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Abstract: Grapevine canopy defoliation is a fundamentally important technique for the productivity
and quality of grapes. Leaf removal is a pivotal operation on high-density vines which aims to
improve air circulation, light exposure, and leaf gas exchange. The effects of leaf removal (LR) on
vine physiology and berry composition in Cabernet Sauvignon grapevines were studied during
the 2018–2019 growing season in the Bolgheri area, Tuscany, Italy. The basal leaves were removed
at fruit set at two severity levels (removal of four basal leaves of each shoot (LR4) and removal
of eight basal leaves (LR8)). The two treatments were compared with the not defoliated control
(CTRL). The following physiological parameters of vines were measured: leaf gas exchange, leaf
water potential, chlorophyll fluorescence and indirect chlorophyll content. The results showed that
defoliation increased single leaf photosynthesis. In addition, qualitative grape parameters (phenolic
and technological analyses) and daytime and night-time berry temperature were studied. The results
showed that leaf removal had an impact on total soluble solids (◦Brix), titratable acidity, and pH. The
LR8-treated grapes had higher titratable acidity, while those in the LR4 treatment had higher ◦Brix
and extractable anthocyanin and polyphenol content. Berry weight was not significantly influenced
by the timing and severity of basal defoliation. Therefore, this research aims to investigate the effects
of defoliation at the fruit set on vines performance.

Keywords: leaf removal; defoliation; berry temperature; sugar content; anthocyanin content

1. Introduction

Defoliation in the fruiting zone of grapevines is a classical canopy management prac-
tice in vineyards applied from spring until the end of summer [1]. Improvement of the
microclimate after defoliation is mainly attributed to the increase in bunch temperature
and modification of the shadow-light ratio [2–4]. Furthermore, this practice improves berry
quality (for instance, pigmentation, aromatic compounds, and secondary metabolites),
whereas it reduces conditions favorable to bunch rot complex diseases [5–7]. Even though
leaf removal is more often applied to vigorous vines or in chilly climates where the environ-
mental conditions and cluster microclimate are often inadequate to ensure adequate berry
ripening [8], this agronomic practice is widely used, even in warmer climates and on plants
that are not excessively vigorous to improve their performance. However, defoliation must
be undertaken with care to prevent the risk of berry overheating and burning [9]. To obtain
a high-quality grape and wine, many authors highlight the importance of achieving and
maintaining the optimal ratio between grape yield and assimilation area [10–12]. In fact,
quality viticulture is correlated to a balance between plant and agronomic management [13]
and must address the match between reproductive organs and vegetative sink activity.

The effect of defoliation depends on the number of removed leaves, timing, grape
variety, and climate [14]. Depending on the phenological stage, defoliation can be per-
formed early (at pre-flowering), medium (at fruit set) or late (pre- or post-veraison). Early
defoliation decreases grape yield by decreasing berry number and thus, cluster weight,
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whereas leaf removal during or after veraison impacts the primary and secondary synthesis
of metabolites [15]. Nevertheless, some studies have shown that early leaf thinning can
improve grape and wine quality. Defoliation before flowering was found to decrease
fruit set and reduce grape yield of many varieties (e.g., Sangiovese, Merlot, Tempranillo),
whereas under different microclimatic conditions, it increased anthocyanin and phenolic
concentrations [6,16–20]. Moreover, the effects of leaf removal on yield also depend on
severity [21–23]. Since carbohydrate supply at anthesis is a fundamental determinant
of fruit set, leaf removal three or four weeks before anthesis normally reduces cluster
compactness, yield, and total amount of sugar per berry [24]. On the other hand, if leaves
are removed later in the phenological season (e.g., veraison) or fewer are removed (lower
severity), yield is not significantly affected and it can even increase compared with non-
defoliated treatments [25]. However, pre-flowering defoliation presents some risks as
removing most of the photosynthetically active foliage when inflorescences have high C
and N requirements forces the vine to further rely on reserves in roots and wood (competi-
tion for assimilates between reproductive and vegetative organs) [26,27]. Percival et al. [28]
noted that with pre-flowering defoliation and the consequent increased exposure to solar
radiation, a thicker layer of cuticular waxes was formed and correlated this thickening
with increased resistance to cluster rot [29].

Fruit set defoliation is an efficient technique to reduce cluster compactness, to improve
fruit composition, and control crop load in cultivars characterized by large berry size and
improve their health [30].

Defoliation after flowering and at fruit set (compared with leaf removal at veraison)
of all basal leaves up to the first cluster increases not only monoterpen content (especially
nerol, linalool, and geraniol) but also alcohol, and decreases the concentration of volatile
esters in white berries [31–34]. Conversely, shading in the canopy has implications for
red berry alterations: an excessively shaded canopy microclimate can cause increased
titratable acidity (malic and tartaric acids) and juice NH4-N and K content [35]. Changes in
berry composition due to shade can be associated with known effects of the phytochrome
on enzyme activity (including malic enzyme, phenylalanine ammonia lyase, invertase,
PEP-carboxylase, and malic dehydrogenase) [4,36,37].

Many authors have reported balancing berry physiology ripening between techno-
logical and phenolic maturation, decreasing the accumulation of sugar, and manipulating
the relationship between leaf area and yield by intervening at different phenological
stages [38–41]. Among these, post-veraison defoliation seems to be the most promising.
Poni [42] and Filippetti [43] reported that late defoliation, removing six or seven basal
leaves and some lateral shoots from the upper two-thirds of the canopy, in Sangiovese
cultivar caused sugar accumulation (at about 12 ◦Brix) to decrease without negatively
affecting the concentration of anthocyanin and phenolic compounds. Nevertheless, leaf
thinning can also affect cluster quality negatively. In fact, an excessive defoliation can lead
to overexposed fruit (subjecting the berries to high temperature and high light intensity)
and, in red cultivars, can reduce anthocyanin content [44].

The present investigation examines the effects of defoliation at fruit set on cv. Cabernet
Sauvignon in local Mediterranean conditions with attention to the alternative severity of
defoliation, especially to its effects on ecophysiological parameters, yield reduction, sugar
and anthocyanin content.

2. Results
2.1. Climatic Conditions

Temperature conditions were those typical of warm-Mediterranean viticulture cli-
mates, as reported in Figure 1.

Rainfall throughout the season, April to October, was relatively higher in 2019 with
378.4 mm recorded, while during the berry ripening period (from June to August), 2019
turned out to be drier: 29.4 mm compared to 39.8 mm in 2018. The average air temperature,
from April to October, was 20.2 ◦C in 2018 and 20.8 ◦C in 2019. The absolute maximum air
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temperature during the investigated period ranged from 33.4 ◦C in August 2018 to 35.4 ◦C
in August 2019.
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Figure 1. Climatic conditions of the experiment location. Monthly averages of mean, maximum, minimum air temperature
(◦C) and total monthly rainfall (mm) (A) were measured from April to October (2018–2019); monthly averages of mean,
maximum, minimum relative humidity (%), and average monthly global radiation (RAD, W m−2) (B) were measured from
April to October (2018–2019).

2.2. Leaf Gas Exchanges, Leaf Area, Leaf Water Potential, Leaf Chlorophyll a Fluorescence
and Content

The total leaf area (m2) is presented in Table 1. The highest leaf area was observed in
the control and the lowest in the LR8 treatment. All differences among the values were
significant. The first measurement concerned the relief immediately after defoliation at the
time of fruit set (18 June 2018 and 12 June 2019). The F-test showed significant effects of the
two removals in comparison to the control treatment.

Table 1. Total leaf area (m2). Total leaf area (m2) of V. vinifera treated with three different defoliation treatments: four
leaf removal (LR4), eight leaf removal (LR8), and no defoliation (CTRL), during two seasons (2018–2019). Measurements
were conducted at four times: fruit set (18 June 2018 and 12 June 2019), full veraison (31 July 2018 and 25 July 2019),
mid-maturation (27 August 2018 and 20 August 2019) and full maturation (25 September 2018 and 18 September 2019).
Data (mean ± SE, n = 10) were subjected to one-way ANOVA. Different letters within the same parameter and row indicate
significant differences (LSD test, p ≤ 0.05).

Total Leaf Area (2018) Total Leaf Area (2019)

Stage CTRL LR4 LR8 CTRL LR4 LR8

Fruit set 1.15 ± 0.46 a 0.77 ± 0.21 b 0.46 ± 0.12 c 1.00 ± 0.38 a 0.77 ± 0.17 b 0.42 ± 0.10 c
Full veraison 1.24 ± 0.40 a 0.82 ± 0.12 b 0.58 ± 0.21 b 1.11 ± 0.32 a 0.86 ± 0.11 b 0.54 ± 0.17 c

Mid-maturation 1.41 ± 0.49 a 0.99 ± 0.28 b 0.87 ± 0.34 b 1.31 ± 0.26 a 1.00 ± 0.31 a 0.74 ± 0.23 b
Full maturation 1.62 ± 0.34 a 1.19 ± 0.43 b 0.78 ± 0.35 c 1.55 ± 0.30 a 1.13 ± 0.32 ab 0.82 ± 0.28 b
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No significant differences were noted in chlorophyll a fluorescence (Fv/Fm) and
chlorophyll content in leaves of V. vinifera as reported in Figure 2A–D.
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Figure 2. Maximum quantum yield of PSII (Fv/Fm) ((A), 2018; (B), 2019) and chlorophyll content (SPAD Units) ((C), 2018;
(D), 2019) in V. vinifera with three different defoliation management methods: four leaf removal (LR4, green column), eight
leaf removal (LR8, pink column), and no defoliation (CTRL, blue column). Measurements were conducted at full veraison
(31 July 2018 and 25 July 2019), mid-maturation (27 August 2018 and 20 August 2019) and full maturation (25 September
2018 and 18 September 2019). Different letters within the same parameter indicate significant differences. Data (mean ± SE,
n = 10) were subjected to one-way ANOVA (LSD test, p ≤ 0.05).

The physiological parameters (leaf gas exchanges) of V. vinifera in the three different
canopy management methods (four leaf removal LR4, eight leaf removal LR8, and no
defoliation CTRL) are presented in Table 2.

No significant differences in physiological parameters (Pn, gs) between LR4 and LR8
during the two study seasons (2018 and 2019) were found; CTRL was significantly different
from the other two treatments. No significant differences in leaf water potential among
leaf removal treatments were found. Leaf water potential values reflect seasonal trends;
peaks of increased water stress were recorded in August, the driest and hottest month. No
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significant differences in eWUE among treatments were found at the mid-maturation stage
(27 August 2018 and 20 August 2019).

Table 2. Physiological parameters. Net photosynthesis (Pn), stomatal conductance (gs), water use efficiency (eWUE) and leaf
water potential (Ψleaf) of V. vinifera treated with three different defoliation management methods: four leaf removal (LR4),
eight leaf removal (LR8), and no defoliation (CTRL). Measurements were conducted at full veraison, mid-maturation and
full maturation. Data (mean ± SE, n = 10) were subjected to one-way ANOVA. Different letters within the same parameter
and row indicate significant differences (LSD test, p ≤ 0.05).

Pn (µmol CO2 m2 s−1) gs (mmol H2O m2 s−1)

Stage CTRL LR4 LR8 CTRL LR4 LR8

31 July 2018 11.05 ± 4.11 b 14.68 ± 3.96 a 15.11 ± 2.87 a 126.50 ± 41.78 b 198.00 ± 31.63 a 187.70 ± 24.43 a
27 August 2018 8.24 ± 2.08 b 12.51 ± 2.62 a 13.85 ± 3.85 a 114.87 ± 16.08 a 117.70 ± 26.43 a 115.35 ± 32.73 a

25 September 2018 7.98 ± 1.99 b 9.46 ± 2.76 a 9.16 ± 3.80 a 99.49 ± 22.45 b 120.11 ± 34.17 a 124.10 ± 24.53 a

25 July 2019 10.65 ± 3.42 b 15.42 ± 1.58 a 15.55 ± 1.57 a 116.25 ± 35.66 b 145.10 ± 33.85 b 209.80 ± 29.30 a
20 August 2019 7.58 ± 2.68 b 11.93 ± 2.56 a 12.53 ± 3.37 a 99.60 ± 20.41 b 115.55 ± 32.17 a 102.88 ± 29.15 ab

18 September 2019 5.82 ± 2.33 b 7.61 ± 2.56 a 7.64 ± 3.75 a 92.30 ± 22.70 a 91.40 ± 31.75 a 95.65 ± 33.08 a

eWUE (µmol CO2/mmol H2O) Ψleaf (MPa)

Stage CTRL LR4 LR8 CTRL LR4 LR8

31 July 2018 2.64 ± 0.54 b 2.26 ± 0.31 ab 1.58 ± 0.60 a −1.04 ± 1.41 a −1.07 ± 1.22 a −1.03 ± 1.39 a
27 August 2018 2.00 ± 0.37 a 1.82 ± 0.64 a 1.69 ± 0.68 a −1.27 ± 1.71 a −1.28 ± 1.81 a −1.36 ± 0.99 a

25 September 2018 2.89 ± 0.32 b 2.02 ± 0.55 a 2.11 ± 0.84 a −1.25 ± 1.36 a −1.26 ± 1.52 a −1.20 ± 1.33 a

25 July 2019 2.76 ± 0.78 b 1.70 ± 0.82 a 1.68 ± 0.46 a −1.07 ± 0.70 a −1.05 ± 1.08 a −1.06 ± 0.98 a
20 August 2019 1.65 ± 0.54 a 1.49 ± 0.23 a 1.45 ± 0.46 a −1.28 ± 1.79 a −1.30 ± 1.95 a −1.37 ± 1.13 a

18 September 2019 2.53 ± 0.75 b 1.77 ± 0.83 ab 1.41 ± 0.59 a −1.29 ± 1.77 a −1.29 ± 1.61 a −1.21 ± 1.68 a

2.3. Berry Composition and Temperature

Tables 3 and 4 show the composition of V. vinifera berries under three different canopy
management approaches in the two study years in terms of technological and phenolic maturities.

Table 3. Technological maturity. Sugar content (◦Brix), titratable acidity (TA), pH and berry weight of V. vinifera treated
with three different defoliation managements: four leaf removal (LR4), eight leaf removal (LR8), and no defoliation (CTRL).
Measurements were conducted at full veraison (31 July 2018 and 25 July 2019), mid-maturation (27 August 2018 and 20
August 2019) and full maturation (25 September 2018 and 18 September 2019). Data (mean ± SE, n = 10) were subjected to
one-way ANOVA. Different letters within the same parameter and row indicate significant differences (LSD test, p ≤ 0.05).

Sugar Content (◦Brix) TA (mg L−1 Tartaric Acid)

Stage CTRL LR4 LR8 CTRL LR4 LR8

31 July 2018 12.92 ± 0.09 a 13.81 ± 0.28 a 12.7 ± 0.35 a 13.84 ± 0.07 a 13.68 ± 0.05 a 14.52 ± 0.09 a
27 August 2018 22.00 ± 0.12 a 21.89 ± 0.18 a 20.81 ± 0.20 a 6.90 ± 0.10 b 7.30 ± 0.07 ab 7.74 ± 0.03 a

25 September 2018 26.16 ± 0.09 a 26.88 ± 0.15 a 25.19 ± 0.05 b 5.98 ± 0.03 ab 5.86 ± 0.04 b 6.41 ± 0.06 a

25 July 2019 13.10 ± 0.06 b 16.29 ± 0.10 a 13.08 ± 0.07 b 13.42 ± 0.08 a 13.00 ± 0.06 a 13.82 ± 0.07 a
20 August 2019 22.50 ± 0.07 a 22.59 ± 0.03 a 21.26 ± 0.15 a 6.36 ± 0.04 b 6.70 ± 0.08 ab 7.54 ± 0.010 a

18 September 2019 26.90 ± 0.22 b 27.75 ± 0.21 a 25.98 ± 0.19 c 5.43 ± 0.07 b 5.53 ± 0.09 b 6.02 ± 0.06 a

pH Berry Weight (g)

Stage CTRL LR4 LR8 CTRL LR4 LR8

31 July 2018 2.60 ± 0.05 a 2.75 ± 0.02 a 2.55 ± 0.05 a 0.88 ± 0.02 a 0.81 ± 0.04 a 0.82 ± 0.02 a
27 August 2018 3.28 ± 0.08 a 3.22 ± 0.04 a 3.10 ± 0.05 a 1.12 ± 0.10 a 1.00 ± 0.08 ab 0.90 ± 0.05 b

25 September 2018 3.53 ± 0.03 a 3.54 ± 0.02 a 3.22 ± 0.04 b 1.18 ± 0.05 a 1.16 ± 0.02 a 1.13 ± 0.03 a

25 July 2019 3.04 ± 0.08 a 3.02 ± 0.03 a 3.02 ± 0.07 a 0.85 ± 0.04 a 0.75 ± 0.03 a 0.70 ± 0.04 b
20 August 2019 3.30 ± 0.02 a 3.28 ± 0.03 a 3.21 ± 0.01 a 1.03 ± 0.05 a 0.92 ± 0.05 a 0.98 ± 0.03 a

18 September 2019 3.70 ± 0.05 a 3.64 ± 0.03 a 3.05 ± 0.02 b 1.15 ± 0.08 a 1.12 ± 0.05 a 1.12 ± 0.03 a
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No significant difference in pH was found at full veraison and mid-maturation in
both seasons, while a significant difference in pH was found at harvest: the LR8 treatment
showed the lowest values (3.22 in 2018 and 3.05 in 2019). Consequently, LR8 was given the
highest total acidity values during full maturation in both seasons (6.41 mg L−1 and 6.02
mg L−1, respectively). Regarding sugar content values, significant differences at harvest
were noted in both seasons: LR4 and CTRL had the highest values (26.88 and 26.16 ◦Brix in
2018 and 27.75 and 26.90 ◦Brix in 2019, respectively).

Table 4. Phenolic maturity. Total anthocyanin (Tot. Anth.), extractable anthocyanin (Extr. Anth.), total polyphenol (Tot.
Polyp.), and extractable polyphenol (Extr. Polyp.) contents of V. vinifera treated with three different defoliation managements:
four leaf removal (LR4), eight leaf removal (LR8), and no defoliation (CTRL). Measurements were conducted at full veraison
(31 July 2018 and 25 July 2019), mid-maturation (27 August 2018 and 20 August 2019) and full maturation (25 September
2018 and 18 September 2019). Data (mean ± SE, n = 10) were subjected to one-way ANOVA. Different letters within the
same parameter and row indicate significant differences (LSD test, p ≤ 0.05).

Tot. Anth. (mg L−1) Extr. Anth. (mg L−1)

Stage CTRL LR4 LR8 CTRL LR4 LR8

31 July 2018 751.41 ± 27.68 b 880.25 ± 16.44 a 738.50 ± 10.68 b 370.40 ± 9.21 b 393.73 ± 13.86 a 344.15 ± 9.41 c
27 August 2018 1450.75 ± 24.87 b 1550.50 ± 21.22 a 1312.50 ± 17.89 c 638.75 ± 15.87 b 653.75 ± 11.04 a 595.00 ± 14.16 c
25 September 18 1690.15 ± 23.55 b 1830.12 ± 19.48 a 1490.75 ± 14.32 c 737.15 ± 7.60 b 850.15 ± 10.09 a 645.25 ± 13.91 c

25 July 2019 938.23 ± 11.74 b 1030.20 ± 8.86 a 910.51 ± 7.53 b 561.22 ± 7.60 b 743.20 ± 15.58 a 505.34 ± 14.78 c
20 August 2019 1605.20 ± 10.00 b 2030.77 ± 12.62 a 1459.50 ± 12.62 c 1241.27 ± 9.44 b 1470.50 ± 7.66 a 1025.31 ± 11.73 c
18 September 19 1711.00 ± 23.14 b 2227.50 ± 7.08 a 1437.30 ± 21.98 c 782.51 ± 16.12 b 1087.78 ± 9.12 a 695.37 ± 10.07 c

Tot. Polyp. (mg L−1) Extr. Polyp. (mg L−1)

Stage CTRL LR4 LR8 CTRL LR4 LR8

31 July 2018 3164.54 ± 46.76 b 3247.10 ± 43.16 a 3195.27 ± 36.89 b 2832.80 ± 39.67 a 2889.67 ± 45.98 a 2876.90 ± 42.76 a
27 August 2018 3395.87 ± 31.72 b 3439.08 ± 33.05 ab 3457.15 ± 29.34 a 2920.60 ± 45.00 a 2974.97 ± 34.16 a 2901.56 ± 67.81 a
25 September 18 3367.29 ± 49.15 a 3155.70 ± 54.25 b 3389.34 ± 44.21 a 2889.45 ± 32.57 a 2950.12 ± 54.15 a 2745.98 ± 64.75 b

25 July 2019 4021.65 ± 24.43 a 4005.21 ± 37.78 a 4051.81 ± 37.60 a 3682.59 ± 29.62 a 3614.36 ± 55.08 a 3669.18 ± 63.12 a
20 August 2019 3996.14 ± 43.22 a 4013.25 ± 47.25 a 3848.61 ± 34.31 b 3600.45 ± 42.00 a 3609.67 ± 24.17 a 3565.45 ± 35.90 b
18 September 19 3576.17 ± 38.27 a 3520.16 ± 32.25 a 3598.28 ± 34.46 a 3369.11 ± 57.51 b 3481.57 ± 55.15 a 3306.21 ± 45.32 b

The greatest differences were found with regard to the composition of extractable
anthocyanins in both seasons. At full veraison, mid- and full maturation, LR4 berries
showed significantly higher extractable anthocyanin content compared to LR8 and CTRL
berries in 2018 and 2019. The lowest values were recorded for the LR8 treatment at the
three different stages: 344.15, 595.00, and 645.25 mg L−1 during the 2018 season and 505.34,
1025.31, and 695.37 mg L−1 during the 2019 season. At full maturation, LR4 berries showed
significantly higher extractable polyphenol content compared to the other two treatments.
No differences in total polyphenols at harvest were found.

Figure 3 shows berry temperature (◦C) of V. vinifera among the three different canopy
management approaches during the study period for the two years.
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CTRL treatment gave the lowest values during the 2018 and 2019 seasons. 

Figure 4 shows production data of V. vinifera among three different canopy 
management, under two years. No significant differences were found. 

Figure 3. Maximum daytime temperature (◦C) ((A), 2018; (B), 2019) and minimum night-time temperature (◦C) ((C), 2018;
(D), 2019) of V. vinifera berries with three different defoliation managements: four leaf removal (LR4, green column), eight
leaf removal (LR8, pink column), and no defoliation (CTRL, blue column). Measurements were conducted at full veraison
(31 July 2018 and 25 July 2019), mid-maturation (27 August 2018 and 20 August 2019) and full maturation (25 September
2018 and 18 September 2019). Different letters within the same parameter indicate significant differences. Data (mean ± SE,
n = 10) were subjected to one-way ANOVA (LSD test, p ≤ 0.05).

The maximum daytime and minimum night-time temperatures of berries at three
different phenological phases were investigated (Figure 3). Temperature decreased from
July until September when it dropped steadily. The highest daytime temperature values
were recorded in the LR8 treatment, reaching 43.5 ◦C and 44.4 ◦C on 31 July 2018 and 25
July 2019, respectively. The same trend was observed for night-time temperature. The
CTRL treatment gave the lowest values during the 2018 and 2019 seasons.

Figure 4 shows production data of V. vinifera among three different canopy manage-
ment, under two years. No significant differences were found.
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Figure 4. Cluster weight (kg) ((A), 2018; (B), 2019), yield/vine (kg) ((C), 2018; (D), 2019), and
number of cluster/vine ((E), 2018; (F), 2019) of V. vinifera with three different defoliation management:
four leaf removal (LR4, green column), eight leaf removal (LR8, pink column), and no defoliation
(CTRL, blue column). Measurements were conducted at full maturation (25 September 2018 and 18
September 2019). Different letters within the same parameter indicate significant differences. Data
(mean ± SE, n = 10) were subjected to one-way ANOVA (LSD test, p ≤ 0.05).

3. Discussion

The principal objective of canopy management is to maintain an environment that en-
courages suitable vegetative growth of vines and safeguards future clusters [45]. Practices
include shoot trimming, vigor control, and leaf removal in the fruit zone [46,47].

This study assesses the importance of canopy management in the Mediterranean area
through leaf removal as a potential tool to improve Cabernet Sauvignon grape quality.

Defoliation reduced the leaf area of the vines in this study by approximately 25%
in the LR4 and 45% in the LR8 treatment. Considering a single leaf, net photosynthesis
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(Pn) was lower in CTRL at veraison, mid-maturation, and full maturation. Defoliation
increases single leaf photosynthesis [48]. However, in a LR8 treatment, leaf removal from
the lower quarter of the canopy during berry growth can cause a significant decrease in
whole-vine photosynthesis, thus suggesting that higher specific photosynthesis is not able
to compensate the reduction in total leaf area [49,50]. Therefore, it is probable that leaf
thinning reduces the potential CO2 assimilating surface, which potentially decreases total
photosynthetic rates and influences the vine’s carbon balance [51]. Instead, it has been hy-
pothesized that in the LR4 treatment, there were no changes in whole-vine photosynthesis
(a vine maintained its photosynthesis rate even though 27% of the leaf area had been re-
moved [50]). Generally, the rate of photosynthesis declines as the season progresses [52–55].
Unlike other plant species, a minimally reduced source-sink ratio resulted in no increased
stomatal conductance, as well as no higher photosystem II (PSII) efficiency [56].

In both years studied, stomatal conductance, even in the hottest period, maintained
optimal values: Cabernet Sauvignon reflects its anisohydric-conservative behavior under
stress conditions without showing a drop in values [57]. Although water stress threshold
values were found in August (in 2018: −1.27, −1.28, −1.36 MPa and in 2019: −1.28, −1.30,
−1.37 MPa) [58], no significant differences were recorded in terms of leaf water potential.

Fluorescence of chlorophyll a (an indicator of photo-oxidative stress [59]) leads to us
saying in our experiment that in both years, there was neither damage to PSII nor even
excessively limiting situations for plants as no significant differences were seen in the two
vintages.

In our study, berry temperatures were influenced by defoliation. An increase in sun
exposure leads to temperature elevation and fully exposed clusters are subjected to more
pronounced fluctuations in daytime and night-time temperatures [60]. In July 2018, the LR4
treatment presented a daytime berry temperature that was 4.75% higher than CTRL; LR8
was 24.35% higher. In 2019, LR4 daytime berry temperature was 5.50% higher than CTRL;
LR8 was 23.70% higher. The timing of fruit set basal defoliation has a stronger impact on
the source-sink balance and light and temperature exposure than veraison defoliation [61].

In accordance with Zoecklein et al. [25], drastic leaf removal at harvest (25 September
2018 and 18 September 2019) reduced fruit soluble solids concentration: the sugar content
of LR8 was lower than the other two treatments. Depending on the growth environment,
values of between 7 and 14 cm2 of leaf area per gram of berry are often quoted as being
necessary to satisfactorily ripen the fruit [62]. In fact, a drastic reduction in leaf area
due to leaf removal could negatively affect the carbon balance and allocation to sinks
as well as reproductive activity which may, in turn, negatively affect plant carbohydrate
reserve replenishment [63,64]. On the other hand, partial defoliation (LR4) can improve
vine performance [65]: the LR4 treatment presented the highest sugar content during the
2019 season.

As pointed out by Main et al. [66], leaf removal treatments had no effect on berry weight.
Leaf removal (LR4 treatment) generally increased fruit titratable acidity (TA), which

was associated with a greater malic acid concentration [67].
With regard to the total and extractable anthocyanins and extractable polyphenols

at harvest, the LR4 treatment gave the highest values. An increase in grape flavonol
and anthocyanin concentration as an outcome of defoliation is due to sunlight-driven
upregulation biosynthesis of polyphenols [68]. While the LR8 treatment had the lowest
accumulation of both anthocyanins and polyphenols, this was probably due to excess sun
exposure and excess temperature. In fact, some studies have reported that high levels of
light and temperature have led to a decrease in anthocyanin levels [69]. It was highlighted
that the lower anthocyanin content in berries under high temperature reflects the impact of
reduced biosynthesis with an increased degradation (peroxidase enzymes in anthocyanin
catabolism) [70]. The higher anthocyanin content in our LR4 treatment could also be due to
a greater sugar content, which could, in turn, lead to an accumulation of this flavonoid [71].
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4. Materials and Methods
4.1. Experimental Design and Settings

The experiment was carried out in a Vitis vinifera L. (cv. Cabernet Sauvignon, clonal
selection 685) vineyard situated on a sandy soil in Bolgheri, Castagneto Carducci, Tuscany
(43◦23′39′′ N; 10◦61′6′′ E) with an elevation of 96 m a.s.l. with south–west exposure. Soil
horizons present a clay texture with the following characteristics: sand 40.1%; silt 32.5%;
clay 27.4%; organic matter 1.3%; pH (H2O) 7.6. The experiment was set up during two
consecutive seasons (2018 and 2019). The vineyard was planted in 2009 on 1103 P rootstock
at a spacing of 1.1 by 2 m (∼4545 vines/ha) and trained on a vertical shoot positioning
system in SE-NW oriented rows with a single cordon system, at 70 cm above ground with
six spurs (12 buds per vine). The vines do not have irrigation and cultural practices were
the common ones in the area. Pest treatments were applied as per local practices; no sprays
against Botrytis were performed (Tuscan integrated management).

The following three management methods were tested: removal of the first four leaves
of each primary shoot (LR4), removal of the first eight leaves of each primary shoot (LR8),
and no defoliation treatment (CTRL). Treatments were performed at the same time during
the season, at fruit set, right after the machine shoot trimming. Treatments were applied
according to a randomized block design with 10 replications per treatment. A single span,
composed of five plants, was considered as a replication. Leaf removal was carried out on
18 June 2018 and on 12 June 2019. As in Mucalo’s experiment [72], in the defoliated nodes,
lateral shoots were removed (they experience the highest photosynthetic activity during
ripening and can cause a carry-off effect). Maximum, minimum, mean air temperatures (◦C)
and global radiation (W m−2) of the growing season (2018–2019) were collected daily from a
weather station located in the vineyard (Ecotech, Germany); rainfall and air humidity were
also recorded. As described thereafter, eco-physiological measurements were performed
on 10 vines/management method (10 vines per treatment; one vine per replication) at
three different dates corresponding to three different phenological stages: 31 July 2018
and 25 July 2019 (full veraison, 100% of berries present full color change; E-L 36 stage); 27
August 2018 and 20 August 2019 (mid-maturation; E-L 37 stage); 25 September 2018 and
18 September 2019 (full maturation; E-L 38 stage) [73].

4.2. Leaf Gas Exchanges, Leaf Area, Leaf Water Potential, Leaf Chlorophyll a Fluorescence
and Content

Leaf gas exchange (transpiration rate (E), net photosynthesis (Pn), and stomatal con-
ductance (gs)) was measured using a portable infrared gas analyzer (model Ciras 3, PP
Systems, Amesbury, MA, USA), between 10 and 12 a.m. on 10 fully developed and healthy
leaves per treatment (10 replicates, one each vine). The photosynthesis/transpiration ratio,
extrinsic water use efficiency (eWUE), was calculated. Measurements were performed, set-
ting the leaf chamber flow under the same conditions as the experiment of [74]: saturating
photosynthetic photon flux of 1300 µmol m−2s−1, ambient CO2 concentration ~400 ppm,
and ambient temperature) at the three phenological stages as mentioned above. Based on
the correlation between the vein length on the lower surface and leaf area, the leaf area of
total assimilation area per vine was established by a non-destructive method [75]. Total
leaf area was calculated by multiple regression analysis based on the following variables:
leaf number, shoot length, and area of the smallest and largest leaf; in addition, the total
leaf area was established using the number of shoots per plant [76].

Leaf water potential (Ψleaf, MPa) was determined using a pressure chamber (model
600, PMS Instrument Co., Albany, OR, USA) on 10 fully expanded leaves per treatment, at
approximately 12 noon–1:00 p.m. [77].

Using a chlorophyll fluorometer (Handy-PEA®, Hansatech Instruments, Norfolk, UK),
the fluorescence of chlorophyll a (Chl-a) was recorded; the leaves were adapted to the dark
for 30 min with the help of leaf clips. Fv/Fm (variable/maximal Chl-a fluorescence, the
maximum quantum yield of photosystem PSII) was calculated following Maxwell and



Plants 2021, 10, 1183 11 of 15

Johnson’s methodology [78] and were collected by applying a saturating flash of actinic
light at 3000 µmol photons m−2s−1 for 1 s.

A 502 SPAD device (Konica Minolta Inc., Japan) was used to measure chlorophyll a
content in leaves. At the same three stages, Chl-a content, leaf water potential, and Chl-a
fluorescence were measured on the same leaves used for leaf gas exchange measurements.

4.3. Berry Composition and Temperature

Choosing 20 sample berries per plant, 100 berries per replication were randomly
harvested at full veraison, mid-maturation and full maturation from each treatment to
perform technological maturity assessments. With a digital scale (model ES2201, Artiglass,
Due Carrare, PD, Italy), each sample was individually weighed and the berries were then
squeezed to for pH, sugar content, and titratable acidity (TA) analyses. A refractometer
(PCE-Oe Inst., Lucca, Italy) was used to evaluate sugar content (◦Brix). A portable pH
meter (PCE-Oe Inst., Lucca, Italy) was used to evaluate pH of grape must, and, using
0.1 M NaOH to an end-point of pH 7.0, g L−1 tartaric acid (TA) was calculated by manual
glass burette on a 10 mL sample. To determine the optimum harvesting time, berries
from three different experimental plots were tested every other day with a digital hand
refractometer and harvesting time was considered optimal when the sugar content in all
treatments reached 25 ◦Brix. In addition, another 100-berry sample/vine/thesis (10 berry
samples per plant) was used to determine phenolic contents as well as extractable and
total anthocyanins [79]. During the three phenological phases, the daytime and night-
time temperatures (12–1 p.m. and 2–3 a.m., respectively) of the bunch were measured by
temperature probes (micro temperature probe—GMR_MTP) inserted inside the berries
(GMR Strumenti SAS, Scandicci, Italy) [80,81]. A datalogger was connected to the probes
of the single cluster.

4.4. Statistical Analysis

Data from each season (2018–2019) were separately analyzed by means of one-way
ANOVA with defoliation treatments as the main factor (p ≤ 0.05). In addition, mean values
were separated by Fisher’s least significant difference (LSD) post hoc test (p≤ 0.05). p value
adjustment was performed with the Holm method. All statistical analyses were performed
using R and RStudio (Boston, MA, USA) [82].

5. Conclusions

The present research investigated the influence of basal leaf removal on vine physiol-
ogy, berry temperature, and grape quality based on three methods (removal of four leaves,
LR4; eight leaves, LR8; and no defoliation, CTRL). Under defoliation conditions, consider-
ing the single leaf, vines treated with LR4 and LR8 maintained higher photosynthesis levels
compared to CTRL. In terms of berry traits, higher sugar and anthocyanins content were
detected in LR4 berries. These effects may make LR4 treatment a candidate as a practical
tool for winemakers who want to increase vine performance. Overall, LR8 vines presented
a slow maturation with unchanged berry weight and higher titratable acidity in compar-
ison with LR4 and CTRL vines; this method could be useful for rosé wine production.
Furthermore, the sharp decrease in anthocyanin concentration under severe defoliation
suggests that the influence of light and temperature are dominant in the degradation of
these compounds. To fully validate and clarify the effects of leaf removal on secondary
metabolites (amount and extraction), further investigations are needed. Investigation of
the processes of assimilation of CO2 at the level of the whole vine would also be useful.
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