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Mechanisms of the Effects of Acidosis and Hypo
kalemia on Renal Ammonia Metabolism 

Review article

Renal ammonia metabolism is the predominant component of net acid excretion 
and new bicarbonate generation. Renal ammonia metabolism is regulated 
by acid-base balance. Both acute and chronic acid loads enhance ammonia 
production in the proximal tubule and secretion into the urine. In contrast, 
alkalosis reduces ammoniagenesis. Hypokalemia is a common electrolyte 
disorder that significantly increases renal ammonia production and excretion, 
despite causing metabolic alkalosis. Although the net effects of hypokalemia 
are similar to metabolic acidosis, molecular mechanisms of renal ammonia 
production and transport have not been well understood. This mini review 
summarizes recent findings regarding renal ammonia metabolism in response to 
chronic hypokalemia. 
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ammoniagenesis4, 5). Production of ammonia occurs 

predominantly from the cellular metabolism of glutamine, 

a major circulating amino acid. Glutamine is transported 

into renal proximal tubule across the basolateral membrane 

via the glutamine transporter SN16). 

Glutamine is subsequently transported into the mito

chondria and then is metabolized into glutamate and 

NH4
+ by glutaminase7). Deamination of glutamate 

yields αketoglutarate and an additional NH4
+ by 

glutamate dehydrogenase (GDH) in mitochondria8). 

Further metabolism of αketoglutarate produces malate, 

which is then transported to the cytoplasm from the 

mitochondria. Malate is converted to oxaloacetate and 

finally to phosphoenolpyruvate and carbon dioxide 

by phosphoenolpyruvate carboxykinase (PEPCK)9,  10). 

Therefore, complete metabolism of glutamine yields two 

NH4
+ ions in the proximal tubule (Fig. 1).   

Introduction

Urinary excretion of ammonia accounts for the largest 

portion of net acid excretion and thereby plays a critical 

role in acidbase homeostasis15). Renal ammonia excretion 

involves intrarenal ammoniagenesis and renal epithelial 

transport, rather than the glomerular filtration4, 5). Ammonia 

excreted into the urine is linked to production of new 

bicarbonate and results in net acid excretion. Ammonia 

that is not excreted in the urine is returned to the systemic 

circulation and metabolized in the liver to produce urea via a 

process that consumes bicarbonate. 

Ammoniagenesis in the proximal tubule

Although all nephron segments can produce ammonia, 

the proximal tubule is the most important site of renal 
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Ammonia transport along the nephron segments

Ammonia produced in the proximal tubule is secreted to 

the lumen fluid by both NH3 diffusion and NH4
+ transport 

through the action of the apical Na+/H+ exchanger (NHE

3) (Fig. 1). About 20% of ammonia produced in the 

proximal tubule also passes the basolateral membrane 

by substitution of NH4
+ ions for K+ and reaches the renal 

venous blood. 

Luminal NH4
+ travels down and then is reabsorbed in 

the thick ascending limb into the medullary interstitium. 

The apical Na+K+(NH4
+)2Cl  ̄cotransporter 2 (NKCC2) 

and basolateral Na+H+(NH4
+) exchanger 4 (NHE4) play a 

critical role in the ammonia transport in the thick ascending 

limb11, 12). Recent studies by Bourgeois et al. demonstrated 

that mice lacking NHE4 exhibited inappropriate urinary 

ammonia excretion and reduced ammonia medulla 

content12). NH4
+ dissociates into NH3 and H+ generating 

a corticomedullary NH3 (and NH4
+) gradient in the 

medullary interstitium. 

The collecting duct then finally secretes ammonia into 

urine4, 5, 13). Although collecting duct NH3 transport was 

Fig. 1. Ammonia Metabolism in the Proximal Tubule. GA, glutaminase; GDH,  
glutamine dehydrogenase; TCA, tricarboxylic acid cycle enzymes; PEPCK, 
phosphoenol pyruvate carboxykinase.

Fig. 2. Schematic Representation of the Ammonia Transport Mechanisms 
along the Nephron Segments. NHE3, Na+/H+ exchanger; NKCC2, Na+-K+(NH4

+)-
2Cl̄ cotransporter 2; NHE4, Na+-H+(NH4

+) exchanger 4.
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initially thought to involve diffusive NH3 movement across 

plasma membranes, recent studies have shown that Rh 

glycoproteins, Rhbg and Rhcg, play important roles in 

collecting duct ammonia secretion 5, 1317) (Fig. 2). 

Ammonia production and transport in response to 
acidosis

Metabolic acidosis stimulates ammonia production 

and transport by renal epithelial cells. Acidosis stimulates 

glutamine uptake into the proximal tubule and upregulates 

the expression of ammoniaproducing enzymes, gluta

minase, GDH, and PEPCK6, 7, 9, 10). Metabolic acidosis also 

increases the apical NHE3 activity and protein abundance 

in the proximal tubule18). 

As mentioned earlier, ammonia reabsorption in the thick 

ascending limb leads to medullary interstitial ammonia 

accumulation, thereby driving its secretion into the collec

ting duct. Metabolic acidosis stimulated NKCC2 mRNA 

and protein expression in the rat and increased NHE4 

mRNA expression in mouse thick ascending limb cells11, 12). 

Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein 

(Rhcg) are recently recognized ammonia transporter family 

members. Chronic HCl ingestion increased Rhcg protein 

expression and altered its subcellular distribution in the 

collecting duct19, 20). Both global and collecting ductspecific 

Rhcg knockout mice excreted less urinary ammonia under 

basal conditions and developed more severe metabolic 

acidosis after acid loading21, 22).

Ammonia production and transport in response to 
hypokalemia

Ammonia production and excretion into urine are also 

regulated by potassium balance. Hypokalemia increases 

renal ammonia production in experimental animals 

and humans, whereas hyperkalemia decreases renal 

ammonia production8, 23, 24). Renal ammonia metabolism 

in response to hypokalemia has not been well understood, 

because there is increased ammonia excretion despite the 

development of metabolic alkalosis. 

Similar to metabolic acidosis, hypokalemia induces 

increased glutamine uptake into the proximal tubule and 

increased expression of the key ammoniagenic enzymes, 

glutaminase, GDH and PEPCK8, 25). Rats with hypokalemia 

had a marked increase in renal NHE3 abundance26). 

However, in contrast to the metabolic acidosis, hypokale

mia downregulated NKCC2 protein expression and NHE4 

mRNA expression remained unchanged26, 27). 

In the collecting duct, there is increased expression of 

Rh glycoprotein, Rhcg, in response to hypokalemia16). 

If Rhcg expression is associated with systemic acidbase 

homeostasis, hypokalemia should decrease its expression 

due to the development of alkalosis. These observations 

indicate that the enhanced Rhcg expression and collecting 

duct ammonia excretion could be regulated through 

mechanisms independent of acidbase homeostasis. 

The stimulation of ammoniagenesis in response to 

acidosis or hypokalemia is likely to be activated by either 

intracellular acidic pH or other factors. Recent studies have 

also demonstrated that the increase in urinary ammonia 

excretion even developed within 2 days of potassium 

deprivation, when the plasma potassium level was within 

normal limits8).

Table 1 summarizes the expression of renal producing 

enzymes and transporters in response to metabolic acidosis 

and hypokalemia.

Table 1. Expression of Renal Ammoniagenic Enzymes and Epithelial 
Transporters in Response to Metabolic Acidosis and Hypokalemia

acidosis hypokalemia
GA ↑ ↑

GDH ↑ ↑

PEPCK ↑ ↑

NHE3 ↑ ↑

NKCC2 ↑ ↓

NHE4 ↑ -
Rhbg - -
Rhcg ↑ ↑

GA, glutaminase; GDH, glutamine dehydrogenase; PEPCK, phosphoenol 
pyruvate carboxykinase; NHE3, Na+/H+ exchanger; NKCC2, Na+-K+(NH4

+)-
2Cl¯- cotransporter 2; NHE4, Na+-H+(NH4

+) exchanger 4.
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Conclusion

Both metabolic acidosis and hypokalemia are associated 

with increased ammoniagenesis and urinary ammonia 

excretion. Both acidosis and hypokalemia stimulates 

glutamine uptake and the expression of ammoniagenic 

enzymes in the proximal tubule. Expression of NKCC2 

and NHE4 differ in response to acidosis and hypokalemia. 

Both acidosis and hypokalemia stimulate Rhcg expression 

in the collecting duct, but the regulation mechanisms may 

be different from each other. 
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