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Transcriptional landscape 
of cellular networks reveal 
interactions driving the dormancy 
mechanisms in cancer
Dilara Uzuner1, Yunus Akkoç2, Nesibe Peker2, Pınar Pir1, Devrim Gözüaçık2,3,4 & 
Tunahan Çakır1*

Primary cancer cells exert unique capacity to disseminate and nestle in distant organs. Once seeded 
in secondary sites, cancer cells may enter a dormant state, becoming resistant to current treatment 
approaches, and they remain silent until they reactivate and cause overt metastases. To illuminate 
the complex mechanisms of cancer dormancy, 10 transcriptomic datasets from the literature enabling 
21 dormancy–cancer comparisons were mapped on protein–protein interaction networks and gene-
regulatory networks to extract subnetworks that are enriched in significantly deregulated genes. 
The genes appearing in the subnetworks and significantly upregulated in dormancy with respect to 
proliferative state were scored and filtered across all comparisons, leading to a dormancy–interaction 
network for the first time in the literature, which includes 139 genes and 1974 interactions. The 
dormancy interaction network will contribute to the elucidation of cellular mechanisms orchestrating 
cancer dormancy, paving the way for improvements in the diagnosis and treatment of metastatic 
cancer.

Cancer is one of the most fatal and refractory diseases. Although advances in medicine and technological devel-
opments now allow treatment of many types of cancer, especially if patients were diagnosed at earlier stages; 
diagnosis of advanced disease, metastatic relapse and treatment at these late stages still remains as a difficult 
challenge. There is compelling evidence that dormant cancer cells are responsible for cancer recurrence1. Some of 
the disseminated tumor cells might escape immune surveillance and develop resistance against cancer treatment 
modalities. These single cells or micrometastases formed by disseminated tumor cells are beyond the detection 
limit of current cancer diagnosis techniques, and untraceable through CT scans, MRI approaches and PET-scans. 
Thus, residual disseminated tumor cells remain in the body, enter a dormant state (hereafter called dormancy) 
and cause recurrence of the disease months or even years after "the cure" (5 years tumor-free survival).

Cancer cell dormancy is a complex cellular phenomenon and remains to be explored. However, recent stud-
ies suggested that there are two major mechanisms of cancer dormancy: Tumor mass dormancy and cellular 
dormancy2. Tumor mass dormancy refers to the stagnation in tumor mass growth, when cell division and cell 
death take place at the same rate, keeping the total number of cells constant. Cell numbers in tumors, hence 
the tumor mass, depend on vascular supply of blood and anti-tumor immune responses. In cellular dormancy 
however, cell-intrinsic mechanisms that control proliferation and cell cycle entry are dominant. Rather than cell 
division versus death rates of cancer cells, in cellular dormancy, intrinsic mechanisms leading to a quiescence-like 
stage and cell cycle arrest are in play. Experimental models indicate that cellular dormancy can be triggered by 
drugs, growth factor/hormone deprivation, hypoxia, tumor microenvironment components such as extracel-
lular matrix signals and stromal cell interactions1. An important characteristic of dormant cells is their ability to 
exit the dormancy state and continue to proliferate. Little is known about reasons and mechanisms of entry to 
dormant state and factors that trigger cell reactivation. Recent studies employed transcriptome-based analyses 
of dormant cells and revealed potential target genes that may play a role in dormancy in different cancer types3,4.

Network-based computational methods are frequently used in the systems biology field to elucidate disease-
associated molecular mechanisms from omics data. Integration of omics data with biological networks is a 
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promising approach for better understanding the disease etiology and to unravel efficient biomarkers and drug 
targets5. In the literature, numerous techniques were proposed for integrating omics data with biological net-
works. One of these techniques is active-module detection through network projection of omics data6, known 
also as subnetwork discovery. KeyPathwayMiner7 and BioNet8 are two powerful subnetwork discovery tools 
that are used for data integration9. KeyPathwayMiner has been applied to data from several diseases, including 
ovarian cancer10, breast cancer11 and multiple sclerosis12. Similarly, BioNet has been applied to data from prostate 
cancer13, breast cancer14, and hepatocellular carcinoma15, among others.

Although in the last couple of years, there is a sharp increase in the number of studies generating transcrip-
tomic data from dormant cancer cells, a meta-analysis of those datasets is still missing. Moreover, available studies 
mostly lack a network-based advanced analysis of the gene expression signatures of dormant states. Here, by 
mapping 21 comparisons from 10 transcriptome studies on human or mouse protein–protein interaction (PPI) 
networks and gene-regulatory (GR) networks, we provide a comprehensive transcriptome-based catalogue of 
dormancy-related genes and interactions.

Results and discussion
Discovery of PPI and GR subnetworks from dormancy transcriptome datasets.  The 10 dor-
mancy-associated transcriptome datasets were obtained from GEO database (Supplementary Table S1). 7 data-
sets were collected from human cell lines and the other three were collected from mouse cell lines. Datasets were 
obtained using either microarray, RNAseq or single-cell RNAseq methods. The 10 datasets included 7 different 
cancer types (bladder cancer, acute lymphoblastic leukemia, colorectal cancer, acute myeloid leukemia, breast 
cancer, prostate cancer, and myeloma cells).

KeyPathwayMiner (KPM) and BioNet were applied separately to each dormancy–cancer comparison to 
extract subnetworks that are enriched in significantly changed genes. As a result, we obtained 34 subnetworks 
for PPI network-based analyses, and 35 subnetworks for GR and TF-free-GR network-based analyses of 21 com-
parisons. Sizes of the discovered subnetworks are shown in Supplementary Table S2. No subnetworks were found 
by BioNet in PPI and GR subnetwork discovery analyses for 8 and 7 of comparisons respectively. However, when 
both BioNet and KPM discover subnetworks, BioNet usually reports a bigger subnetwork. Besides, majority of 
the genes in the dormancy-interaction network have appeared in subnetworks identified either by both tools or 
only by BioNet (Supplementary Fig. S1).

Thereafter, we performed enrichment analysis for each subnetwork to show whether they were enriched 
with genes associated with dormancy. Even though the subnetworks were based on data from different cancer 
types and different cell lines, genes in the subnetworks were mainly enriched in terms that are known to be 
associated with dormancy-related mechanisms such as extracellular matrix organization, response to stress and 
cell cycle regardless of the network type they were derived from (results not shown). Indeed, during cellular 
dormancy, tumor cells repress cell cycle driving pathways and activate cell cycle inhibitory pathways in order to 
halt proliferation1. For example, dormant cancer cells directly interact with extracellular matrix, and cell–matrix 
contact regulates tumor cell growth, migration, differentiation and survival2. Stress conditions such as hypoxia, 
nutrient deprivation, and chemotherapy induce dormancy, hence activation of stress response pathways during 
dormancy contribute to the resistance of these cells to these unfavorable conditions16. Convergence of enrich-
ment analysis results to above mentioned pathways justified our computational approach for the discovery of 
key genes in dormancy mechanisms using genome-wide networks.

Integrated PPI and GR subnetworks pinpoint genes playing roles in dormancy associated 
molecular mechanisms.  In the next step, KPM and BioNet results of each dormancy–cancer compari-
son were combined to eliminate algorithm-specific effects on the results. Due to limited number of datasets in 
literature that compares cancer and dormancy data, datasets utilized in this study were obtained from different 
experimental conditions, cancer types and/or organisms. By consolidating the results of two different algorithms 
and scoring genes based on the number of appearances in all comparisons, we minimize the effect of these dif-
ferences. We integrated all subnetworks to score genes based on their appearance in subnetworks. We aimed 
to extract the most important genes across subnetworks. Score tables were generated for PPI network and GR 
network analyses separately.

The score table of PPI subnetworks contains 4459 genes that appeared at least in one subnetwork. The genes 
were filtered based on their appearance in multiple dormancy–cancer comparisons or datasets and based on their 
significant upregulation (see “Methods” section for details). The filtered score table includes 74 genes based on 
significance score filter (Supplementary Table S3). The score tables of GR and TF-free GR subnetworks contain 
2196 and 2969 genes respectively and filtered score tables include 70 and 111 genes (Supplementary Table S3). 
The genes in filtered score tables also have interactions with each other in the associated genome-wide networks. 
47 out of 74 genes interact via 67 edges in PPI network, 15 out of 70 genes interact via 16 edges in GR network 
and 110 out of 111 genes interact with 1892 edges in TF-free GR network (Supplementary Fig. S2).

The top 10 genes in filtered score tables in both PPI and GR subnetworks were mainly associated with cell 
cycle and extracellular matrix (Table 1). Details on these genes in terms of the number of comparisons they 
were identified in and the corresponding tumor type (liquid or solid) are given in Supplementary Table S4. In 
concordance with the literature, our results demonstrated that ECM organization and cell cycle control are key 
pathways in dormancy mechanisms in different cancer types2,3. Based on this, genes that are important according 
to our study were examined in detail to discover other unknown pathways having role in dormancy mecha-
nisms. Clusterin (CLU), H2B clustered histone 21 (HIST2H2BE) and F-box protein 32 (FBXO32) were found 
among top 10 genes of all PPI, GR and TF-free GR filtered lists. CLU reduces the sensitivity of prostate cancer 
cells to chemotherapy and it is highly expressed in drug-resistant cancer cells17 In addition, the CLU protein 
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has been shown to induce epithelial–mesenchymal transition (EMT) in lung cancer18. Nayak et al. showed that 
HIST1H2BE is overexpressed in treatment resistant breast cancer cells19. FBXO32 is ubiquitinated to stabilize 
CtBP1, which induces transcription of genes for creating suitable microenvironment for EMT progression20. 
CDKN2B/p15INK4B was reported to attenuate the growth capacity of the tumors and sustain dormancy phe-
notype. CDKN2B binds to CDK4/CDK6, and controls transition of proliferative state and it also inhibits ENO1, 
a glycolytic enzyme, whose activation required for aerobic glycolysis21.

Many potential top hits from Table 1 have not been studied in cancer dormancy context before, yet several 
studies revealed their function in metastatic outgrowth, escape from immune surveillance, resistance to cell 
death and stemness. OPTN was identified as a key regulator of cell cycle arrest and stemness in cancer cells22. 
Ectopic expression of NEU1 suppressed migration and invasion in in vitro cancer models. Also, administra-
tion of NEU1 expressing cells into mice prevented metastasis significantly. On the other hand, loss of NEU1 
was associated with increased mobility and invasiveness23,24. Also, targeting of NEU1 was reported to attenuate 
drug resistance25. In mice, loss of the cholesterol transporter ABCG1 resulted in excessive lipid accumulation in 
macrophages with an elevated proinflammatory cytokines secretion, leading to altered tumor-killing capacity 
of the macrophages26. Increased expression of ABCG1 was documented in 3D tumoroids and significantly cor-
related with low Ki67 levels27.

In addition to transcriptome data, one of the effective factors in this study is interactome data. Interactome 
databases store experimentally validated interactions or interactions predicted by methods such as text-mining. 
Only experimentally validated interactions were used in this study. However, the information contained in these 
databases does not yet include all protein–protein interactions due to the technical difficulties in detecting the 
interactions. Therefore, there is no interaction information for a set of genes in the analyzed transcriptome 
datasets, and these genes were automatically excluded from our subnetwork-based analysis approach. In order 
to dissect their possible roles in dormancy, a separate analysis was performed for the genes in the transcriptome 
datasets with no associated interactome data. These genes were scored based on the number of transcriptome 
datasets in which they were significantly changed (Supplementary Table S5). The highest scoring genes in the 
analysis are not associated with autophagy, ECM, cell cycle, or dormancy. This shows that the absence of these 
genes in our subnetwork analysis does not cause a loss of information. On the other hand, their significance in 
multiple dormancy-related datasets implies that, although experimentally not reported, they may have potential 
roles in dormancy mechanisms.

Network based meta‑analysis of transcriptome datasets leads to a dormancy–cancer interac-
tion network.  Finally, we created a “consensus dormancy-interaction network” composed of the union of 
the genes in the three filtered lists and their interactions. Since down-regulated genes were mainly associated 
with cell cycle activation, the constructed dormancy–interaction network focused mainly on up-regulated genes 
during dormancy. These up-regulated genes have a high potential to be associated with molecular mechanisms 
of dormancy activation. Indeed, many of the genes in dormancy–interaction network were associated with can-
cer or dormancy pathways. Figure 1 summarizes our computational approach to construct the dormancy inter-
action network from transcriptome data and molecular interaction networks.

The dormancy-interaction network included 139 genes and 1974 interactions (Fig. 2). Enrichment analysis 
of these 139 genes led to terms that pinpoint cancer cell dormancy mechanisms, such as “negative regulation 
of programmed cell death”, “cell communication” and “response to stress” (Supplementary Table S6). The net-
work included 36 genes that appeared in the score lists of all three network types. Enrichment analysis of the 
intersection-genes revealed that they were mainly associated with “cell-death” and “cell-cycle arrest”, similar to 
union of networks (Supplementary Table S6). Most of these genes were reported to be related with several types 
of cancer in literature such as EPAS128, SMAD329, NOTCH330. ENO2 has a role in adaptation to serum starvation, 
hypoxia and chemotherapy in glioblastoma31. BTG2 and CDKN2B cause cell cycle arrest in different cancers 
and BTG2 is upregulated in quiescent cells32 TIMP-2 also causes cell cycle arrest and inhibits angiogenesis by 
de-phosphorylation of VEGF33. HO-1 and VEGF-A induce angiogenesis. VEGF-A is found to be upregulated 

Table 1.   Top 10 genes in the filtered score lists.

PPI GR TF-free GR

Gene symbol Significant Score Gene symbol Significant Score Gene symbol Significant Score

CLU 9 CLU 7 CLU 8

APP 7 CDKN2B 6 NEU1 7

HIST1H1C 6 HIST2H2BE 6 OPTN 6

HIST2H2BE 6 FBXO32 6 HSPA1B 6

OPTN 6 CTSB 6 NR1D1 6

FBXO32 6 THBS1 5 CDKN2B 6

PLAUR​ 5 VEGFA 5 HIST2H2BE 6

CTSB 5 PLK2 5 FBXO32 6

THBS1 5 BMF 5 CTSB 6

CDKN2B 5 EPAS1 5 ABCG1 6
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Figure 1.   Summary of computational approach to construct the dormancy interaction network. Firstly, cancer–
dormancy transcriptome data were downloaded from GEO database and Genome-wide interaction networks 
were obtained. Then, KPM and BioNet, two subnetwork discovery tools, were performed and subnetworks 
that are enriched in significantly changed genes were identified. Finally, the upregulated genes were scored and 
filtered based on the number of appearances in the subnetworks and according to this filtering, the dormancy-
interaction network was constructed (see also “Methods”).
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in our study. Although its inhibition has been associated with dormancy34, VEGF-A plays a role as not only 
angiogenesis induced factor but also tumor-induced immunosuppressor, which can explain its function in dor-
mant cells35. On the other hand, VEGF-A has the highest degree (96 interactions) in the dormancy–interaction 
network, and the 3 cancer-related transcription factors (EPAS1, KLF4 and SMAD3) that control VEGF-A also 
appear in the dormancy interaction network. The fact that VEGF-A has a high number of interactions in the 
predicted dormancy network and the increase in the expression levels of transcription factors that are effective 
in VEGF-A regulation supports that VEGF-A plays an important role in the dormancy mechanism. THBS1 is 
another angiogenesis regulator, and its upregulation was associated with dormancy4,36. Another high degree gene 
in the network is the cyclin dependent kinase inhibitor CDKN1A (93 interactions), which was reported to arrest 
cells in the G0/G1 phase. Also, increased expression of CDKN1A was previously associated with dormancy37. 
All interactions of CDKN1A in the dormancy-interaction networks are TF-free regulatory interactions, which 
further supports our choice of including the TF-free network in our approach. There are many interactions in the 
dormancy interaction network originating from the TF-free network. This suggests that the genes associated with 
dormancy may not physically interact, but rather regulated by similar transcription factors. Most of the genes that 
were commonly found in all three network types were not directly linked with dormancy previously, but the genes 
regulate critical dormancy pathways including hypoxia, extracellular matrix organization and angiogenesis2. 15 
out of 139 dormancy interaction network genes were previously associated with dormancy (Table 2).

It has been known that dormant cancer cells have molecular similarities with quiescent stem cells48. Accord-
ingly, stem cell-related mechanisms may also play role in cancer cell dormancy. Indeed, six (CITED2, EPAS1, 

Figure 2.   Dormancy-interaction network. The network was constructed by integrative analysis of all 
subnetworks. Dormancy-interaction network includes genes found in different subnetwork analyses (shown in 
different clusters). Gene regulatory interactions between genes are shown by blue arrows, the direction of the 
arrow represents the direction of the interaction. Protein–protein interactions are shown by green lines and 
TF-free gene-regulatory interactions by orange lines.
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FOLR1, KDM3A, KLF4 and, SOX9) of the genes in the dormancy interaction network are associated with 
“stem-cell” term in GO database, and two (EPAS1 and KLF4) are associated with “transcriptional regulation of 
pluripotent stem-cell” term in REACTOME database.

To provide an independent validation for our findings, we analyzed two additional transcriptomic datasets49,50 
that were made publicly available after we completed our analyses (Supplementary Tables S1, S2). The analysis 
of the datasets with the same pipeline led to a combined list of 40 genes (24 genes in one dataset, 21 genes in the 
other dataset) from our consensus dormancy-interaction network (Supplementary Table S7). Seven of those 
overlapping genes (ABCG1, CDKN2B, CLU, FBXO32, PLK2, VEGFA, THBS1) are among the top 10 genes 
reported in Table 1. As another independent validation, we scanned deletion/overexpression phenotypes of the 
yeast homologs of the genes in the dormancy-interaction network. Homologs of CCNG2, RASAL2, SLC3A2 
and ABCG1 genes in the yeast S. cerevisiae exhibit haploproficiency, meaning that deletion of one of the alleles 
provided growth advantage to yeast cells. This is in line with the fact that these genes are all overexpressed in 
dormancy, implying their possible role in suppressing cell division. Similarly, the overexpression of the yeast 
homolog of FMNL2 gene from the network leads to lethality, which can show implication of the gene in driv-
ing the tumor cells to dormancy state. Therefore, (i) several literature findings for a number of genes in our 
dormancy-interaction network in terms of their role in dormancy and metastasis, (ii) analysis of two independent 
transcriptome datasets, (iii) comparison with yeast loss-of-function/overexpression studies provide validations 
and support the hypothesis that our dormancy–interaction network is a suitable model to explain cancer cell 
dormancy mechanisms.

Mapping transcriptome data from 21 dormancy–cancer comparisons on three different molecular interaction 
networks led us to construct a consensus dormancy-interaction network. The dormancy–interaction network 
introduced in this study provides a molecular framework for dormancy mechanisms by combining information 
repetitively reported in different cancer–dormancy datasets from literature. A number of the genes captured 
by the network was previously reported to be linked to dormancy or metastasis, providing a validation for the 
constructed network. However, majority of the nodes in the network are genes that have not been associated with 
cancer cell dormancy before. Hence, this network is an important model that will shed light on further studies 
on extended mechanisms for dormancy. As dormancy increases the resistance to therapy and plays a role in 
metastasis, targeting the genes featured in this study may increase impact of treatments and prevent recurrence.

Methods
Datasets.  Transcriptome data of proliferative, dormant or post-dormant cancer cells of human or mouse 
origin were obtained from the GEO database51. The following criteria were taken into consideration in selection 
of transcriptome data to be included; it should include samples of both dormant and proliferative cancer states, 
at least two samples should be available from each condition, it should consist of human or mouse samples. A 
total of 10 datasets were found to meet all the criteria, which led to analysis of 21 dormancy–cancer compari-
sons (17 for solid tumors, 4 for liquid tumors) since a dataset can include data from multiple cancer cell lines 

Table 2.   The genes in the dormancy–interaction network and the mechanisms associated with dormancy.

Gene symbol Role in dormancy Model References

AKAP12 Inhibits proliferation and migration of colorectal cancer cells In vitro LoVo colorectal cancer cell and in vivo mouse xenografts 58

CD44 Expressed in dormant breast cancer cells and hepatocellular carcinoma 
cells

In vitro MCF-7 breast cancer cell line treated with the farnesyl transferase 
inhibitor (FTI)
In vitro HepG2 hepatocellular cancer cell line. Dormancy condition 
promoted with matrix stiffness

59,60

CDKN1A Induces dormancy and G1 cell cycle arrest In vitro human breast epithelial MCF10A cell line 37

DDR1 Dormancy signature in breast cancer Microarray data of 51 breast cancer cell lines 61

EPAS1 Induces dormancy in lung cancer. Helps adaptation of cancer cells to 
hypoxic environment

Ex vivo culture of lung cancer tissue-originated spheroids in 
Matrigel growth factor reduced matrix

28

GSN Induction causes G2/M cell cycle arrest of tumor cells In vitro KU-7 and UMUC-2 bladder cancer cell lines. In vivo KU-7 cell 
xenografts

62

HBP1 Regulates dormancy in breast cancer 3D in vitro model (GELFOAM™). MDA-MB-231 breast cancer cells 63

IL1B Activates dormant CD34+/CD38− acute myelogenous leukemia cells In vitro EOL‐1R cell line 64

NDRG1 Promotes dormancy in prostate cancer. Suppresses metastasis PC3 mm prostate cancer cell line, in the presence of the conditioned 
medium of human bone marrow stromal cells

65

NOTCH3 Reduced levels are detected in dormant tumor of T-cell acute lympho-
blastic leukemia In vivo MOLT-3 cell xenografts 30

PLAUR​ Decreased levels in dormant epidermoid carcinoma cells. Overexpression 
interrupts dormancy

In vivo human epidermoid carcinoma HEp3 cells passaged on chorioal-
lantoic membranes

66

SMAD3 Controls transition between dormancy and active states of tumor-propa-
gating cancer cells of squamous cell carcinoma cells ATAC-seq and ChIP-seq on squamous cell carcinoma cell lines 29

THBS1 Induces dormancy in breast cancer and glioblastoma Microarray data of 51 breast cancer cell lines
153 glioblastoma patient samples from TCGA​

4,36

TIMP2 Regulates dormancy in sarcoma. Induces cell cycle arrest and modulates 
angiogenesis In vivo myxoid liposarcoma xenografts 33

TSC22D3 Encodes for GILZ protein. GILZ expression is low in dormant melanoma 
cells than the maternal cells

In vitro HBL human melanoma cells and in vivo transgenic B16F1 
melanoma mice

67
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(Supplementary Table S1). The datasets were first checked for outlier samples by creating PCA graphs for each 
of the 21 comparisons. Based on PCA results, one control sample from GSE57695 dataset (GSM1386901), one 
control and one dormant sample from HT55 cell line of GSE114012 dataset (GSM3130646 and GSM3130647) 
were identified as outliers and removed from the datasets prior to further analysis. Additionally, two datasets 
published after we completed the analyses in this study were selected as validation datasets and the same pro-
cedure was applied to these datasets. To obtain gene expression counts, RNAseq FASTQ files of both datasets 
were downloaded from The European Nucleotide Archive (ENA) [Project IDs: PRJNA644590 (GSE153944) 
and PRJNA610898 (GSE146592)]. Adapter sequences were removed from RNAseq fastq files using Trimmo-
matic (Version 0.39)52. Then using STAR (Version 2.7.8a)53, the trimmed FASTQ files were mapped to genome. 
For PRJNA610898 human genome GRCh38 and for PRJNA644590 mouse genome GRCm39 were used54. The 
counts were quantified using featureCounts55.

Statistical analysis of transcriptome data.  Differential expression analysis was applied to all 21 dor-
mancy–cancer comparisons from 10 datasets to obtain p-values, adjusted p-values and fold changes of genes. 
The R package Limma56 was used to identify differentially expressed genes in microarray data. Limma analyses 
were performed using the GEO2R tool of GEO database, which also generates corresponding R scripts. The R 
package DESeq257 was used for the differential expression analysis of RNAseq data. For the differential expres-
sion analysis of single-cell RNAseq data, DESeq2 was combined with R package zinbwave38.

Cellular networks.  Human protein–protein interaction (PPI) network was downloaded from BioGRID 
3.5.166 (release date: November, 2018)39. Duplicate edges and self-loops of interactome were removed by using 
Cytoscape40. Entrez ID of each gene in the interactome was retrieved via bioDBnet41, and integrated into the 
interactome. The final human PPI network consisted of 17,241 edges and 292,471 interactions. Mouse PPI net-
work was obtained from a previous study of our research group42, which combined and merged PPI data from 
different databases. Duplicate edges and self-loops of mouse PPI network were removed, and gene names were 
converted to Entrez IDs as described above. The final mouse PPI network consists of 7713 nodes and 24,830 
interactions.

Gene-regulatory (GR) networks of both human and mouse were downloaded from TRRUST version243 and 
RegNetwork44 databases. The networks from the two databases were merged, and duplicate edges and nodes and 
self-loops were removed. miRNA interactions, if any, were removed. The final human GR network consists of 
6261 nodes, 19,146 edges and 945 transcription factors (TF) while the final mouse GR network has 4010 nodes, 
13,485 edges and 1070 transcription factors. A modified TF-free version of GR network, termed TF-free network, 
was also created and used in the analysis. Here, all genes that were affected by the same TF were represented to 
be in interaction with each other, and all TF interactions were removed from the network. In this way, the direct 
effect of the transcription factor is eliminated, but gene regulation information is conserved. Human and mouse 
TF-free networks consist of 6048 nodes and 2,530,468 edges, and 3767 nodes and 4,622,077 edges, respectively.

Subnetwork discovery.  Subnetwork discovery analysis was performed for all 21 dormancy–cancer com-
parisons from 10 datasets and 2 validation datasets. Data were mapped on PPI networks, GR networks and TF-
free GR networks separately by using KeyPathwayMiner (KPM)7 and BioNet8 tools.

For KPM analysis, a binarized version of Benjamini–Hochberg corrected p-values was created using the asso-
ciated p-value cut-off value for each comparison. Binarization was done by assigning the value 1 to significant 
genes and assigning the value 0 to non-significant genes. The appropriate cut-off values were chosen such that 
a similar-size subnetwork can be obtained for all comparisons (Supplementary Table S2). The cut-off values of 
each comparison remained the same across analyses based on protein–protein interactome and gene-regulatory 
interactome. Thereafter, the stand-alone version of KeyPathwayMiner (KPM 4.0) was executed with the following 
parameters: Individual Node Exceptions (INEs) strategy, Ant Colony Optimization (ACO) algorithm, K = 2 for 
PPI and K = 8 for GR networks. K is a parameter to define the maximum number of exception (not differentially 
expressed) nodes allowed in a subnetwork.

BioNet version 1.42.0 was run in R for each comparison. Calculated p-values were used as input, and False 
Discovery Rate (FDR) cut-off values for each pairwise comparison were selected such that similar-size subnet-
works will be produced (Supplementary Table S2). The FDR values of each comparison remained the same across 
the analyses based on protein–protein and gene-regulatory interactomes.

Interpretation of subnetworks.  In order to interpret the discovered subnetworks, we used three differ-
ent approaches. Firstly, enrichment analyses were performed by using g:Profiler online tool45. g:Profiler allows 
to perform multiple types of enrichment analyses in one run. It retrieves data from different sources including 
GeneOntology, KEGG, Reactome and TRANSFAC databases. Its g:GOST module was used to perform func-
tional enrichment analysis on input gene lists with default parameters.

Secondly, genes in all subnetworks were scored based on number of appearances in different subnetworks. 
To combine mouse and human subnetworks, human orthologues of mouse genes were retrieved via Ensembl/
BioMart46. In our scoring approach, a gene gets a score of 1 for each subnetwork in which they appeared, and, 
the final score of a gene is sum of its scores across all constructed subnetworks. Two different scoring approaches 
were used. In the first scoring approach, called “significance score”, the gene gets a score of 1 if it is identified 
with at least one of the BioNet or KPM tools in a dormancy–cancer comparison and significantly changed in the 
comparison. In our second scoring approach, genes are scored for the number of datasets in which they were 
found. In this scoring, called “dataset score”, a gene gets a score of 1 if it is identified in at least one of all com-
parisons in a single dataset to minimize bias due to datasets with a higher number of comparisons. A filtering 
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was applied to the scored genes afterwards by using their significance and dataset scores together. Here, genes 
were filtered if their dataset scores were at least 2 and their significance scores were at least 3. Additionally, we 
specifically chose genes that are mostly upregulated in dormancy. For this, we required that if the significance 
score of a gene is 3, it must be upregulated in all of these 3 comparisons. If the score is higher than 3, it must be 
upregulated in more than half of the subnetworks in which the gene was scored significant. All calculations and 
rearrangements were performed in R.

Thirdly, Gene Ontology terms in AmiGO database were used to construct lists of mouse and human genes 
that are associated with autophagy, cell cycle, and extracellular matrix terms47. Additionally, a list of dormancy-
associated genes in human was manually curated based on abstracts of about 200 articles. Mouse homologs of 
dormancy genes were identified via Ensembl/BioMart46. Then, the genes in the subnetwork score tables were 
annotated for their association to autophagy, cell cycle, extracellular matrix and dormancy (Supplementary 
Tables S3, S5). Workflow of computational approach to construct the dormancy-interaction network is shown 
in Fig. 1.

Data availability
The datasets analysed during the current study are available in the Gene Expression Omnibus (GEO) repository. 
All data are incorporated into the article and its online Supplementary material.
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