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Abstract

Background

Cinobufacini, the sterilized hot water extraction of dried toad skin, has been widely used in

the treatment of inflammation and cancers. Recently we found cinobufacini could ameliorate

dextran sulfate sodium (DSS)-induced colitis in mice, but the underlying mechanism was

not fully understood. In current study, we explored the effect of cinobufacini on gut micro-

biota in DSS-induced acute colitic mouse model by pyrosequencing of colonic contents.

Methods

C57BL/6 mice were supplied with normal or 3.0% DSS containing drinking water. DSS-treat

mice were gavaged daily either with vehicle (water) or cinobufacini (10.0 or 30.0 mg/kg) for

7 days. The composition of the gut microbiota was assessed by analyzing 16S rRNA gene

sequences.

Results

Our data indicated that cinobufacini reversed DSS-induced gut dysbiosis and enhanced

intestinal barrier integrity. Moreover, changing of some specific microbial groups such as

Proteobacteria and Bacteroides was closely correlated with the re-establishment of intesti-

nal equilibrium and the recovery of intestinal function.

Conclusion

Cinobufacini prevents colitis in mice by modifying the composition and function of gut micro-

biota. The current study provides additional mechanistic insight in the therapeutic effect of

cinobufacini treatment and may pave the way for clinical application of cinobufacini in colitis

therapy.
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Introduction

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis

(UC), is a heterogeneous group of chronic and relapsing inflammatory disorder of the gut.

IBD is common in industrialized countries, but the incidence is increasing rapidly in Asia and

South America nowadays[1]. A number of factors, such as immune function, genetics, and

environmental factors such as smoking, antibiotics use, diet and so on, are associated with

developing IBD[1].

The importance of gut microbiota in the pathogenesis of IBD has attracted more attention

during the past decade. A signature of IBD is dysbiosis, characterized by reduced gut microbial

diversity because of breakdown of the balances between putative species of “protective” versus

“harmful” intestinal bacteria[2]. Antibiotics and probiotics show clinical effects when used for

the treatment of IBD[3]. Many of the known IBD susceptibility genes are associated with intes-

tinal mucosal barrier function and are involved in host-microbiota interactions[4]. Other

observations support a role for the gut microbiota in IBD including the use of faecal micro-

biota transplantation (FMT) as a therapeutic approach in IBD, and the rapidly increasing inci-

dence of IBD globally associated with a Westernized lifestyle and other associated

environmental factors[1,3,5,6].

5-aminosalicylic acid (5-ASA), an anti-inflammatory chemical, is widely prescribed for the

treatment of IBD in clinical practice. The emerging evidences reveal that gut bacteria are the

therapeutic targets of 5-ASA[7]. In Asian countries, traditional Chinese medicine (TCM) is

also widely used in IBD treatment. A large amount of evidence reveals that TCM plays an

essential role in gut microbiota during IBD treatment. Berberine reduces diversity of the gut

microbiome and interferes with the relative abundance of Bacteroides, Eubacterium, and

Desulfovibrio in the intestine of UC model mice[8]. Curcumin supplementation enhances bac-

terial richness and diversity and modulates the relative abundance of some orders, including

Lactobacillales and Coriobacterales, in the intestine of colitis-associated colorectal cancer

model mice[9].

Cinobufacini (Huachansu), an aqueous extract from the skin of the Bufo toad, is a tradi-

tional Chinese medicine widely used in clinic with anti-tumor and anti-inflammatory effects

[10]. In previous study, our team found that cinobufacini could relief DSS-induced colitis in

mice[11], but the underlying mechanism is still elusive. Bufadienolides, the principal bioactive

components of cinobufacini, have been reported to have strong antimicrobial activity in vitro

[12]. However, it is unclear whether cinobufacini could influence colitis pathogenesis by regu-

lating gut microbiota. In this study, we explored how cinobufacini reshaped gut microbiome

in the context of DSS-induced colitis.

Materials and methods

Animal experiments

Male C57BL/6 mice were obtained from Shanghai Laboratory Animal Center, where they

were maintained under specific pathogen-free conditions with a 12-h light/dark cycle. The ani-

mal experimental procedures were approved by the Committee on the Ethics of Animal Exper-

iments of Zhejiang University of Traditional Chinese Medicine, China. Studies involving

animals were performed with compliance to all relevant ethical regulations. To avoid any pos-

sible interference from gender, only male mice were used in this study. After 1 week of accli-

mation, 8-week-old mice were randomly divided into four groups of 8 mice. The control

group was supplied with normal drinking water for 7 days, and one group (assigned as DSS

group) exposed to drinking water containing 3.0% DSS (36 to 50kDa; MP Biomedicals, USA)
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for 7 days, whereas the other two groups were fed 3.0% DSS plus 10.0 or 30.0 mg/kg (body

weight) cinobufacini by gavage administration for 7 days (assigned as cinobufacini-L group

and cinobufacini-H group). Cinobufacini capsule (National drug standard: Z20050846) used

for animal experiment was purchased from Shanxi Dongtai Pharmaceutical Co., Ltd. (China).

Body weight, stool consistency, and stool bleeding were assessed daily.

At the end of the experiment, the animals were sacrificed under general anesthesia. To

detect gut permeability, four mice per group were gavaged with FITC-Dextran (0.6 mg/g body

weight; Sigma, China) 4 hours before the fluorometric analysis of FITC fluorescence in serum

as described previously13. Blood was drawn in EDTA-K2 tubes and immediately centrifuged

in order to separate plasma from cells. The samples of colonic content were collected and

stored at −80˚C for 16S rRNA sequencing. Colon tissues were collected and cutted into three

pieces. We used the proximal colon for MPO and pro-inflammatory cytokines (frozen imme-

diately), the middle portion for RNA isolation (frozen immediately), and the rectal region for

histology (fixed in 10% formalin in a cassette)[13].

Evaluation of Colitis and detection of MPO, cytokines in colon tissue and

FITC-Dextran in blood

The disease activity index (DAI) of mice was evaluated according to previous studies[13]. To

evaluate histological damage of colitis severity, the rectal colon stained with hematoxylin and

eosin (H&E) for histopathological analysis. Histopathological scores were determined by a

blinded observer using a previously published system[14]. The proximal colon tissue was

homogenized. The supernatant was used to quantify the MPO activity using a colorimetric

assay according to previous studies[15]. The levels of pro-inflammatory cytokines in periph-

eral blood were also determined using ELISA kits (MEIMIAN, China). Serum FITC-Dextran

was assayed by BioTek Synergy H1 microplate reader (excitation of 488 nm and an emission

of 520 nm).

RNA isolation and quantitative real-time PCR

For quantitative real-time PCR analysis, the middle colonic tissue was homogenized and RNA

was extracted using the Trizol method. To remove residual DSS contaminants, we purified the

colonic RNAs using lithium chloride protocol[16]. The complementary DNA (cDNA) was

synthesized using Reverse Transcriptases kits (Thermo, USA). Realtime PCR was performed

on LightCycler 480 instrument (Roche) using SYBR Green (Sangon, China). The relative

mRNA expression was analysed using the comparative Ct method. The primers used in this

paper are listed in S1 Table. The expression of the GAPDH gene was used as an external

control.

Gut microbiota analysis

To analyze gut microbiota, every six colonic content samples in each group (including the con-

trol group, the DSS group and the cinobufacini-H group) were randomly selected and pooled

to yield total eighteen samples (n = 6 per group). Total genome DNA from samples was

extracted using CTAB/SDS method. The V3–V4 region of 16S rRNA was amplified with uni-

versal primers. Sequencing and data analysis were subsequently performed on an Ion S5 TM

XL platform by Novogene (Beijing, China) using a method described previously[17]. Briefly,

≧97% similarity of the sequences were classified as the same OTUs. The representative

sequence of each OTU was screened for the further annotation.

In order to compute alpha diversity, we rarified the OTU table and calculated two metrics:

Chao1 estimated the species abundance; Shannon index accounted for both abundance and
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evenness of the species present using QIIME software (version 1.7.0). We used weighted uni-

frac for Principal Coordinate Analysis (PCoA) by R software (Version 2.15.3). In addition,

Metastats software (version 1.5) was used to analysis significant differences between different

groups. Biomarker discovery using Linear Discriminant Analysis Effect Size (LEfSe) and func-

tional prediction using Reconstruction of Unobserved States (PICRUSt) were performed

online (http://huttenhower.sph.harvard.edu/galaxy).

Statistics analysis

All data were analyzed using one way analysis of variance (ANOVA) followed by Tukey’s test

with mean ± SD (standard deviation) for the independent experiments. Statistical differences

between different groups were examined using SPSS (version 20.0). P < 0.05 was considered

to be statistically significant. The graph was created on GraphPad Prism 6 software.

Data availability

The raw 16S rRNA sequences for the microbiota analyses were deposited into the NCBI

Sequence Read Archive database with accession number PRJNA563762. Any other data that

support the findings of this study are available from the corresponding authors upon reason-

able request.

Results

Cinobufacini ameliorated DSS-induced acute colitis in mice

We researched the therapeutic effect of cinobufacini on DSS-induced acute colitis in C57BL/6

mice at first. Mice receiving 3.0% DSS developed serious colitis characterized by significant

weight loss, diarrhea and hematochezia, reflected by the increased disease activity index. Treat-

ment with cinobufacini reduced body weight loss, diarrhea and the blood in feces (Fig 1A and

1B). The average colon length of DSS-treated mice was generally shorter than that of the cino-

bufacini group (Fig 1C and 1D). From the histopathology, administration of DSS significantly

induced the intestinal inflammatory response, manifested as mucosal ulceration, epithelium

disruption, and inflammatory cell infiltration, but cinobufacini treatment prominently

reduced the severity of histopathologic response (Fig 1E and 1F). MPO activity reflects the

infiltration of neutrophil in inflammatory tissue environment[15]. As shown in Fig 1G, the

MPO activity was much higher in DSS group compared with the control group, while treat-

ment with cinobufacini obviously lowered DSS induced MPO elevation. Collectively, we con-

clude that cinobufacini attenuates severity of colitis in DSS-treated mice.

Cinobufacini decreased the production of inflammatory cytokines and

intestinal permeability

IL-1β plays an important role in the progression of IBD disease and is associated with the sever-

ity of intestinal inflammation. In many cases, IL-1β can induce the expression of other pro-

inflammatory cytokines such as IL-6 and TNF-α leading to intestinal inflammation[18]. Indeed,

in DSS-treated mice, the levels of inflammatory cytokines IL-1β, IL-6 and TNF-α in colon tissue

increased markedly compared to the control group. Treatment with cinobufacini significantly

suppressed the abundance of IL-1β, IL-6 and TNF-α in the blood of colitic mice (Fig 2A–2C).

Meanwhile, the contents of IL-1β, IL-6 and TNF-α were decreased in colonic tissues of cinobu-

facini-treated mice compared with DSS-treated mice at the mRNA level (Fig 2D–2F).

To further characterize the protective effects of cinobufacini on the barrier function of

intestine, we performed intestinal permeability assay using an FITC-labeled dextran method
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in vivo. The leak of FITC-dextran in serum was measured. The result showed that cinobufacini

treatment significantly reduced the amount of FITC-dextran in blood compared DSS model

mice, suggesting the improvement of intestinal permeability (Fig 2G). The tight junction pro-

teins, including occludin and claudins, play crucial roles in regulating intestinal permeability

[19]. We detected the transcription levels of Ocln and Cldn3 in mouse colon tissues by

RT-PCR. DSS treatment resulted in a decrease in mRNA expression level of tight junction pro-

teins (Fig 2H and 2I), and it was enhanced in the cinobufacini-treated mice. These data indi-

cate that cinobufacini restores the integrity of intestinal epithelial barrier in DSS-treated mice.

Cinobufacini regulated intestinal bacterial composition in mice

The impact of cinobufacini on intestinal flora composition was examined by analyzing bacte-

rial 16S rRNA (V3–V4 region). Species richness estimates (Chao1) and diversity indices

(Shannon) are presented. Surprisingly, there were no significant differences in the alpha diver-

sity of the communities based on Chao1 index. While, Shannon index indicated that the DSS

treatment group was lower than the other two groups (Figs 3A and 2B). We used principal co-

ordinates analysis (PCoA) to investigate the community structure of microbiota in three

groups. We found that samples tended to cluster together based on different treatment meth-

ods. The gut microbiota obtained from the DSS group mostly distinct from those of the other

two groups, which indicated obvious modification of the bacterial structure of mouse intestine.

The gut microbiota of the cinobufacini group was closer to the control group in PCoA plot

(Fig 3C). The change of intestinal bacterial composition among different groups were reflected

on the levels of phylum (p), class (c), order (o), family (f), genus (g) and species(s) (Fig 3D; S1

and S2 Figs). In the DSS group, we saw a significant decrease in the abundance of o-Bacteroi-
dales (within c-Bacteroidia, p-Bacteroidetes) and an elevated abundance of g-Klebsiella, g-Pro-
teus and g-Enterobacter (within o-Enterobacteriales, c-Gammaproteobacteria). In contrast,

cinobufacini resulted in the correction of these bacterial groups, which may contribute to the

re-establishment of intestinal equilibrium (Fig 3E; S3 Fig).

Cinobufacini changed biomarkers in each group

Next, we used LEfSe to detect bacterial organisms differentially abundant among the three

groups. The genera Dubosiella, Lactobacillus, Alistipes were biomarkers in the control group.

Enterococcus, Romboutsia, Klebsiella and Proteus were the dominant phylotypes detected in the

DSS group, contributing to the differences between the intestinal microbiota of the control and

DSS groups. While the genera Bacteroides, Parabacteroides, Erysipelatoclostridium and Flavoni-
fractor were predominant in the cinobufacini group (Fig 4A and 4B). In summary, our results

showed that cinobufacini could modulate gut microbiota composition in UC model mice.

Microbial metabolic functions associated with cinobufacini treatment in

DSS-induced colitis

To characterize the distinction of functionality of colonic microbiota under DSS-induced and

cinobufacini-treated conditions, we used PICRUSt analysis combined with the Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) database of microbial genomic information. The

Fig 1. The effect of cinobufacini on DSS-induced colitis in mice. (A) Percent change in body weight. (B) Disease activity index score.

(C, D) The change of colon length. (E, F) Representative H&E-stained rectal colonic section and histological score. (G) The

myeloperoxidase activity of colonic tissue. Cinobufacini-L means low dose of cinobufacini treatment, which is 10.0 mg/kg body weight;

cinobufacini-H indicates high dose of cinobufacini, 30.0 mg/kg body weight. Data shown are the means ± SD. �p< 0.05, ��p< 0.01 vs the

control group; #p< 0.05, ##p< 0.01 vs the DSS group. n = 8 mice per group.

https://doi.org/10.1371/journal.pone.0223231.g001
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Fig 2. Cinobufacini reduced the production of inflammatory cytokines and intestinal permeability. (A, B, C) Measurement of inflammatory cytokines in mouse

blood samples. (D, E, F) mRNA level of inflammatory cytokines in the colon tissues (G) FITC-Dextran permeability testing. (H, I) The expression of key molecular

components of tight junctions. Cinobufacini-L, 10.0 mg/kg body weight cinobufacini treatment; cinobufacini-H, 30.0 mg/kg body weight. Data are represented as the

mean ± SD of three experimental replicates. �p< 0.05, ��p< 0.01 vs the control group; #p< 0.05, ##p< 0.01 vs the DSS group. n = 8 mice per group.

https://doi.org/10.1371/journal.pone.0223231.g002
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analysis of level 1 KEGG pathways showed a high enrichment of predicted functions related to

metabolic pathways, genetic information processing and environmental information

Fig 3. The effect of cinobufacini on the composition of intestinal bacteria in DSS-induced mice. (A, B) Alpha diversity indices boxplot, including Chao1 and

Shannon. (C) PCoA biplot based on the weighted UniFrac distances. (D) The relative abundance of gut microbiota at phylum, family, and genus levels. (E) MetaStat

analysis showing the bacterial abundance significantly reversed by cinobufacini across the different groups. k, kingdom; p, phylum; c, class; o, order; f, family; g, genus.

The dose of cinobufacini was 30.0 mg/kg body weight. All values are mean ± SD (n = 6 mice/group). � p<0.05; �� p<0.01.

https://doi.org/10.1371/journal.pone.0223231.g003
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processing (S4 Fig). Fig 5 displays the top relative enrichment changes of level 2 KEGG path-

ways among the different groups. The activity of basic metabolisms, such as amino acid metab-

olism and energy metabolism, were decreased in the DSS group compared with the control

and cinobufacini group. The carbohydrate metabolism was significantly increased in the cino-

bufacini group compared to the control and DSS group, while there was no difference between

the control group and the DSS group (Fig 5). Above all, the analysis of basic metabolisms sug-

gested that the energy output derived from gut microbiota in the DSS group was reduced com-

pared to the control group. The treatment of cinobufacini increased the overall metabolic

activity of gut microbiota. Additionally, dysregulated environmental information processing

pathways, including membrane transport and signal transduction, were also observed in the

DSS group compared with the control group, while treatment of cinobufacini reduced their

activities to the control level (Fig 5).

Our results indicated that DSS administration resulted in dysfunction of microbiota in gut.

Cinobufacini modulated gut microbiota in DSS-induced colitic mice and recovered the micro-

bial functions close to the level of the control group. These pathways were further analyzed in

KEGG level 3 (S5 Fig).

Discussion

Alterations or dysregulation in the microbiota composition are being correlated to an

increased number of diseases, including IBD. In the present study, we examined therapeutic

effect of cinobufacini in mice with DSS-induced colitis. Our results indicated that the C57BL/

6J mice administrated with DSS developed similar symptoms as the human CD, evidenced by

a reduction in body weight loss, DAI score, shortening of colon length, histopathological score

as well as infiltration of inflammatory cells. Meanwhile, the results of the cinobufacini group

indicated that cinobufacini treatment could alleviate inflammation compared with the DSS

group. This finding is consistent with our previous study[11].

Decreased richness or diversity of bacterial species has been reported widely in fecal sam-

ples of IBD human patients and DSS-induced colitic rats[20]. In our study, DSS treatment

resulted in a significant decline in community diversity (Shannon), but no effect on commu-

nity richness (Chao1). Meanwhile, the gut microbial communities of the DSS group were clus-

tered together and away from the control group, indicating obvious difference between two

groups. However, cinobufacini supplementation recovered the community diversity of the gut

and significantly shifted the gut microbiota structure in the PC1 direction. Together these

observations indicate that cinobufacini may help the gut microbiota to preserve their commu-

nity composition and community diversity.

The deleterious roles of various members of the phylum Proteobacteria toward the intesti-

nal damage and development of IBD have been well documented. Proteobacteria adhesion to

and invasion of intestinal epithelial cells might destroy host defenses, stimulate inflammatory

response, alter the intestinal microbiota in favor of dysbiosis and ultimately cause IBD[2,21].

For example Campylobacter, Escherichia coli andHelicobacter, have all been associated with

the development of IBD[6,21]. In accordance with these previous studies, we demonstrated

that the abundance of Proteobacteria, mainly including Klebsiella, Proteus and Entrobacter,
was suppressed in the gut of model mice received cinobufacini. We suppose the antimicrobial

activity against Proteobacteria contributes to the therapeutic effect of cinobufacini to colitis.

Fig 4. The significantly enriched bacterial taxa in different groups as determined by LEfSe analysis. (A) LEfSe analysis shows

differentially abundant bacterial taxa in gut microbiota of different groups (LDA sore>4). (B) LEfSe taxonomic cladogram. The size of

each node represents the relative abundance of the species. (p, phylum; c, class; o, order; f, family; g, genus; s, species). The dose of

cinobufacini was 30.0 mg/kg body weight. All values are mean ± SD (n = 6 mice/group).

https://doi.org/10.1371/journal.pone.0223231.g004
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Intestinal epithelial barrier dysfunction and increased permeability have been described as

crucial features in patients with IBD[19,22]. Tight junctions (TJ) in intestinal epithelial cells

are involved in regulating the permeability of the intestinal barrier. Studies have shown that

Proteobacteria can influence intestinal barrier function by regulating the expression and distri-

bution of TJ proteins through various intracellular pathways[21]. Vibrio cholerae secretes hem-

agglutinin/protease to cleave TJ protein occludin. Enteropathogenic E. coli (EPEC) directly

attaches to the surface of intestinal epithelial cells and injects effector proteins into host cells

through a type III secretion system (TTSS) to disrupt cellular structures including TJ proteins

[22]. In our study, the increased proportion of Proteobacteria in the DSS treatment group

might be closely related to the reduction of TJ proteins. The administration of cinobufacini

reduced the presence of Proteobacteria in DSS-induced colitic mouse model and increased

occludin and claudins expression. This result suggests that cinobufacini may affect the barrier

function of tight junctions by changing intestinal bacteria.

Fig 5. PICRUSt prediction of the functional composition among different mice groups. There are five categories in level 1 KEGG pathway (metabolism, genetic

information processing, environmental information processing, cellular processes and human diseases). Relative abundances of most abundant microbial pathways at

level 2 in each category among the different groups. The dose of cinobufacini was 30.0 mg/kg body weight. Data shown are the means ± SD (n = 6). �p< 0.05,
��p< 0.01 vs the control group; #p< 0.05, ##p< 0.01 vs the DSS group.

https://doi.org/10.1371/journal.pone.0223231.g005
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The genus Bacteroides is recognized as a dominant and biologically important group of

commensal bacteria in the microbiota of the human gastrointestinal tract. Bacteroides has

been associated with host’s immunoregulatory, metabolic and homeostatic functions[23]. For

example, Bacteroides thetaiotaomicron, an abundant member of Bacteroides genus, has protec-

tive effects in both DSS-induced and IL10KO rodent models[24]. A meta-analysis suggests

that lower levels of Bacteroides are associated with IBD, especially in active phase[25]. This

observation was validated by our DSS-induced mouse model. Moreover, cinobufacini treat-

ment significantly increased the abundance of Bacteroides. Therefore, the attenuation of

inflammatory responses and the reduction of symptoms in CD mouse model treated by cino-

bufacini could be due to the increase of Bacteroides, at least in part.

Functional alterations in gut microbiota resulting from dysbiosis have been consistently

shown to be associated with IBD. Under inflammatory state, the bacteria in gut are prone to

utilize nutrients from the ambient environment instead of producing nutrients by their own to

maintain homeastasis[26]. Indeed, we observed the metabolic function predicted by PICRUSt

algorithm decreased in the microbiota from DSS-induced colitic mice compared to control

group. It is consistent with the previous study showed the biosynthesis of amino acids, butano-

ate and histidine metabolism was decreased in the DSS-induced UC mode[8]. In contrast, the

bacteria need to sense the changes of the surrounding environment for survival purpose under

dramatic environmental change such as severe inflammatory responses[27]. We found the

functionality for environmental information processing increased in the DSS group, probably

for fulfilling this specific demand under inflammatory state. The change of gut microbiota by

cinobufacini treatment also recovered the functions of gut bacteria. Carbohydrate fermenta-

tion by Bacteroides results in the production of a pool of volatile fatty acids that are reabsorbed

through the large intestine and utilized by the host as an energy source, providing a significant

proportion of the host’s energy requirement[23]. The increase in Bacteroides in cinobufacini

treatment group may play an important role in the recovery of intestinal function. Taken

together, the predicted functionality recovery further demonstrated the underlying mecha-

nism of cinobufacini treatment in colitis.

The shortcoming of our investigation is lack of detailed insight on the interaction between

cinobufacini and gut microbiota. There is few literature reporting cinobufacini has anti-bacte-

rial activity in other diseases. It is infeasible to create a culture mode in vitro to examine the

anti-bacterial activity of cinobufacini, since most of the bacteria changed by cinobufacini

administration are unculturable. Furthermore, it is also possible that cinobufacini exerts its

impact on gut microbiota through signaling pathways in enterocyte and immune cells resident

in intestine. For example, NLRP3 and NLRP6 affect the nature of the flora that inhabits the

intestine[28]. Whether cinobufacini modulates gut microbiota directly or via intracellular sig-

naling pathway like NLRP3 needs further study.

Growing evidence suggests that nuclear factor (NF)-κB signaling plays a significant role in

intestinal inflammatory disorders[29]. Certain bacteria could activate or inhibit NF-κB signal-

ing pathway. Kostic et al. demonstrated that Fusobacterium nucleatum can instigate NF-κB

signaling pathway to induce intestinal tumorigenesis[30]. It was also reported that Lactobacil-

lus rhamnosus, a species of protective bacteria, suppressed the expression of inflammatory

proteins NF-κB p65 and induced the expression of p53 and BAX to prevent colon cancer

development[31]. In our previous studies[11], it was also demonstrated that cinobufacin can

inhibit the activation of the NF-κB pathway, but whether it is directly affected by the alteration

of specific microflora requires further exploration.

In summary, our study demonstrates that cinobufacini could modulate the composition of

the intestinal flora and restore the relative abundances of vital bacteria including Klebsiella,

Proteus, Entrobacter and Bacteroides, preventing the imbalance of gut microbiota in DSS-

Cinobufacini regulates the composition of gut microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0223231 September 30, 2019 12 / 15

https://doi.org/10.1371/journal.pone.0223231


induced colitis. The current study provides additional mechanistic insight in the therapeutic

effect of cinobufacini treatment and may pave the way for clinical application of cinobufacini

in colitis therapy.
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