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We measured the precision with which an irrelevant
feature of a relevant object is stored in visual short-term
memory. In each experiment, 600 online subjects each
completed 30 trials in which the same feature
(orientation or color) was relevant, followed by a single
surprise trial in which the other feature was relevant.
Pooling data across all subjects, we find in a delayed-
estimation task but not in a change localization task that
the irrelevant feature is retrieved, but with much lower
precision than when the same feature is relevant: The
irrelevant/relevant precision ratio was 3.8% for
orientation and 20.4% for color.

Introduction

Visual input originates from multiple objects that all
have many features, such as orientation, color, and
motion. To deal with this deluge of information, it is
useful to have a short-term buffer—visual short-term
memory (VSTM). VSTM for objects that have more
than one feature has been an area of enduring interest
in cognitive psychology. One prominent question has
been whether multifeature objects get stored in VSTM
as entire objects or as loose collections of features. This
question has multiple aspects, one of which is whether
all features of a task-relevant object are stored
automatically, regardless of the relevance of each
individual feature (Alvarez & Cavanagh, 2004; Bays,
Wu, & Husain, 2011; Fougnie, Asplund, & Marois,
2010; Jiang, Olson, & Chun, 2000; Lee & Chun, 2001;

Luck & Vogel, 1997; Vogel, Woodman, & Luck, 2001;
Wheeler & Treisman, 2002). If VSTM is object-based,
then one could surmise that encoding a task-relevant
feature of an object automatically causes irrelevant
features of that object to be encoded as well (Hyun,
Woodman, Vogel, Hollingworth, & Luck, 2009; Luria
& Vogel, 2011; Shen, Tang, Wu, Shui, & Gao, 2013;
Vogel et al., 2001; Yin et al., 2012).

This hypothesis has mostly been tested by examining
whether the addition of an irrelevant feature decreases
performance. Studies employing orientation-color
change detection (Vogel et al., 2001) and color-shape
change detection (Luria & Vogel, 2011) showed no
effect, suggesting that people do not encode irrelevant
features. However, these results can also be explained
by the irrelevant feature having an independent pool of
memory resource rather than sharing resources with the
relevant feature. In fact, Hyun et al. (2009) found the
opposite result: Subjects were more error-prone when
one object changed in its irrelevant feature. When the
authors introduced changes in all objects, they found
an even stronger impairment, leading them to conclude
that irrelevant features are encoded. Recent studies
(Shen et al., 2013; Yin et al., 2012) found similar effects
and interpreted them as evidence that VSTM is object-
based.

Although the origin of the differences between the
results of these studies remains unclear, even the
positive results leave open the question of how well the
irrelevant feature is stored in VSTM, and in particular
if it is stored with the same precision as when that
feature is relevant. To address these questions, it is
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insufficient to only measure performance on trials in
which the relevant feature is probed: Data must be
collected on irrelevant-feature trials to make a com-
parison. This, however, brings about a problem: As
soon as a subject experiences a surprise trial on which
the irrelevant feature is probed, that feature becomes
relevant. Therefore, each subject can be tested on only
a single irrelevant-feature trial.

To solve this problem, we crowdsourced data from
the Amazon Mechanical Turk, an online platform for
data collection. We used stimuli that each had both an
orientation and a color. We crossed two experimental
paradigms (change localization and delayed estimation)
with two options for which feature was irrelevant
(orientation and color), for a total of four experiments.
We found that people could recall the irrelevant
feature, suggesting that it is encoded automatically.

Laboratory experiments

Methods

To set an appropriate level of difficulty, we
conducted two laboratory experiments, each with five
subjects. We used a change localization task (van den
Berg, Shin, Chou, George, & Ma, 2012), noted in
Figure 1; one experiment involved orientation change
localization, the other color change localization.
Subjects briefly viewed a sample display that consisted
of four colored ellipses. The orientations and colors of
the ellipses were drawn from uniform distributions,
independently across items and features. After a delay,
subjects viewed a test display, in which one ellipse
(chosen with equal probabilities) changed orientation
and another ellipse (independently chosen, also with
equal probabilities) changed color. Both changes were
independently drawn from uniform distributions. By
chance, both changes could occur in the same object.
One feature was relevant and the other was irrelevant.
The task was to click on the location of the object that
had changed in its relevant feature. At the beginning of

each session, we instructed subjects that their task was
to localize the change in the relevant feature, that the
change could be small or large, that one randomly
chosen object would change in its irrelevant feature,
and that by chance the same object could change in
both features. Each experiment consisted of four blocks
of 150 trials, for a total of 600 trials.

Stimuli were displayed on a 19 00 LCD monitor at a
viewing distance of approximately 60 cm. Stimuli were
presented on a midlevel grey background of luminance
33.1 cd/m2. Stimuli were equally spaced along an
imaginary circle of radius approximately 78 of visual
angle around fixation (calculated assuming a viewing
distance of 60 cm), at angles i /N�3608, where i¼ 1,. . .,N,
and N¼ 4. The experiments were programmed using
Psychophysics Toolbox in MATLAB (Brainard, 1997;
Pelli, 1997).

Results

Average subject performance was above chance in
both the orientation (black curve in Figure 2A; right-
tailed z test for proportions on data pooled across
subjects: z ¼ 73.9, p , 0.001) and color experiments
(black curve in Figure 2B; z ¼ 83.5, p , 0.001). A
logistic regression revealed a significant main effect of
change magnitude in the orientation experiment (r¼
0.023 6 0.001, p , 0.001) and in the color experiment
(r¼ 0.026 6 0.001, p , 0.001). These results indicated
that this paradigm might be suitable for the crowd-
sourced experiments.

Experiment 1

Methods

The experiment was conducted online on www.
mturk.com. Subjects enrolled by selecting our experi-
ment from a list of ‘‘Human Intelligence Tasks.’’ To
maximize consistency in response modality and viewing

Figure 1. Trial procedure in the change localization experiments (laboratory experiments and Experiments 1 and 2). On each trial,

there is both an orientation change and a color change. Subjects click on the location where a relevant-feature change occurred.
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conditions, we prevented enrollment via mobile devices
such as smartphones or tablets. Once a subject selected
the experiment, they were told to enlarge the window
size of their web browser to at least 8003 600 pixels. If
they did not do this, they could not continue. Then, the
subject completed a six-item Ishihara Color Test to test
for color vision deficiencies. A subject who passed this
test was then led step-by-step through an example trial
accompanied by on-screen instructions. This instruc-
tion phase was self-paced and subjects could freely
move back and forth between the screens of the
example trial. Taking this selection into account, 600
subjects participated. Each experiment lasted approx-
imately 5 min, and each subject was paid 25 cents. The
experimental protocol was approved by the Institu-
tional Review Board of Baylor College of Medicine.

Similar to those from the orientation laboratory
experiment, the stimuli were four colored ellipses
(Figure 1), presented in a rectangular 400 3 400-pixel,
midlevel grey window. The ellipse had minor and
major axes were 16 and 7 pixels, respectively. The
colors were drawn from 360 values uniformly dis-
tributed along a circle in the fixed-L* plane of CIE
1976 (L*, a*, b*) color space corresponding to a center
(a*, b*)¼ (12, 13) and radius 60. We could not control
luminance. Stimuli were equally spaced along an
imaginary circle around fixation, at angles i/N�3608,
where i ¼ 1,. . .,N, and N ¼ 4. The experiments were
programmed in JavaScript, HTML and CSS.

‘‘Relevant’’ trials

The experiment consisted of thirty ‘‘relevant’’ trials
followed by one ‘‘irrelevant’’ trial (Figure 3A, top).

The sequence of a relevant trial consisted of the
presentation of a fixation cross (1000 ms), the first
stimulus array (150 ms), a delay period in which the
fixation cross was present (1000 ms), the second
stimulus array (150 ms), and a response screen
(present until response). The second array was
identical to the first except that one randomly chosen
object was different in its relevant feature (orientation)
value from the first array, and another randomly
chosen object in its irrelevant feature (color). The
response screen included a text message in the center,
reminding a subject of the task (‘‘Where was the
ORIENTATION change?’’). The magnitude of the
change was independently drawn from a uniform
distribution for each feature. For each feature, each
object had an equal probability of changing. Thus, by
chance, changes in the irrelevant and relevant feature
could occur in the same object. The response screen
consisted of empty circles at the same locations as
where objects were presented in the stimulus arrays.
The task was to click on the location of the object that
had changed its orientation. After the response,
feedback was provided: The fixation cross turned
green if the response was correct, red if the response
was incorrect. Before subjects started the experiment,
they completed a demonstration trial that reflected the
trial procedure of the relevant trials. This trial
consisted of static images of the displays, accompa-
nied by written descriptions.

‘‘Irrelevant’’ trial

The last trial (31st) was identical to an irrelevant trial
except for the following: After subjects clicked the

Figure 2. Performance in the change localization experiments. Proportion correct as a function of change magnitude (binned for

plotting purposes). Per bin, we pooled data across subjects. (A) Orientation: black—laboratory experiment (five subjects, 600 trials

per subject), blue—irrelevant-feature trials of online subjects (600 subjects, 30 trials per subject), red—irrelevant trials of online

subjects (600 subjects, one trial per subject). Error bars are 68% confidence intervals for binomial proportions. Performance on the

irrelevant trials was indistinguishable from chance. (B) As (A), but for color change localization. Again, performance on the irrelevant-

feature trials was indistinguishable from chance.
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location of relevant-feature change at the response
screen, another response screen appeared with four
empty circles and a message saying, ‘‘. . . and where was
the COLOR change?’’ After subjects clicked one of the
circles, the experiment ended.

Results

We pooled the data across all subjects. On the
relevant trials, subjects’ average performance was
significantly above chance (blue curve in Figure 2A, z
test for proportions, z¼ 69.1, p , 0.001). To compare
performance between Mechanical Turk and lab sub-
jects, we conducted a logistic regression with subject
group (0: lab; 1: Mechanical Turk) and change
magnitude as regressors. The coefficient for subject
group was estimated at �0.78 6 0.03 and was highly
significant (p , 0.001), indicating that Mechanical
Turk subjects performed worse than lab subjects. On
the irrelevant trials, performance was not significantly
different from chance (red curve in Figure 2B, 0.243 6
0.018; z¼ 0.66, p ¼ 0.26).

Experiment 2

Methods

Experiment 2 was identical to Experiment 1 except
that we switched orientation and color. Thus, the goal
was to examine whether a subject could retrieve an

irrelevant orientation memory. To recruit naı̈ve sub-
jects, we blocked subjects who participated in Exper-
iment 1 by blocking their user IDs. Thus, 600 different
subjects participated in Experiment 2.

Results

The results were very similar to Experiment 1. We
again pooled the data across all subjects. On the
relevant trials, subjects’ average performance was
significantly above chance (blue curve in Figure 2B, z
test for proportions, z¼ 86.5, p , 0.001). The logistic
regression coefficient for subject group was estimated at
�1.00 6 0.03 and was highly significant (p , 0.001),
indicating that Mechanical Turk subjects performed
worse than lab subjects. On the irrelevant trials,
performance was not significantly different from
chance (red curve in Figure 2B, 0.261 6 0.018; z ¼
�0.19, p ¼ 0.43).

Discussion

Several factors might have contributed to the chance
performance on irrelevant-feature trials in Experiments
1 and 2. First, we asked subjects first to locate the
relevant change, and only afterwards to locate the
irrelevant change. Thus, the subject’s report of the
irrelevant feature had a longer delay than when that
feature was relevant, potentially decreasing perfor-
mance. Second, subjects might discard their memory of
the irrelevant feature as soon as they believe the trial to

Figure 3. Online experiments. (A) Experiments 1 and 2 featured change localization tasks. Experiment 1: An irrelevant color trial

followed 30 orientation-relevant trials. On the irrelevant trial, subjects were first asked to report the location of the orientation

change, and then to report the location of the color change. Experiment 2: Like Experiment 1, except that color was relevant and

orientation was irrelevant. (B) Experiments 3 and 4 featured delayed-estimation tasks. Experiment 3: An irrelevant color trial followed

30 orientation-relevant trials. On the irrelevant trial, subjects were asked to report the color of the stimulus on a color wheel.

Experiment 4: Like Experiment 3, except that color was relevant and orientation was irrelevant.
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be finished, which is right after their relevant-feature
report. This would be consistent with a study that
found that the encoding of features in multifeature
objects is obligatory, but that maintenance is voluntary
(Marshall & Bays, 2013). Second, subjects might not
have fully understood that they had to do something
different for the second report on the last trial than for
the first report. Indeed, on the irrelevant-feature trial,
36% (Experiment 1) and 41% (Experiment 2) of
subjects clicked twice on the same location; both
proportions are significantly higher than chance (z test
for proportions; p , 10�9). It is possible that subjects
were confused, because the response modality was
identical for both judgments, namely clicking on one of
four empty circles. Fourth, it is possible an irrelevant
feature is encoded at smaller set sizes but not at larger
ones.

Experiment 3

We identified several problems that could have
produced the null results of Experiments 1 and 2: a
longer delay, discarding information after a decision,
a misunderstanding of the instructions, and set size.
To address these problems, we conducted two more
experiments, Experiments 3 and 4, in which we used a
different experimental paradigm, called delayed esti-
mation (Wilken & Ma, 2004). Subjects viewed a brief
display consisting of a single stimulus, and, after a
delay, were asked to estimate the feature value of a
randomly selected stimulus on a continuum. This
removed or reduced the problems above: (a) the
subject does not make a decision before they are asked
about the irrelevant feature; (b) the delay between the
offset of the memory array and the subject’s response
is similar on the irrelevant and the relevant trials; (c)
the response modality was entirely different on the

irrelevant trial than on the relevant trials—for
example, subjects clicked on a color wheel instead of
rotating an orientation probe; (d) set size was 1.

Methods

Experiment 3 was identical to Experiment 1 except
for the following. Set size was 1, and the ellipse
appeared in the center of the window. On the first 30
(relevant-feature) trials (Figure 4A), the response
stage consisted of a response probe appearing with a
message asking subjects to report the orientation of
the memorized ellipse. The probe was a colored
ellipse with the same color as the stimulus and an
orientation drawn from a uniform distribution.
Subjects could rotate the ellipse by moving a mouse,
and submitted their response by pressing the space-
bar. Feedback was then provided by presenting the
original stimulus (‘‘correct’’) and the reported stim-
ulus (‘‘reported’’) simultaneously in the top and
bottom parts of the stimulus window, respectively.
On the 31st (irrelevant-feature) trial (Figure 4B),
after the delay period, a color wheel appeared with a
message asking subjects to report the color of the
stimulus by clicking on the color wheel. No feedback
was given on this trial, and the experiment ended
immediately afterwards. Again, 600 new subjects
were recruited for this study.

Results

The pooled distribution of the estimation error on
the relevant-orientation trials was significantly different
from uniform (Kolmogorov-Smirnov test: D¼ 0.35, p
, 0.001, Figure 5A). On a [�908, 908) domain, the error
distribution on relevant-orientation trials had a circular
mean of �0.38 and a circular standard deviation

Figure 4. Trial procedure in Experiments 3 and 4 (delayed estimation). (A) Orientation estimation trial. Subjects estimated the

orientation of the stimulus by rotating the probe using the mouse. (B) Color estimation trial. Subjects estimated the color of the

stimulus by clicking on the color wheel.
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(Mardia & Jupp, 1999) of 13.78, the latter with a 95%
bootstrapped confidence interval of [13.48, 14.08].
Critically, the error distribution on irrelevant-color
trials was not uniform either (D ¼ 0.28, p , 0.001,
Figure 5A). On a [�1808, 1808) domain, it had a circular
mean of �3.38 and a circular standard deviation of
51.68, the latter with a 95% bootstrapped confidence
interval of [47.48, 56.08]. This suggests that subjects
were able to retrieve the irrelevant color.

Experiment 4

Methods

Experiment 4 was identical to the first experiment
except that the first 30 trials were relevant-color trials
(Figure 4B) and the surprise trial was a relevant-
orientation trial (Figure 4A). Again, 600 new subjects
were recruited for this study.

Results

Results were similar to those of Experiment 3. The
pooled distribution of the estimation error on the
relevant-color trials was significantly different from
uniform (D¼ 0.36, p , 0.001, Figure 5B). On a [�1808,
1808) domain, the error distribution on relevant-color
trials had a circular mean of �0.58 and a circular
standard deviation of 23.38, the latter with a 95%
bootstrapped confidence interval of [22.88, 23.88].
Critically, the error distribution on irrelevant-orienta-
tion trials was not uniform either (D¼ 0.09, p , 0.001,
Figure 5B). On a [�908, 908) domain, it had a circular

mean of �2.38 and a circular standard deviation of
70.68, the latter with a 95% bootstrapped confidence
interval of [60.68, 83.08]. This shows that subjects were
able to retrieve irrelevant working memories of
orientation.

We now examine the circular standard deviations
from Experiments 3 and 4 together. We define an
irrelevant/relevant precision ratio (IRPR) as:

IRPR ¼ circularSDwhen feature is irrelevant

circularSDwhen feature is relevant

� �2

:

We find an IRPR of 3.8% for orientation and
20.4% for color. The fact that both are below 100%
indicates that memory precision is lower when a
feature is irrelevant than when the same feature is
relevant. The difference between these ratios could
have several possible causes. First, the response
modality differed between orientation and color: On
an orientation trial, subjects rotated the orientation
probe, which only allowed them to see one orientation
at a time. However, in a color trial, subjects could see
the entire color wheel, providing a continuum of
templates for comparison to the memory. Second,
rotating the orientation probe took slightly more time
than clicking on the color wheel, possibly reducing
the quality of the memory. Third, color might
ecologically be more important than orientation, and
therefore be encoded better when not explicitly
relevant.

General discussion

We used crowdsourcing to measure the precision of
VSTM encoding for irrelevant features. In a change

Figure 5. Performance in the delayed-estimation experiments. In each experiment, 600 subjects each performed 30 relevant-feature

trials and one irrelevant-feature trial. Thus, the relevant-feature histograms are based on 18,000 trials and the irrelevant-feature

histograms on 600 trials. (A) Experiment 3. Orientation was relevant and color irrelevant. Both distributions are significantly different

from uniform. (B) Experiment 4. Color was relevant and orientation was irrelevant. Both distributions are significantly different from

uniform.
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localization task, performance on irrelevant-feature
trials was at chance, but this might have been due to
confounds in the experimental design. Using a simpler
and more direct design, we found that subjects were
capable of retrieving the irrelevant feature, although
with substantially lower precision than the relevant
feature.

A recent study (Chen & Wyble, 2015) asked a
question similar to ours, but did not use crowd-
sourcing. Subjects viewed a brief display consisting of
three numbers and one letter, each with a different
color. For the first 155 (or 11) trials, subjects located
the letter. Then, on the 156th (or the 12th) trial, the
experimenters surprised the subjects by asking them
to recall the identity or the color of the letter, rather
than its location. The authors found that the
proportion of the subjects who correctly answered
the surprise trial was close to chance level (25%), and
concluded that people failed to recall irrelevant
features. A problem with this study is that they based
this conclusion on 20 subjects and therefore a total of
20 useful trials; This provides very limited statistical
power.

Earlier studies examined irrelevant-feature memory
indirectly by comparing change detection perfor-
mance in the presence and absence of an irrelevant
feature (Luria & Vogel, 2011; Vogel et al., 2001). The
authors found that the presence of an irrelevant
feature did not affect performance. However, as in the
change localization task in our Experiments 1 and 2,
change detection consists of an encoding and a
decision-making stage (Keshvari, van den Berg, &
Ma, 2012). In the encoding stage, stimuli are
represented as noisy memories. Then, observers make
a decision on the occurrence of a change based on the
measurements. Thus, Luria and Vogel’s results could
be explained by the irrelevant feature not being
encoded, or by it being encoded but appropriately
ignored in the decision stage. Our results favor the
latter interpretation.

Our main results are limited to a set size of 1, a
delay period of 1 s, 30 relevant-feature trials
preceding the irrelevant-feature trial, and to combi-
nations of orientation and color. It remains to be
seen how the irrelevant/relevant precision ratio
(IRPR) will change as these choices are varied. There
is evidence that set size and delay period matter: In a
color memory task, an fMRI study found that
irrelevant shape affected activity in a brain area
involved in shape representation during the delay
period, but that this activity was short-lived and
lower at higher set size (Xu, 2010). Our paradigm
allows for a systematic characterization of the
dependence of IRPR on set size, delay period,
number of relevant-feature trials, and feature com-
bination.

Finally, it might be interesting to determine whether
the change localization paradigm we used in Experi-
ments 1 and 2 can be modified such that the precision
of the irrelevant-feature memory becomes measurable.
For example, one could use a change detection task at
set size 1, in which only the irrelevant feature is probed
on the surprise trial.

Keywords: visual working memory, visual short-term
memory, delayed estimation, object memory
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