are introduced. Finally, this
approach is applied to some characters used to support the
Ngandong ancestry model for Aboriginal Australians.

2. History of an Idea

Ever since Blumenbach’s De Generis Humani Varietate
Nativa of 1795, European scientists have been attempting
to understand the affinities and hence origins of Aboriginal
Australians. Blumenbach had at hand the skulls of several
Australians provided to him by Joseph Banks [21]. However,
only with the wider exploration of the continent by Euro-
peans and the beginnings of a global trade in human cranial
remains during the 19th Century was a systematic effort
made to understand their skeletal morphology [22]. During
this period, the deep antiquity of the earth was beginning to
be established, including an ancient origin for humankind as
presented in Lyell’s Antiquity of Man [23]. In Lyell’s volume,
Huxley’s (1863) first comparisons of Aboriginal skulls to
Neanderthal remains were noted, indicating various mor-
phological resemblances (not exclusive though, or implying
ancestry). As the first anthropologist to study human origins
from comparative anatomical and fossil sources, and placing
his ideas within the Darwinian evolutionary framework,
Huxley can reasonably be considered the founder of the
discipline of palaeoanthropology. Moreover, as Aboriginal
Australians were central to his ideas, as well as to the early
development of this scientific field, Huxley ensured their
place at the centre of debate surrounding human origins, a
position they have held for close to 150 years.

During the early 20th century, many researchers con-
tinued to focus on documenting similarities in cranial
form between Australians and the Neanderthals [24–26],
inspired by Huxley’s earlier and highly influential work
(see Figure 1). However, following the discovery of fossil
human-like remains in Indonesia by Dubois [27], the
view eventually emerged that Australians may actually have
descended from a local population within Southeast Asia,
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Figure 1: Lateral line drawing of an Aboriginal skull described in
the early 20th century as “Neanderthaloid” [24].

either Pithecanthropus [19] or Homo soloensis [28, 29].
Klaatsch [19] found it “impossible to believe that the
Australian natives are descended from European palaeolithic
man” (page 162) as proposed by Huxley (see other criticisms
in [30, 31]). However, the idea of a regional evolutionary
sequence between Aboriginal Australians and Pithecanthro-
pus in Southeast Asia seems not to have been in the minds
of these workers. Instead, they saw Aboriginal Australians
as representatives of the most “primitive type” of living H.
sapiens and had in mind a global evolutionary sequence
in which “Solo Man” (Ngandong) and “Rhodesian Man”
(Kabwe) were examples of “proto-Australians,” belonging
together to living humans in H. sapiens [29]. Also, Dubois
[28, 29] thought that the Wadjak remains he recovered from
Indonesia were “Australoid” although they now seem to be
terminal Pleistocene in age and are probably not related to
Aboriginal Australians [32].

With the ideas of Weidenreich [33, 34] and Coon
[35], the “Pithecanthropoid-Australoid” lineage hypothesis
become a major feature of palaeoanthropological theorising.
Both these workers believed that modern humans around the
world had evolved from regional populations of Pithecan-
thropus (today H. erectus). Thus, the regional lineage from
this taxon through to Aboriginal Australians was part of a
global process, which Howells [36] dubbed the “Candelabra”
hypothesis. Parenthetically, it should be noted that this
idea was not universally supported; for example, Hrdlička
[37] preferred a Neanderthal stage in human evolution and
considered Aborigines to belong to an “old race” of “whites,”
borrowing heavily from Huxley, while Birdsell’s [38] views
are strikingly similar to the contemporary out-of-Africa
theory.



International Journal of Evolutionary Biology 3

The increase in the number of fossilised human remains
recovered during controlled excavations from the 1960s
onwards [39–43], and demonstration of a Pleistocene occu-
pation of the Australian continent [44, 45] encouraged
renewed interest in the Pithecanthropoid-Australoid lineage
hypothesis [39–43]. Again, it must be stressed that not all
researchers accepted this hypothesis, Macintosh in particular
reversing his earlier endorsement [46].

During the 1980s and 1990s, this idea was reformulated,
initially as the “Regional Continuity” hypothesis [47] and
later as the global “Multiregional” model of modern human
origins [48, 49]. At its core was the notion of a deep-
time Southeast Asian-Australian clade supported by evidence
of morphological continuity in the skull and dentition
between lower and upper Pleistocene nonmodern hominins
in Indonesia through to recent Aboriginal Australians. As
Thorne and Wolpoff [47] stated, “in no other region can
a specimen (i.e., Sangiran 17) be found that combines so
many features that seem unique or at least of high frequency
in Pleistocene Australians” (page 345; words in parenthesis
added). It is important to note that many proponents of the
multiregional model have since the early 1990s regarded H.
erectus to be a junior synonym of H. sapiens [50]; thus, the
emergence of modern humans is seen by them as a process
occurring within a single, long lasting, and widely distributed
evolutionary lineage, or species.

Moreover, Thorne [51–53] proposed that two popula-
tions had colonised Australia at different times during the
Pleistocene in his “dihybrid” model, the merging of the
two giving rise to modern Aborigines. The first population
was the “robust” group descended from H. erectus and the
second a later arriving “gracile” population originating in
Pleistocene China and, like modern East Asians, evolving
from East Asian H. erectus. Although the order of arrivals had
to be revised (reversed) once it was established that gracile
crania like WLH3 were actually geologically much older than
any robust remains recovered from various localities [15, 53].

Three recent variants of the regional continuity model
have been published. The first emerged from a test of mul-
tiregionalism in Southeast Asia-Australia using the WLH50
calvaria (see Figure 2) [54, 55]. It was found that six of
the seven Ngandong calvaria examined were phenetically
closer to WLH50 than to any other specimens considered,
including early modern humans from Skhul and Qafzeh.
In this work, it was concluded that the results implied a
“dual ancestry” for Aboriginal Australians because “there is
no evidence suggesting WLH-50 can be grouped with either
Late Pleistocene Africans or Levantines to the exclusion
of the Ngandong sample” [55, page 296]. That is, it was
argued that Australians are descended from both an ancient
regional population (e.g., Solo/Ngandong) and recent mod-
ern humans from Africa through a process of reticulation
(admixture/hybridisation). The present author has made
similar conclusions employing different fossils and an alter-
native, multivariate, methodology [2]. However, his findings
were argued to be consistent with the “assimilation” model
of modern human origins [56, 57], a hypothesis receiving
stronger support from genetic studies [2]. Weidenreich in a
personal communication to Birdsell [58] changed his mind
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Figure 2: Willandra Lakes Human 50 calvaria.

late in life and also thought Australians had a dual ancestry.
Oppenheimer [59] has also suggested that interbreeding
might account for Australian robusticity. The present author
has, however, changed his views and no longer considers
interbreeding to provide a parsimonious explanation for
Aboriginal Australian morphology or the origins of these
people [17].

The final recent variant was proposed by Webb [14]
and borrows heavily from Birdsell’s “trihybrid” hypothesis
[60, 61], as have Thorne’s later ideas [62]. Webb [14]
speculated that the first population to colonise Australia was
the species H. soloensis, an upper Pleistocene descendent of
Javan H. erectus. He argued that it migrated to the continent
as early as 130–150 ka and ultimately adapted to local
conditions, founding the robust Australian Pleistocene/early
Holocene population. Further, he contended that modern
humans entered Australia sometime between 50 ka and
75 ka, tracing their origins back to Africa. These people
are argued to have been “Negrito or Negrito-like,” being
of small stature, a feature developed “external to Australia”
[14, page 239]. The two species (H. soloensis and H. sapiens)
are argued to have gradually formed a single population
through “genetic mixing,” but the process was dominated
by the modern group, “which had the larger population and
constantly, albeit slowly, receives fresh genes through a series
of migrations arriving throughout the glacial maximum and
after, into the early Holocene” [14, page 269].

3. Some Objections to Continuity

Many objections to Southeast Asian-Australian regional
continuity and the related dihybrid origins model have been
offered over the last 30 years or so. Some opponents have
argued that perceived similarities between robust individuals
and H. erectus may simply represent the retention of
plesiomorphies of later Homo by Aboriginal Australians
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[11, 63]. Indeed, Larnach [64] found that Aborigines are
closest in cranial morphology among living people to H.
erectus but stressed “their resemblance is never close” (page
159). He also noted that the Solo/Ngandong population
exhibits a number of autapomorphies not found among
Aboriginal Australians (see also [65, 66]), and “if Australians
are descended from Solo Man, then sometime during that
descent these unique traits were lost and their sites reverted
to a similar state to that obtaining in Homo erectus” [64, page
170]. Thus, if regional continuity is correct, Pithecanthropus
(H. erectus) must have given rise to the robust Pleistocene
Australian group in a separate event, the Ngandong popula-
tion (H. soloensis) being a late surviving and autapomorphic
descendent, and unrelated to Australians. Durband [67] has
pointed out that the available data for Javan H. erectus
especially from the facial skeleton (i.e., n = 1 or Sangiran 17)
is too inadequate to make reliable phylogenetic inferences.

Moreover, the dihybrid model and by implication
regional continuity has been rejected by most Australian
workers on the basis of its failure to take adequate account of
spatiotemporal variability in cranial and dental morphology,
including size, within a single continental population [8–
10, 12, 18, 68–75], or at the least its failure to reject this as a
null hypothesis. Moreover, some individual features under-
pinning regional continuity such as vault thickness have
been proposed as selected for in response to violence and
cranial trauma [8] (see below for a discussion of epigenetic
explanations for some robust traits). Finally, the conceptual
underpinnings of the dihybrid/migrationist model have
been deemed to be founded in a “palaeontological” (i.e.,
typological) rather than population-based approach [10], as
would be demanded by the synthetic evolutionary paradigm.

4. An Alternative Program

As noted above, most studies of Australian robusticity have
assumed that the morphological characters under investiga-
tion are genetic (or heritable). This concept is used in its
broader sense to mean that the phenotype of an individual
is a good predictor of the genotype [76]. However, it has
become a truism of developmental biology that “the old and
compelling idea that there exist specific genes for virtually
every structural detail throughout the craniofacial complex
is simply not true” [77, page 230]. The more that is learned
about the genes and developmental processes forming the
cranium, the less tenable the atomisation of complex organs
like the cranium has become [78]. Some concepts described
in this section indicate powerfully why this is the case and
underpin the need for an alternative paradigm in Australian
palaeoanthropology.

Estimates of the heritability for many commonly
employed cranial measurements and traits are available (e.g.,
[79–82]). Although there are some uncertainties surround-
ing the application of sample-specific heritability estimates
to other populations, they nonetheless provide insight into
the potential reliability of particular traits/variables as well
as a broader understanding of the heritability and integrated
nature of cranial ontogeny. Heritabilities vary widely for
standard craniometric variables: h2 = 0.000 ± 0.000 to

0.867 ± 0.156 [81]. Moreover, many variables have been
found to exhibit heritability estimates that do not differ from
zero (i.e., h2 = 0) [79, 81]. In a recent investigation, only
two commonly employed measurements have been found to
exhibit high heritability values: palate breadth (MAB) and
nasal height (NLH) [81]. Moreover, major length (GOL),
breadth (XCB), and height (BBH) dimensions exhibited low
to moderate, but statistically significant heritability estimates
[81]. However, many important regional measurements such
as frontal chord (FRC), bifrontal breadth (FMB), biasteri-
onic breadth (ASB), bizygomatic breadth (ZYB), and nasal
breadth (NLB) are characterised by low and nonsignificant
heritability estimates [81]. Additionally, these estimates
show a spatial pattern whereby lower estimates tend to be
associated with the face. In many cases, they are associated
with measurements for areas involving attachment sites for
the muscles of mastication [81] suggesting an important role
for epigenesis in their ontogeny.

Endocranial dimensions show moderate to high heri-
tability estimates including important measures of human
basicranial size and angulation [80]. These results highlight
the reasonably high heritability and considerable ontoge-
netic integration (correlation among dimensions) of human
endocranial form, but contrast with low-moderate heritabil-
ity for measurements on the ectocranial surface [81].

In a recent study of the heritability of cranial dimensions
employing a 3D approach, Martı́nez-Abadı́as et al. [82]
found a broadly similar pattern to previous (2D) studies [79–
81]. Overall, dimensions showed low-moderate heritability
with about 72% being significant (i.e., h2 > 0). Interestingly,
they found the face to be the region with the highest number
of significantly heritable traits and highest mean heritability,
followed by the cranial base and the neurocranium [82].
Within regions they found the orbit, nasal part, neuro-
cranial vault, and basicranium to be characterised by low
to moderate heritability, while the masticatory apparatus
exhibited low heritability [82], a finding consistent with
Carson’s [81] results. Between cranial regions, they also
found low-moderate heritability confirming the concept of
ontogenetic integration of the cranium. The findings of
Martı́nez-Abadı́as et al. [82] show that the cranial base,
neurocranium, and face are characterised by similar levels of
heritability and also strongly point to an important role for
epigenesis in ontogeny (see also [80, 81, 83–86]).

Epigenesis is defined as the developmental interactions
among cells, tissues, and their environments [84]. It can
translate localised developmental alterations into integrated
and widespread morphological changes and provide a fun-
damental mechanism for introducing flexibility into devel-
opmental programs including phenotypic plasticity [83–86].
Lieberman et al. [87] have discussed three types of epige-
netic interactions during ontogeny: (1) primary interactions,
occurring at the cellular level, (2) secondary interactions,
involving those between adjacent tissues during growth, and
(3) tertiary interactions, in which interactions occur through-
out ontogeny between cells within a unit (e.g., via hormones)
and the rest of the organism as well as the environment.

One important and widely discussed concept under-
pinning epigenesis in the ontogeny of the cranium is the
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functional matrix hypothesis (FMH) of Moss [88]. He
described the FMH in the following way: “The developmen-
tal origin of all cranial skeletal elements (e.g., skeletal units)
and all their subsequent changes in size and shape (e.g.,
form) and location, as well as their maintenance in being,
are always, without exception, secondary, compensatory,
and mechanically obligatory responses to the temporally
and operationally prior demands of their related cephalic
nonskeletal cells, tissues, organs, and operational volumes
(e.g., the functional matrices)” [88, page 9]. The FMH
explains many aspects of cranial development and is widely
regarded to be an important concept surrounding sec-
ondary epigenetic interactions during cranial ontogeny (e.g.,
[77, 89]).

An important example of tertiary epigenetic interactions
is the widely discussed “Wolff ’s” law of bone transformation
[90]. This “law” is actually a poorly defined and frequently
criticised term usually applied as a “catch-all” concept to
refer to the adaptation of bone to mechanical stimuli [77,
78, 91, 92]. Put simply, Wolff ’s law is, “an extension of
the old and trusted idea that form is interrelated with and
inseparable from function. . . that bone grows and develops
in such a manner that the composite of physiologic forces
exerted on it are accommodated by the bone’s developmental
processes” [77, page 233]. Historically, one problem with
this concept’s use has been that it was frequently invoked to
argue for uniform responses such as bone deposition in the
face of biomechanical stress particular from muscle, when
very often the opposite response, resorption, had occurred
[77, 91]. Thus, while in its general form this law remains
valid and useful, it is now widely acknowledged that just how
bone responds to mechanical stress is complex and varies
according to its location and whether stress is direct or is
mediated by other tissue. The reader is refereed to some
recent and more detailed reviews of this concept [77, 78, 92].

The external environment through tertiary epigenetic
interactions has long been argued to be an important
determinant of cranial form. For example, the shapes of the
neurocranium and nose have long been linked to climatic
adaptation [93–100] and facial form to diet or masticatory
practices (see [101–104]: see below for a more detailed
discussion of this idea). A 3D study of cranial morphology
compared to neutral genetic population distances [105]
found that the human cranium does preserve a “signal”
of population history. However, historical signatures are
not equal across cranial regions and seem to be largely
concentrated in the temporal bone and neurocranium
[105].

The final concepts to be briefly considered here are
those of modularity and integration. Modularity is a general
property of biological systems, from molecular to ecosys-
temic levels of interaction [86]. In ontogeny, it represents
the observation that morphological features do not vary
independently but are integrated with each other, reflecting
coordination in development, function, and evolution. They
might be thought of as forming modules or “complexes that
are highly integrated internally but are relatively independent
of each other” [86, page 628]. The morphological characters
within modules are characterised by three major properties

[106]: (1) they collectively serve a common functional role,
(2) they are tightly integrated by pleiotropic effects of genetic
variation, and (3) they are relatively independent of other
modules. This independence among structures (modules)
allows unrelated components to vary and evolve separately,
but the integration within the units maintains function-
ally necessary relationships among traits [85–87, 106–
113]. Morphological integration assumes that developmen-
tally/functionally related traits are coinherited and will pro-
duce coordinated responses in evolution [85–87, 106–113].

The cranium is divided along ontogenetic lines into three
regions: the cranial base, neurocranium, and face. As the
cranial base is in an evolutionary sense the oldest structure,
it is phylogenetically highly conserved [112] and believed
to be subject to stronger genetic influence in ontogeny
than the neurocranium and face [77, 113–116]. Moreover,
it widely is assumed that the face is the most sensitive
region to epigenetic factors as it stops growing later in
ontogeny than either the cranial base or neurocranium
[77, 114, 115]. Thus, it is subject to greater influence from
mechanical loading during mastication and from various
environmental factors during ontogeny [116–119]. There is,
however, considerable evidence that the face and neurocra-
nium are characterised by both integration between regions
and considerable modularity, or region-specific integration
[77, 80–83, 85, 87, 115, 120–123]. Moreover, this pattern
seems to characterise humans, chimpanzees, and gorillas
[106, 120, 124, 125] and is known to be phylogenetically
conserved in mammals [107, 126]. Cranial shape patterns
appear early in ontogeny and remain from early childhood
until adulthood [127], including in depository and resorptive
cranial growth fields [115, 128]. Although this is somewhat
simplistic as endocranial shape continues to change in
humans through adolescence, well after brain growth it has
ceased [129].

A range of studies aiming to test and develop Enlow’s
ideas about facial and cranial growth [77, 115, 130] have
been published over the past two decades and employed a
range of techniques including 3D morphometrics [119, 122,
123, 130–144]. Many studies have focussed on interactions
between the cranial base, neurocranium, and facial form,
and some major findings include that larger relative brain
size is associated with a larger basicranial angle, while large
faces may produce the opposite situation, although the
influence of facial size seems to be weaker than for brain
size [140]. Lieberman et al. [122, 123] also found that cranial
proportions (neurocranial shape, or degree of brachycephaly
versus dolichocephaly) depend on interactions between cra-
nial base width and brain volume. This has been confirmed
by 3D studies showing that changes in cranial base width
play an important role in cranial shape variation, including
facial width [127]. Moreover, studies of the heritability
of cranial regions confirm strong covariation between the
breadth measures of major developmental regions of the
skull [82]. Additionally, independent of age and size, an
important proportion of cranial shape variability seems to
be traceable to differences in the position and orientation
of the face and masticatory system relative to the braincase
[127].
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Experimental research using mice suggests that integra-
tion in the mammalian skull is highly structured following
a hierarchical scheme dominated by covariation between the
widths of the neurocranium and the basicranium and, to a
lesser extent, also the face [85]. Thus, the cranial base can
be thought of as the “skull’s central integrator” [122, 123].
It strongly influences overall cranial shape, constraining
facial breadth, height, and length, and neurocranial breadth
and length, helping prevent the “different regions from
evolving independently and would preserve the functional
and architectural requirements of the skull” [82, page 29].

5. Nonadaptationist Explanations and
Australian Robusticity

The above review of some ontogenetic concepts and recent
research findings provide the context for a reconsideration of
the possible causes of cranial robusticity among Australians.
There have been very few synthetic attempts to explain
it using nonphylogenetic or nonadaptationist approaches.
One important, but overlooked, example is that of Howells
[145] who proposed that robusticity may have been “a
phenotypic plastic response to some regional and transient
environmental stimulus. That is, the phenomenon would
be, not adaptation and selection, resulting in genetic change
in the post-Mungo population, but a reversible phenotypic
shift, on an unchanged genetic basis, toward larger size
and related allometric effects on the face and mandible
particularly, producing in some relatively smaller-brained
individuals the special flattened and narrow frontal which is
so striking in Cohuna and some of the Kow Swamp skulls”
(pages 646-647). This explanation is broadly consistent with
the ontogenetic approach outlined above, being in large part
a putative example of tertiary epigenetic interactions.

The cultural practice of artificial deformation, another
example of tertiary interactions, has been argued to have
produced or exaggerated the acute angle of the frontal
squama, angulation of the parietals, and aspects of occipital
squama morphology in a small number of robust Australian
crania such as Kow Swamp 5, Cohuna, some Coobool Creek
crania and Nacurrie 1 [9, 146–151]. Other epigenetic factors
have been proposed to explain vault thickness, including,
increased levels of growth hormone [8], nutritional phos-
phorous deficiency [8], and inherited anaemia [13, 14, 152,
153]. The latter (pathology) hypothesis has been examined to
some extent by Stuart-Macadam [154], Curnoe and Thorne
[16], Westaway [155], and Curnoe [16] but requires further
scrutiny (see below).

Lahr and Wright [156] using multivariate statistics
considered spatial (or architectural) aspects of cranial form
and proposed that the “superstructures” (see below) charac-
teristic of cranial robusticity may be integrated and covary
allometrically. For Australian Aborigines, they concluded
that like other human populations the expression of robust
characters was likely a response to some functional complex,
possibly mastication. They also suggested that the “distinc-
tive anatomical combination present in Australian crania
of a very narrow vault and pronounced robusticity, does
not represent a plesiomorphic state” inherited from either
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Figure 3: Thickness in Willandra Lakes Human (WLH) 50
compared with the sample median and range for the remaining Wil-
landra Lakes series (NB: numbers in parenthesis are sample size).

early modern humans or the Solo/Ngandong population
[156, page 184]. Moreover, they proposed that allometry in
combination with this regional morphology might explain
extreme robusticity seen in the Pleistocene of Australia.
However, in attempting to explain the origins of this cranial
morphology, they turned again to an explanation involving
natural selection during the settlement of Australia.

In recent research by the present author [17], the
ontogenetic framework was adopted in an attempt to explore
nonphylogenetic explanations for cranial robusticity among
Pleistocene/early Holocene Australians. It was concluded
that robusticity among these individuals may have been
the result of the complex developmental and functional
interplay between (1) a large neurocranium, (2) narrow
cranial base, (3) large viscerocranium with considerable high
midfacial projection, and (4) large dentition, especially the
posterior teeth, with their resultant large jaws (mandible
and maxilla) and high volume of masticatory muscles.
While it was suggested that these features were probably
heritable to some extent, other factors such as body size,
advanced physiological age, environmental effects from the
physical demands of a hunter-gatherer lifestyle in an arid
zone, dietary factors including food abrasiveness and limited
preparation of food, and the use of teeth as tools may all
have been factors affecting (exaggerating) the expression of
robusticity in the Australian context.

5.1. Cranial Thickening as Pathology in WLH50. As noted
above, pathological processes are suggested to have greatly
enlarged the already thick vault bones of WLH50 (Figure 2).
Webb [13, 14, 152, 153] has listed three indicators of
pathology in this individual: (1) uniform vault thickness,
(2) identification of the “hair-on-end” sign on lateral
radiographs of the calvaria, and (3) a thin vault cortex.

Figure 3 compares vault thickness at eight locations in
WLH50 with the median and range for the remaining
Willandra Lakes series, as measured by Webb [13]. The
large absolute thickness of the WLH50 vault is striking
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although thickness at one landmark (inion) does lie well
within the range of the remaining Willandra Lakes sample.
It is also very clear that vault thickness in WLH50 is far
from uniform, as it varies between locations in a similar
magnitude to the medians for the Willandra Lakes series
(Figure 3). The magnitude of change (difference) between
each of eight locations was calculated for WLH50 and the
rest of the Willandra Lakes series, and the median value
is actually larger in this individual (2 mm versus 1 mm).
Moreover, a nonparametric Mann-Whitney U-test showed
that the sample medians are statistical indistinguishable (n =
7/54, U = 187.5, P = .98; Monte Carlo P = .98).
Thus, WLH50 does not possess a vault of uniform thickness
when compared to the rest of the Willandra Lakes Human
sample.

Figure 4 is a lateral radiograph of WLH50 taken in 2006
by the author and A. Thorne. After careful inspection, no
indication of the hair-on-end sign can be seen. Figure 5 is
a lateral slice of a CT-scan of WLH50 also taken by the
author and A. Thorne in 2006. Again, in this and every
slice inspected by the present author (245 slices in three
planes, or 735 images), no evidence of the hair-on-end sign
can be found. There is, however, evidence for abrasion on
the external cortex around bregma (Figure 5), which may
have been mistaken by Webb for the vertical spiculations
sometimes associated with porotic hyperostosis.

It is also clear in Figures 4 and 5 that the external table
of WLH50 is far from thin. To assess this quantitatively,
the ratio of diploe to external table thickness was calculated
from thickness measurements made on CT-scans just lateral
to the median sagittal plane by the author. External table
thickness was chosen because along with the diploë this
vault component is altered in cases of porotic hyperostosis
[157]. The median of this ratio for WLH50 measured at nine
locations shows the diploë to be 1.4 times as thick as the
external table, while in WLH3 the median shows it to be 0.9
times as thick. While WLH50 certainly does exhibit relatively
thinner external table, it is far from thin. Finally, the results
of a Mann-Whitney U-test showed the median difference
between WLH3 and WLH50 to be statistically nonsignificant
(n = 9/23, U = 74, P = .22; Monte Carlo P = .23).

5.2. Ontogenetic Examination of Some Phylogenetic Charac-
ters. Table 1 lists 16 morphological traits for WLH50 used
to support a role for the Solo/Ngandong population in
the evolution of Aboriginal Australians (i.e., a reticulate or
dual ancestry model) [54, 55]. These “nonmetric” traits
were originally selected in order to avoid “duplicating
features that seemed to reflect the consequences of the
same anatomical variation” [55, page 294]. While somewhat
ambiguous, this statement is understood by the present
author to imply that traits were employed that were believed
to be developmentally and functionally nonintegrated and,
therefore, to be characterised by weak or absent covariation.
This assumption is crucial to an evaluation of the phyletic
valency of cranial robusticity in the Australian context and
the implicit assumption that characters shared by Australian
and Solo/Ngandong crania are homologous. (The reader is
referred also to Bräuer et al. [158] who provided a critical
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Figure 4: Lateral plain film X-ray of Willandra Lakes Human 50.

CS

Figure 5: Sagittal CT-scan of Willandra Lakes Human 50 (lateral to
the MSP). Arrows indicate surface abrasion; “CS” denotes coronal
suture.

evaluation of the character coding and statistical methods
employed by Hawks et al. [54] and Wolpoff et al. [55].)

All of the characters shown in Table 1 belong to a single
cranial (developmental) unit, namely, the neurocranium.
A small part of the lateral cranial base is preserved while
the facial skeleton is missing save a fragment of zygomatic
bone. Moreover, these traits represent two subunits of
the neurocranium most of them belong to the cranial
vault (14), with the remaining (2) belonging to the orbit
subunit (Table 1). Given the now well-established finding of
ontogenetic modularity and integration of the neurocranium
(e.g., [77, 80–83, 85–89, 106–144]), there are good reasons
to be suspicious about the use of the atomisation in this
instance.

According to the functional matrix hypothesis [88], the
cranium comprises various functional cranial components
(FCC), which are ontogenetically integrated. One FCC con-
tains the brain, cerebellum, and ocular globe, sharing a com-
mon embryological origin in the neural tube [77]. This FCC
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Table 1: Cranial traits used in phenetic studies of WLH50
(characters from [55]).

Character
Developmental

subunit∗

(1) Angular torus Vault

(2) Coronal keel Vault

(3) Sagittal keel on frontal Vault

(4) Lateral frontal trigone Vault

(5) Linea obliquus strongly developed Vault

(6) Mastoid crest Vault

(7) Sagittal keel on parietal Vault

(8) Postlambdoidal eminence Vault

(9) Prebregmatic eminence Vault

(10) Projecting inion Vault

(11) Sulcus dividing the medial and lateral
elements of the supraorbital torus or superciliary
arches

Orbit

(12) Superior margin of the orbit blunt (as
opposed to sharp)

Orbit

(13) Suprainiac fossa Vault

(14) Supramastoid crest Vault

(15) Temporal line forms a ridge Vault

(16) Transversely extensive nuchal torus Vault
∗

After Ackermann and Cheverud [120].

develops in an integrated way being subjected to common
heritable and epigenetic factors. The neurocranium largely
develops as a result of the passive displacement of the vault
bones, occurring within a connective tissue stroma, which is
enlarged by the growing brain [77]. As a result, all three parts
of this FCC follow a common growth trajectory, reaching 90–
96% of their adult size by about age 6-7 [77, 89, 115, 129].
However, the neurocranium also forms an integrated unit
with the cranial base, the “neurobasicranial complex,” and
its form is strongly influenced by factors such as basicranial
flexion, while the developing face also epigenetically “fine-
tunes” basicranial morphology, indirectly altering the form
of the cranial vault [122, 123, 131, 132, 136, 138–144].

Additionally, all 16 characters are cranial “superstruc-
tures” as originally defined by Weidenreich [159]. He
suggested that superstructures develop in response to tension
(“pull”) from muscles, a hypothesis subsequently verified
experimentally with respect to some cranial crests [77, 78,
91, 92, 115, 160, 161], implying that they “belong to, or sit
only upon, the outer bony table” [91, page 208]. However,
this situation is not universal for superstructures and their
development is complex.

As Enlow has shown [77, 91, 115, 161], the external
surface of a bone is frequently shifted from an endosteal
position. This means that developmental changes within
the endocranium as well as epigenetic factors acting on
the external table determine the morphology of the vault.
Moreover, different processes may be involved in remod-
elling the neurocranium in spatially adjacent regions, and
different regions of the cranium may exert influence over
the growth of a single structure at different ontogenetic
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Figure 6: Stress (von Mises) distributions in a high-resolution
three-dimensional computer simulation of cranial mechanics in a
Holocene San skull (modified from [166]).

stages. For example, about midway up the frontal squama
is a reversal line from resorptive (inferiorly) to depositional
(superiorly) remodelling [77]. Once the frontal lobes have
largely completed their enlargement, the internal table
stops growing, while the outer table continues to remodel,
progressively separating the inner and outer tables, and
replacing through resorption cancellous bone to form the
frontal sinus. However, this continued growth now results
directly from the anterior remodelling of the upper face or
nasomaxillary complex [77]. Further, the orbit (subunit) is
contained within this region, and the inner table of its roof
(endocranial side) is resorptive while the external (orbital
plate) is depository [77]. As the orbital roof continues to
remodel inferiorly along with the growth of the frontal lobes
of the brain, the orbit must grow anteriorly to provide
sufficient room for the growing eye; it is displaced outwards
with other bones of the orbit which form part of the face
according to the V principle [77].

In the case of the supraorbital torus, also considered
to be a superstructure by Weidenreich [159], there is now
abundant evidence that this feature develops epigenetically
as a result of the spatial relationships among the face,
neurocranium, and cranial base rather than biomechanical
stresses during mastication [77, 115, 162–167], contra [168].
For example, Figure 6 is a Holocene San skull indicating
stress gradients from masticatory stress as analysed with
the finite element method [166]. The supraorbital region is
unaffected by strain in this homogenous 3D model (but see
similar results using a heterogeneous model [165]).

Thus, while 14 characters might be regarded as super-
structures of the cranial vault, developing to provide muscle
attachments and remodelling in response to mechanical
stress, research into the supraorbital torus makes clear that
the two orbital roof features lack epigenetic influences from
the muscles of mastication. The supraorbital develops as
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a result of a complex interplay between the shape of the
neurocranium and breadth of the basicranium, growth of
the frontal lobes of the brain, development of the frontal
sinus, remodelling of the orbit to accommodate the growing
eye, and growth of the nasal region, which develops in
response to lung enlargement and in particular affects the
superior orbital rim, and the anteroposterior length of the
face seems also to be a determinant of its position relative
to the frontal squama and, therefore, the degree of frontal
recession seen [77, 115, 122, 123, 137, 162–171]. Moreover,
crania with high midfacial projection exhibit a long anterior
sphenoid resulting in a viscerocranium positioned anterior
to the neurocranium [133, 134, 170, 171] and in a prominent
supraorbital. Finally, the development of the supraorbital
region may even be epigenetically influenced by exercise
through the effects of hormones seemingly independently
from (but commonly with) other structures such as thick-
ened vault bones (see [172, 173]; see also [8]).

As noted above, Mitteroecker and Bookstein [106] have
found four common cranial factors or trajectories across a
range of primates including humans, which are integrated
through genetic effects such as pleiotropy and linkage, as well
as epigenetic processes.

Factor 1. An enlarged and prognathic maxilla, relatively
small cranial capsule, cranial crests, and enlarged zygomatic
arches are features epigenetically associated in primates
mainly as a result of masticatory muscle action. These are
all characteristics of cranial robusticity and while they can
be observed as a package in better-preserved crania (e.g.,
Cohuna, Kow Swamp 1), some of them are observable in
incomplete remains such as WLH50 (Table 1, Figures 2 and
7) [2, 8–14, 16–18, 41–43, 46–52, 54, 55, 64, 72, 151].

Factor 2. This pattern contrasts broad and short crania
with narrow and long crania (brachycephalic versus dolicho-
cephalic crania), including both the face and the neurocra-
nium, and also involves changes in the overall size of the
face relative to the neurocranium. All robust Australians
(e.g., Cohuna, KS1, WLH50) exhibit narrow and long crania
(Figures 2 and 7) [2, 8–14, 16–18, 41–43, 46–52, 64, 72, 151].
Overall neurocranial length, breadth, and height are char-
acterised by moderate but significant levels of heritability,
suggesting a large amount of variation in these features
determined by epigenetic forces [79, 81, 82]. Moreover, while
their faces are absolutely long and consistent with this factor
(e.g., KS1, KS5, Cohuna), they differ in exhibiting absolutely
and relatively broad faces [2, 8, 9, 11–14, 17, 18, 41–43, 47–
49, 51, 52, 151]. However, facial shape has been found to
exhibit weaker correlations with neurocranial and basicranial
shape than these regions have with each other, perhaps
explaining why the face is the most variable part of the skull
in humans [85]. Additionally, the dimensions of facial length,
breadth, and height are characterised by moderate heritabil-
ity indicating that additive genetic variation accounts for
approximately 30% of the phenotypic variation [79, 81, 82].
Further, facial breadth is well known to be under strong
ontogenetic influence from the muscles of mastication [171,
174–178]. A positive correlation between total masticatory

Figure 7: Three-dimensional models of various fossil crania made
from CT-scans, left lateral view: (top to bottom, left to right) H.
erectus Sangiran 2, OH9, and Sangiran 4; Pleistocene Australians
WLH50 and WLH3; African Holocene San; premodern Middle
Pleistocene Africans LH18, Florisbad, and Bodo. Models scaled to
approximately the same A-P length.

muscle size (cross-sectional area) and body size (stature and
weight) has also been found [171, 174–178]. The body size
of the WLH50 individual, like other Pleistocene Aboriginal
Australians, would have been large by later Holocene and
contemporary standards [8, 17]. In fact, metrical dimensions
of size and endocranial volume reveal it to be one of the
largest Pleistocene modern humans found anywhere in the
world and comparable in size to early African crania such as
from Herto, and larger than many nonmodern individuals
(compare with data in White et al. [179]), including H.
erectus calvarii [17].

Factor 3. Encompassing relative size of the midface and
neurocranial globularity, two characteristics that are tightly
associated during postnatal ontogeny. While sample size
disallows a proper comparison, robust Australian individuals
such as KS1 are certainly characterised by a relatively narrow
midface (ZMB/NPH = c66%) compared with the gracile
Keilor cranium (c76%) (data from [151]). Moreover, these
and other crania are strongly contrasted in their degree
of neurocranial globularity; robust crania exhibiting highly
angulated vaults, with receding frontal squamae (Table 1,
Figure 2) [2, 8, 9, 11–14, 17, 18, 41–43, 47–49, 51, 52, 151].
In contrast, individuals such as WLH1, WLH3, and Keilor
possess more globular crania (see Figure 7) [2, 9, 13, 14, 17,
41, 42, 51–53, 71, 72, 151].

Factor 4. A roundish and relatively short and high neuro-
cranium to elongated, ellipsoidal crania. Exaggeration of the
latter generates an occipital bun and lambdoid flattening
along with large browridges. Robust Australian crania all
exhibit ellipsoidal crania (superior outline); many have
an occipital bun and lambdoid flattening, and all exhibit
prominent browridges by modern human standards (see
Figures 2 and 7) [2, 8, 9, 11–14, 17, 18, 41–43, 47–49, 51, 52,
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151]. Although the WLH50 calvaria is actually relatively tall
in addition to being very long, this probably results from the
combination of large endocranial volume and very narrow
cranial base (see [17, 156]; see also [180, 181]). A range of
other factors interacting in a complex manner are also known
to influence the development of the supraorbital part, cranial
shape being one of them (see above).

It is interesting also to note that Mitteroecker and Book-
stein [106] found that their Factors 1 and 2 were the most
highly conserved among humans, chimpanzees, and gorillas,
with all three sharing a single ontogenetic trajectory owing to
the presence of tight integration during development. Many
of the traits listed in Table 1 can be explained by variation
within these two highly constrained modules. Trajectories
for Factors 3 and 4 were found to deviate considerably in
humans compared to chimpanzees and gorillas suggesting
that certain human cranial features have decoupled during
evolution [106]. They opined that this difference was best
explained by local developmental factors unique to humans
such as relative brain size, posture, and locomotion (Factor
3), and facial shape, mainly involving the browridge (Factor
4). In the end, this research indicates that selection does not
act on individual features, but instead cranial traits form part
of an integrated and heritable set of factors or trajectories.
Australian cranial robusticity lies on the trajectory for all four
factors but is never as extreme in its expression as seen among
nonmodern hominins.

Figure 7 presents 3D models (scaled to the same length)
constructed by the author from CT-scans of WLH3 and
WLH50, a Holocene African hunter-gatherer and various
Pleistocene (nonmodern) hominins. Compared to WLH3
and the Holocene San individual, WLH50 does exhibit a
receding frontal squama, prominent browridge, and some
projection of the occipital. However, compared to all non-
modern, middle Pleistocene calvarii, WLH50 is tall, has
a more upright frontal squama, which bulges anteriorly
(prebregmatic eminence), and has relatively rounded parietal
and occipital profiles and mild lambdoidal flattening. In fact,
it closely resembles WLH3 in all these respects. Moreover, it
lacks the strongly projecting browridge and a posttoral shelf
so evident in all middle Pleistocene remains, whether belong-
ing to H. erectus, H. heidlebergensis/rhodesiensis, or archaic H.
sapiens/H. helmei. Its profile including the frontal squama is
quite rounded (globular) compared to nonmodern crania.
Thus, the purported similarities between WLH50 and H.
erectus seem to have been greatly exaggerated, particularly
when a comparison involving Middle Pleistocene African
crania, the putative ancestors of all modern humans [1], is
made. Instead, WLH50 simply presents as a more rugged
version of the WLH3 morphology, the two resembling each
other in their angle of the posterior part of the frontal
squama and profile of the parietals and occipital; when com-
pared with the San cranium, and indicating regional-specific
features for Australian crania. Moreover, the comparatively
modest differences in shape between WLH3 and WLH50
seem to be explicable in terms of the ontogenetic trajectories
described by Mitteroecker and Bookstein [106].

Another important recent study of cranial robusticity
with strong bearing on the morphology of WLH50 and other

Pleistocene/early Holocene Australians is that of Baab et al.
[182]. They tested for integration/correlation among various
robusticity traits in a global sample of humans including
recent Aboriginal Australians. Overall, they found that crania
with more prognathic faces, expanded glabellar and occipital
regions, and longer skulls were more robust than those with
rounder vaults and more orthognathic faces. This supports
the findings of Lahr and Wright [156] and, more broadly, the
results of Mitteroecker and Bookstein [106].

Baab et al. [182] also found evidence for significant pos-
itive but weak coexpression among all robust traits (frontal
trigone, sagittal keel, infraglabellar notch, supraorbital torus,
zygomaxillary tubercle, and prebregmatic eminence) with
the exception of the occipital torus. They did, however,
find that the supraorbital torus is strongly and significantly
correlated with an infraglabellar notch and moderately and
significantly correlated with a zygomaxillary tubercle and
a zygomatic trigone. Moreover, moderate and significant
correlations were found between the zygomaxillary tubercle
and bregmatic eminence, inferolateral rounding of the orbit,
infraglabellar notch, and zygomatic trigone; between a
bregmatic eminence and inferolateral rounding of the orbit;
infraglabellar notch and zygomatic trigone. They concluded
that epigenesis through masticatory function was the most
likely cause of the development of these traits.

One feature studied by Baab et al. [182] failed to
show correlation with the other robust traits they exam-
ined, namely, the occipital torus. Again this seems to be
explicable in terms of epigenetic forces during ontogeny.
For example, Perez et al. [183] have described a positive
association between occipital muscle attachment areas and
head shape (dolichocephaly) among males in a sample of
South American hunter-gatherer crania. Thus, it may simply
be an epigenetic consequence of an elongated cranium,
in-line with other changes such as a protruding occipital
and formation of an occipital bun [106, 122, 123, 180,
181]. A related character is the suprainiac fossa in WLH50
(Table 1). Functionally, this feature is suggested to provide
attachment for nuchal ligament [184] or to represent an
area of resorptive bone developing in response to bending
forces along the nuchal torus [185]. Irrespective of its cause,
this feature is actually found in both WLH3 and WLH50
(personal observation) and cannot, therefore, be considered
a defining trait of Australian robusticity nor evidence bearing
on their phylogenetic history.

The issue of vault ridges (or keeling) has not been explic-
itly addressed in most ontogenetic studies of the human
cranium. Although Baab et al. [182] did find statistically
significant moderate correlations between a sagittal keel and
bregmatic eminence, both features are associated with cranial
vault sutures. Their development may, therefore, be part of
the integrated process of ontogeny and result from epigenetic
factors relating to cranial shape and mechanical forces.

The research of Baab et al. [182] also highlights that
while integration and modularity are fundamental to under-
standing cranial ontogeny, certain features sometimes show
lower than expected correlation and covariation than
expected. Similar findings have been made with respect to
the endocranium [186–188].
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A number of researchers have specifically addressed the
issue of the mechanical effects of mastication on cranial
sutures experimentally. In vivo studies [188] found that strain
(tension or compression) along sutures was not the result of
torsion but rather the localised effects of masticatory actions.
Strain was found to be significant along all of the major vault
sutures, and its effects varied depending upon the muscle
involved. For example, while masseter contraction tensed
the coronal suture, the temporal caused compression at this
region. Moreover, an earlier study [189] found that even a
relatively small bite force was sufficient to cause separation
of the sagittal suture in juvenile monkeys, from which they
concluded that “such separation might act as a major factor
in the local control of osteogenesis of the sutures” [189,
page 907]. Additionally, Sun et al. [190] confirmed earlier
findings of significant masticatory strain along vault sutures
and further found that synostosis (normal fusion) resulted
in increased suture strain and enhanced bone growth on
the ectocranial surface leading to thicker bones in adults.
Finally, the sutures have also been suggested to play a role
in dissipating masticatory strain [191], while the diploë may
also play a similar role [165]; although these hypotheses
require further testing.

Clinical interest in cranial ridges along the major vault
sutures stems from understanding the causes and treatment
of abnormal head shape as result of congenital or acquired
conditions (such as birth injuries) or pathophysiological
processes leading to clinical craniosynostosis (premature
suture closure). Midline ridges are found within the clinical
spectrum of such cranial deformities [192]. However, in
the absence of changes to vault or facial shape, they are
considered normal variants [193]. The metopic ridge can
arise in an infant (before two years of age) from premature
closure of the metopic suture, while a midline bony ridge
over vertex from front to back may develop following
premature fusion of the sagittal suture in adults prior to
40 years of age [192]. Coronal bony ridges can also form
in cases of premature craniosynostosis, again arising any
time before normal closure of the coronal suture (typically
around 40 years of age [192]).

Premature synostosis of one or more sutures is accom-
panied by compensatory growth, both in other sutures,
and by remodelling (appositional growth) of other parts
of the skull [194]. Premature closure of sutures prevents
separation of the bones and affects skull growth in a
direction perpendicular to the affected suture, leading to
skull deformations [194, 195]. Much later in life (i.e., around
40 years of age), premature craniosynostosis of the sagittal
and coronal sutures can occur and leads in mild cases to the
development of sagittal and coronal ridges. Among robust
Australian crania, the parietals are relatively long and the
lower occipital scale (nuchal plane) is unusually relatively
short [151]. Moreover, premature craniosynostosis of the
sagittal suture at around 40 years of age can result in dolic-
ocephaly, accompanied by a narrow head with bitemporal
widening, sometimes frontal and occipital bossing, and a
midline bony ridge over the vertex from front to back [192].

The current clinical incidence of synostosis is 1 in
2,000–3,000 newborns although syndromic craniofacial

malformations involving more than one suture occur in
about 15% of cases [192]. Sagittal craniosynostosis is rarer,
with an incidence of about 1 in 5,000 adults [192]. The
aetiology of craniosynostosis is heterogeneous: hereditary,
mechanical, teratogenic, and idiopathic [195]. Multiple
genetic and environmental causes have been identified.
Among the latter are rickets caused by vitamin D deficiency
or resistance, chronic renal failure, hypothyroidism and
hypophosphatasia, and multiple causes of abnormal fetal
positioning in utero leading to constraint of the fetal skull
[192]. Rickets is documented among human remains from
the Willandra Lakes [153]. Moreover, synostosis may have
been more common in the past among some popula-
tions. For example, White [196] found an incidence of
3% in a sample of normal Mayan skulls, rising to 31%
among those from the precontact period; and in 41% of
them premature synostosis was apparently explained by
artificial deformation. This lends support to suggestions
that artificial deformation may be an exaggerating influ-
ence in the robusticity of Pleistocene/Holocene Australians
[9, 146–150].

6. Conclusions

The idea that Aboriginal Australians posses an unusual and
phylogenetically informative pattern of cranial robusticity
has been important in palaeoanthropology for about 150
years. There has, however, been a wide range of views about
specific aspects of their evolutionary history. Particularly,
whether or not Pleistocene nonmodern populations in
Southeast Asia (i.e., Pithecanthropus, H. soloensis, or H. erec-
tus) played a role in their evolutionary history. Irrespective
of whether the multiregional, assimilation, or Out-of-Africa
model has been supported, most investigations have taken
the human cranium to be optimised part by part, and
atomised its morphology into traits assumed to be heritable
units, functionally discrete, shaped by natural selection
and, therefore, to be positively associated with reproductive
success in order to make phylogenetic inferences. Yet, a
large body of research from the morphological sciences,
including anatomy and embryology, pathology, genetics, and
evolutionary biology makes it clear that these assumptions
may be unrealistic and that atomisation should be used with
great care in phylogenetic reconstruction.

The human (vertebrate) cranium is characterised by
ontogenetic and functional modularity, with much integra-
tion/covariation among the elements within each module, as
well as between them. Moreover, epigenesis is a powerful,
pervasive, and very complex force, its influences being felt
in all levels of organisation during ontogeny, from cellular
interactions to those among adjacent tissues to interactions
with the external environment of an organism. Additionally,
while many aspects of cranial size and shape are heritable,
epigenesis may determine 70% or more of variation seen
within populations with well-established pedigrees [79–82].
Finally, many of the traits designated “robust” are also
characterised by some ontogenetic integration and are likely
to derive from a set of common epigenetic factors, which
includes the spatial effects/constraints of size and shape, for
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example, central integrating features such as the cranial base
and mechanical effects from the muscles of mastication.

While there is clearly a strong message in this research for
palaeoanthropology in general, its implications for studies of
Australian Aboriginal robusticity are particularly acute. Phy-
logenetic reconstruction across all organisms and employing
all methods involves a set of important assumptions about
the traits used. For example, Lieberman [197] lists seven such
assumptions, the first four being relatively uncontroversial,
with the remaining three particularly relevant here although
hardest to satisfy; (5) characters should reflect independent
units of information about phylogenetic relationships, (6)
they must be heritable if they are to provide reliable
information on ancestry and descent, and (7) they should
be equivalent units or homologous structures. The ontoge-
netic approach outlined here suggests that these assump-
tions probably cannot be met in the case of phylogenetic
reconstructions involving robust Australian crania when
using atomised traits. Most characters are unlikely to be
independent units, being integrated in their development
and influenced by a complicated set of epigenetic interactions
[77, 83–89, 106–144, 160–167, 169–178, 180–183, 188–197].
They also show mostly low to moderate heritability [79–82]
and are in some instances clearly not homologous in modern
humans and nonmodern hominins.

For example, a character used widely in studies of
the evolutionary origins of Aboriginal Australians is the
possession of a flat frontal squama among robust indi-
viduals [2, 8, 9, 11–14, 16–18, 39–43, 47–49, 51, 52, 63,
72, 151]. Putting aside epigenetic explanations involving
pseudopathology [17, 146–150], this trait fails to satisfy
all three assumptions of phylogenetic reconstruction. The
size and shape of the growing brain in accordance with
the functional matrix hypothesis [77, 88, 114, 115] and
its epigenetic interactions with the developing cranial base
largely determine the size and shape of the vault. Moreover,
there are also influences from the growing face although, they
are more subtle than those of the basicranium [122, 123, 131,
132, 136, 138–144]. The anteroposterior length of the face
seems also to be a determinant of its position relative to the
frontal squama and, therefore, the degree of frontal recession
present; crania with high midfacial projection exhibit a long
anterior sphenoid, resulting in a viscerocranium positioned
anterior to the neurocranium [122, 123, 131–134].

In nonmodern hominins like H. erectus, a flat frontal
squama results from a complex combination of a small
frontal brain lobe, broad cranial base, combined high
midfacial projection and long anterior sphenoid. However,
in anatomically modern humans with our large brains,
including relatively broad and steep frontal lobe [198],
angulation of the frontal squama results from the brain
being epigenetically forced to grow excessively posteriorly by
a narrow cranial base resulting in a long and tall cranium
[17, 156, 180, 181]. Moreover, a flat frontal squama is
associated with a browridge, the orbital roof being forced
to grow forward to accommodate the growing eye, and an
occipital bun, the result of the posterior growth of the brain
within a narrow vault. Additionally, because the brain and its
frontal lobe are relatively broader and more globular (taller)

in modern humans and our face characterised by significant
retraction [137, 170], the brow is never as prominent in
modern humans as it is in nonmodern hominins including in
WLH50 (see Figure 7) [122, 123, 181, 199]. As noted above,
WLH50 is among the largest modern humans found in the
fossil record globally and is comparable in size to the earliest
modern remains such as from Herto (see data in [179]), and
larger than many nonmodern crania including H. erectus.
While large cranial size and a narrow cranial base, as seen
in WLH50, are certainly plesiomorphic traits, they are not
shared with H. erectus or other nonmodern hominins but are
plesiomorphies of anatomically modern H. sapiens [17, 122,
123]. Moreover, they seem to have been important influences
on the form of this calvaria and other Australian remains.

To conclude, there is now ample evidence that the
atomisation of cranial robusticity has provided a misleading
picture of the evolutionary history of Aboriginal Australians.
Moreover, models suggesting that living Australians as
demonstrated by their robust cranial morphology can trace
their origins to the nonmodern hominins of Pleistocene
Southeast Asia should be reconsidered in light of major
developments in the morphological sciences. In 1976, How-
ells [145] issued a challenge to Australian palaeoanthro-
pology to reject a null hypothesis that differences between
gracile and robust crania can be explained by phenotypic
plasticity alone. So far, this challenge has been ignored. It
is time to reconsider the adaptationist program and to take
a more parsimonious approach to explaining Aboriginal
Australian origins, one that takes account of the complex
processes involved in the ontogeny of the human cranium
rather than just assuming that natural selection explains
every subtle variation seen in past populations.
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