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Extreme intratumour heterogeneity and driver
evolution in mismatch repair deficient gastro-
oesophageal cancer
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Guido Sauter4, Stefano Lise 2, Nik Matthews3 & Marco Gerlinger 1,5*

Mismatch repair deficient (dMMR) gastro-oesophageal adenocarcinomas (GOAs) show

better outcomes than their MMR-proficient counterparts and high immunotherapy sensi-

tivity. The hypermutator-phenotype of dMMR tumours theoretically enables high evolvability

but their evolution has not been investigated. Here we apply multi-region exome sequencing

(MSeq) to four treatment-naive dMMR GOAs. This reveals extreme intratumour hetero-

geneity (ITH), exceeding ITH in other cancer types >20-fold, but also long phylogenetic

trunks which may explain the exquisite immunotherapy sensitivity of dMMR tumours. Sub-

clonal driver mutations are common and parallel evolution occurs in RAS, PIK3CA, SWI/SNF-

complex genes and in immune evasion regulators. MSeq data and evolution analysis of single

region-data from 64 MSI GOAs show that chromosome 8 gains are early genetic events and

that the hypermutator-phenotype remains active during progression. MSeq may be necessary

for biomarker development in these heterogeneous cancers. Comparison with other MSeq-

analysed tumour types reveals mutation rates and their timing to determine phylogenetic tree

morphologies.
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Gastro-oesophageal adenocarcinomas (GOAs) are one of
the commonest causes of cancer mortality worldwide1.
Microsatellite instable (MSI) and DNA mismatch repair

deficient (dMMR) cancers are a distinct subtype of GOAs with a
prevalence of up to ~20% in the stomach and gastro-oesophageal
junction2–4. dMMR results from genetic inactivation of MLH1,
MSH2, MSH6, PMS2 or methylation of MLH1. These tumours
are characterized by a hypermutator-phenotype leading to high
mutation loads and a large fraction of small insertions and
deletions (indels), predominantly in homopolymer and dinu-
cleotide repeats. dMMR GOAs have distinct clinical character-
istics compared to their MMR-proficient counterparts, including
lower stage in the UICC TNM classification of malignant
tumours at presentation and better survival3. This has been attri-
buted to a large number of mutation-encoded neoantigens, which
enable recognition by the adaptive immune system. Consistent
with the notion of high immunogenicity, dMMR cancers are
among the tumour types most sensitive to checkpoint-inhibiting
immunotherapy (85.7% response rate in small series)5,6. How-
ever, not all tumours respond to immunotherapy and some
acquire resistance after initial benefit. Chemotherapy and anti-
angiogenic drugs are the only other systemic treatment options
for dMMR GOAs and the identification of novel therapeutics is
important to improve outcomes.

Genetic intratumour heterogeneity (ITH) and ongoing cancer
evolution have been demonstrated in multiple cancer types7. The
ability to evolve is thought to foster cancer progression, drug
resistance and poor outcomes8. High mutation rates may fuel
evolvability by generating an abundance of novel phenotypes which
selection can act upon9. A pan-cancer study indeed demonstrated
large numbers of subclonal mutations within single tumour regions
of MSI cancers10. However, it has not been investigated in dMMR
GOAs whether the MSI hypermutator-phenotype remains active
during progression, how this impacts ITH and phylogenetic trees,
and whether subclonal driver mutations evolve. Our previous work
in kidney cancer for example showed that most driver mutations
are located in subclones11. Subclonal driver mutations are poor
therapeutic targets as co-existing wild-type subclones remain
untargeted12. They furthermore hinder effective biomarker devel-
opment as the analysis of single tumour regions incompletely
profiles the genomic landscape of the entire tumour. Large-scale
sequencing analyses of MSI GOAs identified TP53, RNF43,
ARID1A, PIK3CA, KRAS and PTEN, as the most frequently altered
driver genes13. Mutations in antigen presentation (MHC, B2M)2

and interferon signalling pathway (JAK1/2)14,15 genes also fre-
quently occur in MSI tumours and they have been suggested to
enable immune evasion2. However whether they are truncal or
subclonal within individual tumours is unknown.

Multi-region exome sequencing (MSeq) reconstructs cancer
evolution by comparing mutational profiles from spatially sepa-
rated tumour regions. MSeq found that mutations often appear to
be present in all cancer cells (i.e. clonal) in a single tumour region
even if they are absent from other regions of the same
tumour11,16. Spatial constraints in solid tumours that preclude
intermixing of evolving subclones likely explains this ‘illusion of
clonality’ phenomenon when heterogeneity is only investigated in
a single sample per tumour17,18. We apply MSeq to four surgi-
cally resected GOAs showing dMMR on immunohistochemistry
and combine this with subclonality analysis of single tumour
biopsies from 64 MSI GOAs sequenced by The Cancer Genome
Atlas (TCGA)2 to assess ITH and the evolution of these tumours.

Results
Samples. Seven primary tumour regions from each of four GOAs
(Fig. 1a) were subjected to MSeq with a target depth >200×

(Supplementary Data 1). Two lymph node metastases were
included from each of two cases. TNM-stage was assessed but no
other clinical information was available as the samples had to be
anonymised to comply with local ethics and research legislation.
Absence of MLH1 and PMS2 staining and positive staining for
MSH2 and MSH6 (Fig. 1b), indicated MLH1 deficiency. No
known Lynch syndrome mutations in MLH1, MSH2/6 or PMS2
were identified in DNA from non-malignant tissue, confirming
that these were sporadic dMMR tumours.

Mutational intratumour heterogeneity. About 1518–4148
(median: 1814) non-silent mutations were identified per case
(Fig. 1c). The high mutation burden and the large fraction of
indels (20–34%) were consistent with an MSI-phenotype2. The
number of ubiquitous non-silent mutations that were detected
across all sequenced regions per tumour ranged from 329 to 1006
(median: 702). This exceeded the number of ubiquitous non-silent
mutations reported for clear cell renal cell carcinomas (ccRCC,
median: 28)11, and even for lung cancers (median: 137)16 and
melanomas (median: 436)19, which are among the most highly
mutated cancer types20 (Fig. 1d). The difference was significant
between dMMR GOA and lung and ccRCC but not for mela-
nomas. MSeq-identified ubiquitous mutations are likely to define
the mutations that were present in the founding cell of each
tumour before diversification into subclones occurred11. These
high numbers hence reveal that the dMMR-phenotype was likely
acquired in the precancerous cell lineage considerably earlier than
malignant transformation of the founding cell. Malignant trans-
formation shortly after dMMR acquisition which was then fol-
lowed by selective sweeps is an alternative explanation. Yet, it
appears unlikely that this would have left no trace of the early
subclones in any tumour.

A median of 1194 mutations were only detectable in some but
not in all analysed tumour regions per case and hence
heterogeneous. This significantly exceeded the heterogeneous
mutation burden detected by MSeq in ccRCC11 by 24-fold, in
lung cancer16 by 40-fold, and in melanoma19 by 32-fold (Fig. 1d).
Importantly, the median mutation load per region in these MSeq
series was similar to those reported by the TCGA for the
respective cancer type (Fig. 1e), suggesting that these small series
are reasonably representative of each tumour type. Thus, dMMR
tumours are characterized by extreme ITH compared to other
cancer types.

High mutation and neoantigen loads are associated with
immunotherapy benefit. Recent data suggested more specifically
that a high burden of clonal mutations/neoantigens is important
for immunotherapy success21,22. Applying the NetMHC algo-
rithm predicted 1120–3052 strong class I MHC binding
neoantigens per tumour (Supplementary Fig. 1). Between 215
and 926 of these were clonal. This is higher than clonal
neoantigen loads reported for most lung cancers or melanomas23.
It is conceivable that this high clonal neoantigen burden explains
the immunotherapy sensitivity of dMMR tumours21.

Mutational signatures reveal processes driving evolution. We
next investigated mutational signatures by counting the number
of all possible base substitution in their trinucleotide contexts
(Supplementary Fig. 2) and assigning these to 30 mutational
signatures20 (Fig. 1f). The COSMIC mutational signatures 6 and
15 are characteristic for MSI cancers and these were abundant
among ubiquitous and heterogeneous mutations. Signature 1
mutations reflect the spontaneous deamination of methylated
cytosine, a mutational process active in most normal tissues.
Signature 1 was detected in 17–52% (219–449 mutations in
absolute number) of ubiquitous mutations. A fraction of these
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were likely acquired in the normal cells over the lifetime of these
patients. However, based on the estimated mutation rate in
normal gastro-oesophageal epithelium, only 0.5–1 signature 1
mutations would be expected to accumulate per lifeyear24–26. It is
hence likely that the dMMR-phenotype also contributes to the
generation of signature 1 mutations. This is further supported by

9–10% of the subclonal mutations in Tumours 1–3 and 36% in
Tumour 4 showing signature 1 and consistent with a recently
suggested role of the MMR-system in the repair of deamination
defects27. A total of 10.5% of the ubiquitous mutations in Tumour
3 showed signature 14, which has been described in dMMR
cancers that are also POLE or POLD1 mutant28. Tumour 3
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harboured a POLD1 mutation but this was subclonal and could
not explain the presence of clonal signature 14 mutations. The
absence of signature 14 from subclonal mutations furthermore
suggested that this is a passenger mutation. No other mutational
signatures contributed substantially to the heterogeneous muta-
tions, confirming that the MSI-phenotype remains active during
cancer progression and is the primary mechanism generating
these large numbers of subclonal mutations.

The evolution of copy number aberrations. DNA copy number
aberration (CNA) profiles revealed near-diploid profiles across all
regions of Tumours 2 and 3 (Fig. 2a and Supplementary Fig. 3).
Tumour 4 showed highly aberrant near-tetraploid profiles in all
regions. A high number of mutations were present on all copies of
the major allele of most gained chromosomes (Fig. 2b), indicating
that whole genome duplication and chromosomal instability
(CIN) had occurred late on the trunk of the phylogenetic tree in
Tumour 4. CIN was confirmed by the weighted genome integrity
index (wGII) that measures the proportion of all chromsomes
with copy number states that differ from the ploidy of a sample
and where values above 0.2 support the presence of CIN29

(Fig. 2a). Near-diploid and near-triploid CNA profiles were found
in distinct regions of Tumour 1. Together with an increase in
wGII from ~0.2 in the near-diploid regions to >0.5 in near-
triploid regions and the occurrence of new CNAs in individual
tumour regions, this revealed the acquisition of subclonal CIN
during cancer progression. All four lymph node metastases were
near-diploid with wGII values ≤0.2, demonstrating that CIN,
which has been associated with tumour aggressiveness in several
cancer types including GOA28, is not required for metastasis
formation.

We next investigated which specific CNAs were ubiquitous/
clonal and had hence occurred early in the evolution of these
dMMR tumours (Fig. 2c and Supplementary Fig. 3). Ubiquitous
Chr17p, Chr18 and Chr22 loss of heterozygosity (LOH) were
each present in two tumours. Ubiquitous LOH of Chr3p, Chr5q
and Chr17p encompassed tumour suppressor genes, which are
recurrently mutated in dMMR GOAs2 (MLH1, APC and TP53).
Among the small number of ubiquitous gains, only Chr8q and
Chr20q were gained in more than one tumour. To further time
the acquisition of these recurrent truncal CNAs, we mapped
ubiquitous mutations onto the allele-specific CNA profiles. Copy
number gains that occurred early can be identified if the majority
of mutations in that region have a mutation copy number23

which is lower than that of the gained allele. The Chr8 gain in
Tumour 2 and the Chr8q gain in Tumour 4 (Fig. 2d), but not
Chr20 gains (Fig. 2e), showed a near complete absence of
mutations on all copies of the gained allele and were hence
acquired on the phylogenetic trunk before or soon after the MSI-
phenotype. Thus, Chr8q gains, which are the commonest CNAs
in MSI GOAs2, can be among the earliest genetic aberrations in
these tumours.

Reconstruction of tumour phylogenies. We next deconvoluted
the subclonal composition of individual regions and recon-
structed the phylogenetic tree for each tumour (Fig. 3). Similar to
MSeq analyses of other tumour types11,16,19, this revealed bran-
ched evolution. Comparison of the phylogenetic trees with the
mutation heatmaps showed some phylogenetic conflicts. Inspec-
tion of the CNA status of the mutated DNA positions showed
that most conflicts could be explained by losses of chromosome
copies in individual regions (marked in green in Fig. 1c and
Supplementary Fig. 4). Thus, subclones can lose a small pro-
portion of mutations during cancer evolution.

Phylogenetically closely related clones were usually located in
close physical proximity (Supplementary Fig. 5), indicating that
cell motility is limited and that these tumours evolve in a spatially
ordered fashion. Importantly, each of the two lymph node
metastases analysed in Tumours 2 and 3 had evolved from
distinct subclones rather than being seeded by the same subclone
or sequentially from one node to the other (Fig. 3). Dissemination
hence propagated subclonal diversity from the primary tumour to
metastatic sites. In addition, subclonal mutations, defined as
private mutations estimated to be present in ≤70% of the cancer
cells of a sample, were detectable within three metastatic sites
with good cancer cell content (Supplementary Table 1). Subclonal
mutations within lymph nodes were again predominated by the
MSI-specific mutational signatures 6 and 15 (Supplementary
Table 2). Thus, the dMMR-phenotype continues to generate ITH
in metastases.

Identification of truncal drivers. We next assessed the evolution
of putative driver mutations and of corresponding LOH of
tumour suppressor genes and mapped them onto the phyloge-
netic trees (Fig. 3 and Supplementary Data 2). A frameshift
mutation and LOH ofMLH1 occurred on the trunk of Tumour 1,
consistent with biallelic MLH1 loss. No genetic aberrations of
MLH1 were detectable in Tumours 2–4 but qPCR confirmed
hypermethylation of the MLH1 promoter as the cause for dMMR
in these cases (Supplementary Fig. 6)30. Tumours 2–4 further-
more harboured a truncal frameshift mutation in MSH6. Muta-
tions in the histone methyltransferase and tumour suppressor
gene PRDM2, one in combination with LOH of the second allele
were also truncal in all four cases and truncal frameshift muta-
tions of the TGFβ signalling regulator ACVR2A were detected in
three cancers. Both genes have been suggested as likely drivers in
MSI GOAs13.

One tumour showed a disrupting mutation and LOH of
ARID1B and two tumours each harboured two truncal mutations
in ARID1A, which are all members of the SWI/SNF-chromatin-
modifying complex. We could not formally demonstrate that the
two mutations affected both alleles of the ARID1A tumour
suppressor gene but biallelic inactivation is likely as all mutations
were disrupting in nature, suggesting evolutionary selection for
inactivating events. A frameshift mutation and LOH of PBRM1, a

Fig. 1 Intratumour heterogeneity of somatic mutations. a Tumour size, location, TNM-stage and regions selected for sequencing. The grey line labelled
(Z) marks the gastro-oesophageal junction. b Immunohistochemical staining of MLH1, MSH2, MSH6 and PMS2. c Heat maps showing the presence (blue)
or absence (grey) of non-silent somatic mutations that were identified by MSeq across tumour regions. The table shows the number of heterogeneous
(Het) and ubiquitous (Ub) mutations identified in each tumour and their percentage of the total non-silent mutation count of the tumour. d Comparison of
ubiquitous and heterogeneous mutation counts across four different tumour types analysed by MSeq (dMMR GOA: mismatch repair deficient gastro-
oesophageal adenocarcinoma, Melanoma, NSCLC: non-small cell lung cancer, ccRCC: clear cell renal cell carcinoma). The Mann–Whitney test was used to
assess significant differences in mutation loads between dMMR GOA and other tumour types. e Median mutation loads of individual regions from MSeq
datasets compared to the median single sample mutation loads from the Cancer Genome Atlas KIRC, SKCM, STAD and LUAD cohorts. f COSMIC
mutational signature analysis of ubiquitous (Ub) and heterogeneous (Het) mutations in four dMMR GOAs. Non-silent and synonymous mutations were
included in the analysis and only signatures which contributed to≥5% of mutations in at least one sample are shown.
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further SWI/SNF-complex member, co-occurred with biallelic
ARID1B loss on the trunk of Tumour 1. This emphasizes an
important role for SWI/SNF-complex aberrations in dMMR
GOA development.

Truncal mutations in TP53 were found in three tumours.
Tumours 1 and 4 also showed LOH, leading to biallelic TP53
inactivation. These specific cancers had undergone genome
duplication and acquired CIN, consistent with a permissive role

of TP53 loss for CIN31. Moreover, both showed truncal Chr18q
loss which promotes CIN in colorectal cancer32. TP53 inactiva-
tion and Chr18q loss may hence predispose tumours to
subsequently evolve CIN. Frameshift mutations of RNF43, a
negative regulator of the APC/β-catenin-pathway that frequently
acquires heterozygous mutations in MSI tumours33, were present
in three tumours. The tumour without an RNF43 mutation
harboured two truncal mutations in the APC tumour suppressor
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numbers of somatic mutations from Tumour 4. This allows timing of CIN/genome duplication, demonstrating late acquisition, as large numbers of
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recurrent ubiquitous gains in our series.
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gene as an alternative mechanism of β-catenin activation.
Together, aberrations in TP53, the SWI/SNF-complex, PRDM2,
dMMR-, APC/β-catenin signalling- and TGFβ signalling-genes
each occurred on the phylogenetic trunks of at least two cases.

Parallel evolution. Assessing heterogeneous driver mutations
revealed striking examples of parallel evolution, a strong signal
that these evolved through Darwinian selection:7,17,34,35 Tumour
2 acquired five subclonal mutations in SMARCA4, encoding a
catalytic subunit of the SWI/SNF-complex. These had occurred in
addition to two truncal mutations (M274fs, K1071fs) in ARID1A.
A third ARID1A mutation was subclonal and affected recurrently
mutated amino acids (AA163-164del) located proximally to the
truncal frameshift mutations. This may be functionally relevant if
ARID1A had retained some residual activity despite the more
distal mutations. Parallel evolution of five subclonal SMARCA4
mutations in this tumour with truncal ARID1A mutations sug-
gests that SWI/SNF-complex aberrations are not only important

for carcinogenesis but that progressive inactivation may con-
tribute to cancer progression.

A PIK3CA hotspot mutation (H1047R) was detected in P1 and
Y1 but also in the distantly related subclone AL in Tumour 2.
Copy number changes that could explain a loss of this mutation
in subclones with wild-type PIK3CA were absent (Supplementary
Fig. 3). The most parsimonious explanation for this phylogenetic
conflict is that the same mutation independently evolved twice,
once in AL and once in the ancestor cell of P1 and Y1. Intuitively
this may appear unlikely, but a tumour of this diameter contains
>10 × 109 cancer cells9 that have undergone approximately the
same number of cell divisions to grow to this size from the
founding cell. It is conceivable that two cells independently
acquire the same mutation in some tumours of this size. With one
further PIK3CA hotspot mutation in region E (Y1021C), this
identified three PIK3CA parallel evolution events in Tumour 2.

Mutations in the SWI/SNF-complex members SMARCA4 and
ARID1A were present on the trunk of Tumour 3. Additional
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SWI/SNF mutations, one in ARID2 and one in SMARCA4,
evolved in subclones, the latter potentially complementing
monoallelic SMARCA4 loss on the trunk to biallelic inactivation
in the subclone. Further parallel evolution was apparent in
Tumour 3 based on the acquisition of KRAS (G13D) and NRAS
(G12C) oncogenic mutations in distinct subclones. Two hotspot
PIK3CA mutations (E418K, Y1021H) sequentially occurred in
one clade of Tumour 3.

The tumour suppressor gene PRDM2 harboured frameshift
mutations on the trunks of Tumours 2 and 3 and a second
frameshift mutation was acquired in subclones of each tumour,
potentially leading to biallelic inactivation. Subclonal inactivating
mutations of the cell cycle regulator and DNA damage repair
genes CHEK2, ATR and BLM occurred in Tumour 3. Together
with truncal LOH of CHEK2, both alleles of this gene were
inactivated. Heterozygous BLM and ATR mutations may be
functionally relevant as both genes show haploinsufficiency36,37.

Given the high burden of mutations caused by dMMR, it is
possible that several mutations which we classified as likely
drivers are passengers without significant fitness effects. However,
parallel evolution and the strong functional evidence for driver
status of the identified KRAS, NRAS and PIK3CA mutations and
of inactivating mutations in SWI/SNF-complex members in
cancer38 support the functional relevance of these specific
aberrations.

The evolution of immune evasion drivers. Tumour 2 harboured
a truncal JAK2 frameshift mutation. In addition, a subclonal JAK2
splice-site mutation evolved in one clade and a frameshift
mutation in region AE. Another subclone had acquired a JAK1
frameshift mutation but no evidence for biallelic inactivation
was found. A subclonal frameshift mutation was present in
HLA-A*02:01 (Supplementary Data 3). Assessing the neoantigens
binding to this HLA allotype revealed that this could lead to a
12% reduction in the number of neoantigens presented by these
subclones (Supplementary Fig. 7). One clade in Tumour 2 fur-
thermore acquired two disrupting mutations in B2M. Inspecting
short read sequencing data confirmed that these were not located
on the same allele but conferred biallelic inactivation which
abrogates MHC Class I antigen presentation (Supplementary
Fig. 8).

LOH of B2M was present on the trunk in Tumour 3 and a B2M
frameshift mutation was acquired in a subclone, also establishing
biallelic B2M loss. Although several primary tumour regions in
Tumours 2 and 3 showed biallelic B2M inactivation this was not
propagated to any of the four lymph node metastases (Fig. 3). The
lymph node metastasis AE in Tumour 3 acquired a missense
mutation in HLA-B*40:02 (Supplementary Data 3) with unknown
functional impact. If this HLA-B*40:02 mutation compromised
antigen presentation, 12% of neoantigens could no longer be
presented. In contrast to lung cancers which are frequently
chromosomally unstable and acquire subclonal LOH of HLA
genes as immune evasion mechanisms39, no such LOH events
were identified (Supplementary Data 3).

To investigate why immune evasion drivers only evolved in 2/4
tumours, we assessed cytotoxic CD8+ T-cell infiltrates by
immunostaining. The two tumours with evidence of immune
evasion events, which also had the highest truncal and subclonal
mutation burdens, showed higher T-cell infiltrates than the other
two cases (Fig. 4). dMMR GOAs with high immunogenicity and
T-cell infiltrates may hence be particularly prone to subclonal
immunoediting.

Darwinian selection over time. The ratio of non-synonymous
mutations to synonymous mutations (dN/dS-ratio) has been used

to estimate positive and negative selection in cancer40. dMMR
tumours have high clonal but also subclonal mutation burdens and
we reasoned that this may enable applying these ratios to evaluate
how selection changes from truncal mutations to subclones. dN/dS
ratios were close to 1 for the truncal mutations of all cases
(0.95–1.06), indicating that the majority of mutations are neither
under positive nor under negative selection. However, the dN/dS
ratios increased to 1.16 in Tumour 1 and 1.31 in Tumour 2 for
private mutations, indicating positive selection (Fig. 5 and Sup-
plementary Table 3). Together with the identification of parallel
evolution in Tumours 2 and 3, this suggests that these tumours are
under selection pressure and adaptive mutations continue to
evolve. The dN/dS <1 in the shared mutations of Tumour 4 may be
a sign of negative selection during early evolution. Our results show
that MSeq allows to dissect the temporal dynamics of selection in
dMMR tumours and this can be used to reveal what genetic
alterations are selected for or against in larger series.

Multi-region vs. single-region heterogeneity analysis. Our next
aim was to gain further insights into the evolution of dMMR
GOAs by deconvolution of clonal and subclonal mutations in
single samples from the TCGA GOA dataset2.

We first used our MSeq dataset to assess which information
can be robustly generated by single sample deconvolution and
which ones are more likely to be gained by MSeq. The total
mutation load in a single sample exceeded the MSeq-determined
ubiquitous/truncal mutation load by an average of 73% across the
four tumours (Fig. 6a). Following bioinformatic deconvolution of
regional mutations into clonal and subclonal, the average clonal
mutation burden determined in single samples still exceeded the
number of mutations identified as ubiquitous by MSeq by 34%.
Moreover, the number of mutations identified as clonal in a single
region varied highly between samples from the same tumour.
This could not be attributed to different cancer cell contents as no
correlation was observed (Supplementary Fig. 9).

We furthermore assessed whether the parallel evolution
mutations, that have a high probability of being actual drivers
and were found to be subclonal by MSeq analysis, could also have
been accurately identified as subclonal by single-region analysis.
Only 40% of B2M mutations that were subclonal based on MSeq
were accurately identified as subclonal in individual regions
whereas 60% appeared clonal (Fig. 6b, c). This illusion of clonality
in single sample analysis also affected 40% of JAK2 mutations,
76.2% of SMARCA4 mutations, 66.7% of RAS mutations and
35.7% of PIK3CA mutations. Overall, 59.0% of these likely driver
mutations appeared clonal in single-region analysis despite clear
subclonal status based on MSeq. This supports the conclusion
from MSeq studies in other tumour types, that single-region
analysis overestimates the clonal dominance of driver
mutations11,16.

We next analysed 64 MSI GOAs cancers from TCGA. All
samples harboured subclonal mutations but only a median of
21.3% of mutations were subclonal (Fig. 6d) compared to a
median of 60.1% in MSeq data. We then assessed the clonality of
mutations in driver genes which we had found to be either
predominantly clonal or subclonal by MSeq. The highest
frequency of subclonal mutations was found in ARID2 and
SMARCA4 whereas ACVR2A was almost always clonal in TCGA
data (Fig. 6e), consistent with MSeq data where these occurred
late and early, respectively. Mutations in the remaining driver
genes were predominantly clonal in TCGA data, but in light of
our MSeq data this is likely limited by the overestimation of
clonal status in single-region analysis.

Only 2/64 TCGA cases showed parallel evolution of two
subclonal SMARC4 mutations, each, and two subclonal PIK3CA
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mutations evolved in one case. No parallel evolution of driver
mutations in RAS or immune evasion regulators was identified.
Together with the detection of parallel evolution in spatially
distinct tumour regions by MSeq, this illustrates the limitation to
identify such events by single sample analysis. Two independent
disrupting mutations in ARID1A were found to be clonal in each
of 16/64 tumours (25%) and only four tumours had one clonal
and one subclonal inactivating event. This confirms frequent
biallelic inactivation.

Clonal and subclonal mutations in TCGA samples were
dominated by the MSI-specific mutational signatures 6 and 15

(Fig. 6f, g), confirming our MSeq results. A total of 44.0% of
clonal mutations displayed signature 1 and although this
significantly decreased among subclonal mutations, it remained
the second most abundant mutation signature. Together with a
significant increase in signature 15 among subclonal mutations,
this supports the change in mutational processes between early
progression and subclonal diversification as seen in the MSeq
dataset. Timing of copy number changes in the TCGA dataset
supported that chromosome 8 gains had been acquired before or
early after the MSI-phenotype in ~60% of cases (Fig. 6h and
Supplementary Fig. 10).

Mutational mechansism and their timing influence phylo-
genies. To investigate how mutational processes and their timing
influence phylogenetic tree morphologies, we represented dMMR
GOAs, melanomas19, lung16 and renal cancers11 as a single
phylogenetic tree with a branching structure similar to those
revealed by MSeq and by using the average number of ubiquitous
and heterogeneous mutations (Fig. 1d) to scale trunk and branch
sizes (Fig. 7). This revealed that dMMR leads to long trunks even
exceeding the trunk size of carcinogen-induced cancers (UV light
in melanomas, cigarette smoke in lung cancer). Additionally,
dMMR tumours showed prominent branches, whilst branch
lengths in lung cancer and melanoma were similarly short as in
ccRCC11, a consequence of the limited impact of the initiating
carcinogens during cancer progression16,19. These associations
show that mutation rates and their temporal activity are major
factors determining phylogenetic tree shapes and sizes.

Discussion
With recent success rates of cancer-immunotherapy, under-
standing the genetic landscapes of immunotherapy-sensitive
tumour types and how these influence treatment sensitivity
are major needs. dMMR cancers are among the most sensitive
solid tumours to checkpoint-inhibiting immunotherapies5,6 but
their genetic evolution, clonal mutation burden and ITH
remained unknown. Our series of four treatment-naive dMMR
GOAs revealed strikingly high clonal mutation burdens. This
may explain the exquisite sensitivity of these cancers to
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immunotherapy as recent data showed that a high clonal muta-
tion burden is a better predictor of immunotherapy success than
the total mutation burden21. The presence of mutational ITH has
furthermore been suggested to impair effective immunotherapy
in lung cancer and other malignancies21,22. Extremely high
numbers of heterogeneous mutations were found in all four
dMMR GOAs and these significantly exceeded those in other
cancer types analysed by MSeq. Although the analysed tumours
were not treated with immunotherapy, these results and the
overall high response rate of dMMR GOAs suggests that extreme
ITH is unlikely to fundamentally preclude immunotherapy effi-
cacy in tumours with abundant clonal mutations. This warrants
MSeq analyses of MSI GOAs that were treated with checkpoint-
inhibitors in order to assess whether these hypotheses can be
validated in the clinic.

Our study also provides first insights into the clonal origin of
lymph node metastatic disease in dMMR GOAs. Lymph nodes were
seeded by distinct subclones in the primary tumours, propagating
some of the heterogeneity from the primary tumour to metastatic
sites. Subclonal mutation generation continued in metastases and
similar heterogeneity as observed in primary tumours should
therefore be expected in more advanced metastatic disease.

The mutation load of individual tumour regions exceeded the
number of truncal mutations by 73%, and still by 34% following
subclonal deconvolution. Studies investigating mutation burden
as immunotherapy biomarkers may hence benefit from MSeq to
robustly and accurately estimate truncal mutation loads. Sub-
clonal immune evasion drivers were identified in two of four
cases. Mutations in the JAK1/2 and inactivation of B2M can
confer resistance to checkpoint-inhibiting immunotherapy15,41,42.
Although in MSI colorectal cancer it has been shown that most
patients with B2M inactivation benefitted from immunother-
apy43, our data suggest that B2M loss can be subclonal and is not
necessarily propagated to metastases. How subclonal immune
evasion drivers and their localization in primary tumours or
in metastases impairs immune checkpoint-inhibitor efficacy

in dMMR GOAs should be investigated by MSeq in larger,
immunotherapy-treated cohorts.

Despite the selection pressure resulting from the high immu-
nogenicity of dMMR tumours, we found no evidence of reversion
of the hypermutator-phenotype. Immune evasion mechanisms
which can be readily accessed through single mutations, for
example in HLA genes, or through biallelic B2M or JAK muta-
tions may more effectively mitigate against this selection pressure
than loss of the dMMR-phenotype, which would still leave behind
neoantigen-encoding mutations that have already been generated.
Despite considerable mutation loads, cytotoxic T-cell infiltrates
were low in two tumours and we could not identify immune
evasion events that explain this. This warrants further investiga-
tion into immune escape mechanisms in dMMR GOAs.

Defining driver mutations which are commonly truncal is
critical for precision cancer medicine approaches as targeting of
subclonal driver mutations is likely futile12. Several tumour
suppressor genes were inactivated by genetic alterations on the
trunk in all four tumours. However, loss-of-function of tumour
suppressor genes is usually not directly targetable. Two of four
dMMR GOAs harboured two inactivating mutations in ARID1A.
In addition, 25% of MSI GOAs from the TCGA dataset showed
two clonal ARID1A mutations, further suggesting that biallelic
disruption is common. However, given the uncertainty of clon-
ality estimates from single region data, the prevalence of biallelic
truncal inactivation will need confirmation by MSeq in larger
series. ARID1A-deficiency sensitizes cancer cells to small mole-
cule inhibitors of the ATR DNA damage sensor44. Such a
potential synthetic lethal interaction should be investigated in
dMMR GOAs. Additional subclonal mutations in ARID1A and in
other SWI/SNF-complex members evolved during cancer pro-
gression, indicating a role of SWI/SNF-complex modulation
during carcinogenesis and cancer progression. MSeq and single
sample TCGA data analysis also showed that chromosome 8
gains are among the earliest genetic events in ~60% of these
tumours. Further studies are necessary to investigate whether this
is relevant for the tolerance of the MSI-phenotype or a marker of
aggressiveness as described for other cancer types45,46.

Comparing results from MSeq analysis and single-region
analysis showed that MSeq more accurately identifies clonal
and subclonal mutation loads, drivers that are acquired early vs
those that evolve late and particularly parallel evolution events. It
can furthermore avoid the illusion of clonality of driver mutations
and overcome sampling biases which can lead to the failure to
accurately identify subclonal driver mutations, for example in
JAK or B2M, that have been suggested to confer therapy
resistance15,41,42. MSeq should therefore be considered for bio-
marker discovery in such highly heterogeneous tumour types.
Bulk sequencing of DNA from multiple regions and metastases or
ctDNA sequencing, followed by bioinformatic identification of
clonal mutations are alternative approaches to address the illusion
of clonality. MSeq also revealed how the genetic profile of
metastatic disease can differ from primary tumours and within
different metastatic sites. It finally allowed to assess how selection
changes from truncal to private mutations.

Taken together, the dMMR-phenotype remained active
throughout the evolution of primary tumours and in metastatic sites,
generating extreme ITH. We furthermore revealed the generation of
multiple subclonal driver mutations, including remarkable parallel
evolution of multiple functionally similar subclonal drivers and a
dN/dS ratio indicating positive selection in three of four tumours.
These results confirm a high evolvability of dMMR tumours. High
heterogeneity and evolvability are thought to enable cancer aggres-
siveness and poor outcomes47, yet these data demonstrate a para-
doxical association with good prognosis in dMMR tumours. dMMR
tumours are unique models to advance insights into cancer
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Fig. 7 Comparison of phylogenetic tree morphologies across four cancer
types analysed by MSeq. Schematics of branched phylogenetic trees
drawn with similar branching structures to those directly observed in each
of the four tumour types11,16,19. Trees were scaled so that trunk and branch
lengths are proportional to the average number of ubiquitous and
heterogeneous non-silent mutation loads of each tumour type (Fig. 1c).
Phylogenetic tree colour code: blue: truncal mutations, yellow: shared
mutations, red: private mutations.
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evolution rules and into the potential and current limitations of
evolutionary metrics for clinical outcome prediction.

Methods
Sample collection and preparation. Samples from treatment-naive GOA resec-
tion specimens were routinely paraffin embedded and fresh frozen at the Uni-
versity Medical Center Hamburg-Eppendorf (Germany). The research use of
specimens left over after the pathological diagnosis is regulated through the
‘Hamburger Krankenhausgesetz’ (Hamburg Hospital Law) in Hamburg, consent
and ethical approval are explicitly waived for samples that are fully anonymised.
Thus, information about age, sex of the patients and outcome data is not available.

Immunohistochemistry for MLH1, PMS2, MSH2 and MSH6 was performed on
20 cases and four with dMMR (each showing absence of MLH1 and PMS2 staining
in cancer cells, see Fig. 1b) were identified by a pathologist. Seven tumour regions
representing the spatial extent of each primary tumour were selected (surface area
~8 × 5 mm and a depth of ~10 mm) based on the H&E slide and spatial location
within the tumour by a pathologist. Two cases each included two lymph node
metastases (Station 1–2, right and left paracardial nodes), which were sufficiently
large for analysis. Where necessary, samples were macrodissected to minimize
stromal contamination. DNA was extracted using the Qiagen AllPrep kit following
the manufacturer’s instructions. Nucleic acid yields were determined by Qubit
(Invitrogen), and the quality and integrity of DNA was examined by agarose gel
electrophoresis. DNA from tumour adjacent non-malignant tissue was used as a
source of normal (‘germline’) DNA. For this, either oesophageal or gastric wall
tissue, embedded as “normal mucosa”, was chosen and tumour contamination
excluded by a pathologist based on H&E slides taken from levels before and after
slides for DNA extraction.

Multiplex immunohistochemistry. The Opal 7 Tumor Infiltrating Lymphocyte kit
(PerkinElmer) was used to perform combined CD8 (antibody dilution 1:300, Opal
570 1:150), pan-Cytokeratin (antibody dilution 1:500, Opal 690 1:150) and DAPI
(counter-) stains for each region following the manufacturer’s instructions. In
Tumour 2, two regions had not enough tissue left after DNA extraction. Slides were
scanned using the Vectra 3.0 pathology imaging system (PerkinElmer)48.

After low-magnification scanning, intratumour regions of interest were scanned
at high resolution (20×). Spectral unmixing, tissue and cell segmentation and
phenotyping of CD8- and Cytokeratin-positive cells were performed with InForm
image analysis software under pathologist supervision. Five representative regions
of interests were chosen and cytotoxic T-cells and tumour cells in cancer tissue
segmented areas were quantified. From the sum of the five regions, we calculated
the ratio of cytotoxic T-cells/tumour cells for each region of Tumours 1–4.

Whole-exome sequencing. Tumour and matched germline DNA were sequenced
by the NGS-Sequencing facility of the Tumour Profiling Unit at the Institute of
Cancer Research. Exome-sequencing libraries were prepared from 1 µg DNA using
the Agilent SureSelectXT Human All Exon v6 kit according to the manufacturer’s
protocol. Paired-end sequencing was performed on the Illumina HiSeq 2500 or
NovaSeq 6000 with a minimum target depth of 100× in the adjacent normal
samples and a minimum target depth of 200× in tumour regions.

BWA-MEM49 (v0.7.12) was used to align the paired-end reads to the hg19
human reference genome to generate BAM format files. Picard Tools (http://picard.
sourceforge.net) (v2.1.0) MarkDuplicates was run with duplicates removed. BAM
files were coordinate sorted and indexed with SAMtools50 (v0.1.19). BAM files
were quality controlled using GATK51 (v3.5-0) DepthOfCoverage, Picard
CollectAlignmentSummaryMetrics (v2.1.0) and fastqc (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) (v0.11.4).

Somatic mutation analysis. Single-nucleotide variant (SNV) calls were generated
with MuTect52 (v1.1.7) and VarScan253 (v2.4.1) and mutation calls from both
callers were combined. MuTect was run with default settings and post-filtered for a
minimum variant frequency of 2%. SNVs generated by MuTect and flagged with
‘PASS’, ’alt_allele_in_normal’ or ‘possible_contamination’ were retained. SAMtools
(v1.3) mpileup was run with minimum mapping quality 1 and minimum base
quality 20. The pileup file was inputted to VarScan2 somatic and run with a
minimum variant frequency of 2%. The VarScan2 call loci were converted to BED
format and bam-readcount (https://github.com/genome/bam-readcount) (v0.7.4)
run on these positions with minimum mapping quality 1. The bam-readcount
output allowed the VarScan2 calls to be further filtered using the recommended
fpfilter.pl accessory script54 run on default settings. Indel calls were generated using
Platypus55 (v.0.8.1) callVariants run on default settings. Calls were filtered based on
the following FILTER flags—‘GOF, ‘badReads, ‘hp10,’ MQ’, ‘strandBias’,’ Qual-
Depth’,’ REFCALL’. We then filtered for somatic indels with normal genotype to be
homozygous, minimum depth ≥10 in the normal, minimum depth ≥20 in the
tumour and ≥5 variant reads in the tumour.

The bam-readcount tool was run on all SNV loci using minimum mapping
quality 1 and minimum base quality 5 to generate call QC metrics (e.g. average
variant base quality, average variant mapping quality). High-confidence SNVs
were identified by filtering minimum average variant mapping quality 55 and
minimum average variant base quality 35 in called tumour regions based on the

bam-readcount QC metrics. Bam-readcount was then run on the filtered loci using
minimum mapping quality 10 and minimum base quality 20 to generate allele
counts for the merged VarScan2 and MuTect call loci. All SNV and indel calls were
required to have a depth of at least 70 across all tumour regions. SNVs at positions
sequenced to less than 20× depth in the matched germline and those which showed
a variant frequency in the germline >2% and a variant count >2 were also excluded.
Retained mutation calls were then passed through a cross-‘germline’ filter that flags
SNV and indel calls which are present with a VAF of >= 2% in one of fourteen
normal samples from the same sample collection. A call is rejected if the variant is
flagged as present in 20% or more of the normal samples to remove common
alignment artefacts or those arising recurrently at genomic positions which are
difficult to sequence. Finally, we applied the following two-tiered filtering strategy
to generate MSeq mutation calls. A positive call was made if at least one tumour
region had a minimum VAF of 5%. This first tier assures that only mutation calls
which have a high probability of being real mutations are selected for further
analysis. For any of the mutations that were called in this way, we then determined
whether it was present or absent in individual tumour regions. The VAFs for a
mutation were looked up with BAM-readcount and a region was called positive if
the VAF exceeded 2.5%. Similar two-tier VAF thresholding strategies have been
employed in prior MSeq studies11,16,34. Private and shared mutations are defined as
those that were only detected in a single region or in some but not all tumour
regions, respectively, using the minimum VAF of 2.5% as a cutoff. Variant calls on
chromosomes X and Y were not considered.

SNV and indel calls were annotated using annovar56 (v20160201) and
oncotator57 (v1.8.0.0 and oncotator_v1_ds_Jan262015 database) with hg19 build
versions. The oncotator ‘COSMIC_n_overlapping_mutations’ field was used to flag
mutations as possible drivers if they occurred in oncogenes and tumour suppressor
genes in the online COSMIC Cancer Gene Census (CGC)58 or in driver genes
identified in MSI tumours in the TCGA STAD publication2. Mutations were
defined as likely driver genes if they led to (1) an amino acid alteration that had
previously been described in the COSMIC database, (2) a disrupting mutation,
including frameshift-, splice site- or premature stop/nonsense-mutations in a
tumour suppressor gene or (3) an amino acid alteration at a position that shows an
alteration in the COSMIC CGC but is distinct from the change reported in
COSMIC if it was considered a likely driver by the Cancer Genome Interpreter59.

DNA copy number aberration analysis. CNVKit60 (v0.8.1) was run in non-batch
mode for copy number evaluation. Basic target and antitarget files were generated
based on the Agilent SureSelectXT Human All Exon v6 kit. Accessible regions
suggested by CNVKit (provided in the source distribution as ‘access-5kb-map-
pable.hg19.bed’) with a masked HLA interval (chr6:28866528-33775446) form the
accessible loci. A pooled normal sample was created from all sequenced germline
samples in the series. The copynumber61 R62 library functions Winsorize (run with
‘return.outliers’= TRUE) and pcf (run with ‘gamma’= 200) were used to identify
outliers and regions of highly uneven coverage (defined as an absolute log ratio
value greater than 0.5) to exclude from the analysis.

We identified high confidence SNP locations using bcftools call50 (v1.3) with
snp137 reference and SnpEff SnpSift63 (v4.2) to filter heterozygous loci with
minimum depth 50. VarScan2 was used to call the tumour sample BAMs at these
locations to generate B-Allele Frequency (BAF) data as input for CNVKit. CNVKit
was run with matched germline samples along with the adjusted access and
antitarget files. For the segmentation step we ran the copynumber function pcf with
gamma= 70. Breakpoints were then fed into Sequenza64 (v2.1.2) to calculate
estimates of purity/ploidy and these values were used to recenter and scale the
LogR profiles in CNVKit. BAF and LogR profiles were also manually reviewed by
two researchers to determine their likely integer copy number states. Adjustments
were made in cases where both manual reviews identified a consensus solution that
differed from the bioinformatically generated integer copy number profile.

Cancer cell content, ploidy estimation and wGII. Cancer cell content was esti-
mated using the scaling factor of the copy number consensus solution. Ploidy was
estimated as follows:

Ploidy ¼ CNAbsolute ´ SegmentLengthð Þ=P SegmentLengthð Þ; ð1Þ
with CNAbsolute representing the unrounded copy number estimate and Segment
Length the genomic length between segment break points.

The wGII (ref. 32) is used to define CIN. We calculated the percentage of integer
copy number segments on each chromosome different from the ploidy estimate
rounded to the nearest integer state. The percentages are then averaged over the 22
autosomal chromsomes to give the wGII score.

Subclonality analysis and phylogenetic tree reconstruction. Allele specific copy
number estimates65 for SNV and indels were calculated as follows:

MUTCN ¼ VAFð1=pÞ ´ ðp ´CNAbsoluteÞ þ 2 ´ ð1� pÞð Þð Þ; ð2Þ
where VAF is the variant allele frequency and p is the estimated tumour cell
content. Cancer cell fraction (CCF) was estimated using the R package Palimp-
sest66. LICHeE67 was applied to infer phylogenetic trees from the estimated CCF
values. The build algorithm was run with CCF/2 as input, -maxVAFAbsent 0,
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-minVAFPresent 0.0001 and ‘-s 10’. In each case, we report the top ranked tree
solution. A single valid tree was identified for Tumour 1 (error score: 0.02),
Tumour 2 (error score: 0.13) and Tumour 4 (error score: 0.06). LICHeE identified
six valid trees for Tumour 3 (error scores: 0.088, 0.095, 0.96, 0.106, 0.112, 0.113).
These solutions differed only in the positioning of the branch immediately pre-
ceding H2 (which could be positioned at H1 or H3) and of that preceding G2
(which could be positioned at G1) in Fig. 3. The tree with the lowest error score
was chosen for the analysis, but selecting any of the alternative solutions would not
change any of the conclusions presented in this study. Otherwise, only a low
percentage of mutations (2–7% per case) could not be assigned to a subclone in the
phylogenetic tree.

Trees were re-drawn and branch lengths scaled to the number of mutations in
each subclonal mutation cluster and likely driver mutations were mapped onto the
trunk or the appropriate branch. Private mutations identified by LICHeE were split
into clonal and subclonal mutations using a CCF threshold of 0.7 unless the
algorithm had already identified and split clonal and subclonal clusters. A short
branch was added to Tumour 2 following a manual review of the tree solution to
represent an 8 mutation cluster that was too small for the algorithm to detect but
contained a B2M frameshift mutation which was identified as a likely driver.

Mutational signatures. All SNV calls were loaded into R using VRanges (v1.28.3)68

VariantAnnotation, given trinucleotide motifs using SomaticSignatures (v2.18.0)69

mutationContext and tabulated using motifMatrix with ‘normalize’= TRUE. The
somatic motifs were then compared with the 30 mutational signatures established
in COSMIC70 V2 using deconstructSigs (v1.8.0)71 whichSignatures by selecting
‘signature.cutoff’= 0 and ‘signatures.ref’= ‘signatures.cosmic’ as run parameters.
Mutation signatures representing at least 5% of mutations in one of the analysed
mutation groups were reported.

Ratio of non-synonymous to synonymous mutations (dN/dS). We ran
dNdScv40 to generate dN/dS estimates which use trinucleotide context dependent
substitution matrices to adjust for common mutation biases. We ran dNdScv with
the following optional parameters: ‘outp= 1’, ‘max_muts_per_gene_per_sample=
inf’ and ‘max_coding_muts_per_sample= inf’. This was done separately for
mutations shown as truncal (blue), shared (yellow) and private (red and purple) on
the phylogenetic trees in Fig. 3.

HLA mutations and LOH calling. Mutations in HLA genes were predicted using
the program POLYSOLVER72. In particular, we first predicted patients’ HLA types
from germline samples using the shell_call_hla_type script of the POLYSOLVER
suite, with the following parameters: race=Unknown, includeFreq= 1 and
insertCalc= 0. Then, we used these HLA predictions as input to the shell_-
call_hla_mutations_from_type script for predicting HLA mutations in tumour
samples. Finally, the shell_annotate_hla_mutations script was used to annotate the
mutations identified in the previous step.

LOH events in HLA genes were predicted using the program LOHHLA39.
LOHHLA requires as input normal HLA types, for which we used POLYSOLVER
predictions, along with ploidy and CCF estimates, which were available from the
calculations described above. All other parameters were set to default values.

Neopeptides associated to somatic mutations were generated as decribed in
ref. 73. Note that we had to discard ~1.2% of somatic mutations because of
inconsistencies between the variant annotation (this can be for either somatic
variants or germline variants occurring on the same transcripts as the somatic
ones) and the refseq_cds.txt file (GRCh37/hg19 Feb 2009) we used for generating
the neopeptides. We used netMHCpan4.0 (28978689) to predict the neopeptides’
eluted ligand likelihood percentile rank scores. For each sample, we ran
netMHCpan4.0 on all of the samples’ neopeptides against all samples’ HLA
allotypes. As HLA-presented neopeptides, we picked all core peptides (see ref. 73)
with a percentile rank <0.5%.

MLH1 promoter qPCR. A total of 250 ng of tumour DNA, CpGenome Human
Methylated DNA Standard (Millipore) and CpGenome Human Non-Methylated
DNA Standard (Millipore) were subject to bisulphite conversion using the EZ DNA
Methylation Gold Kit according to the manufacturer’s protocol (Zymo Research
Corp.). Methylight primers and probe were used to amplify the MLH1 CpG island:
(forward) 5′-AGGAAGAGCGGATAGCGATTT-3′, (reverse) 5′-TCTTCGTCCC
TCCCTAAAACG-3′, (probe) 5′-FAM-CCCGCTACCTAAAAAAATATACGCT
TACGCG-BHQ-3′ (ref. 74). qPCR was performed in a 25-µl reaction with 300 nM
primers, 100 nM probe and 1× TaqMan Universal Master Mix II no UNG (Applied
Biosystems) using the following program: 50 °C for 2 min, 95 °C for 10 min, fol-
lowed by 50 cycles at 95 °C for 15 s and 60 °C for 1 min. Samples were analysed in
duplicate in 96-well plates on an AB QuantStudio 6 Flex RT-PCR System.

Mutation loads and clonal/subclonal drivers in TCGA MSI GOAs. Sixty-four
GOAs from TCGA cohort2 are classified as MSI in the cBIO web portal75. We
downloaded the BAM files of these cases from the NIH GDC Legacy Archive76.
Adjustments to the analysis steps were necessary due to the properties of the TCGA
sequencing data. A minimum variant frequency of 5% was applied throughout the
mutation calling and the fpfilter.pl parameters ‘min-ref-avrl’ and ‘min-var-avrl’

filters were relaxed to 50. The minimum depth requirement in the tumour sample
was relaxed to 20, while the minimum average base and mapping quality were set
to 20 and 40, respectively. No adjustments were made to the default access and
antitarget files of the CNVkit analysis due to large variations in the sequencing
depths of the normal samples across the cohort. Otherwise, the somatic mutation,
copy number and subclonality analysis steps were as described above. Mutational
signatures were run as before and those detected with a mean contribution of 5% or
more were further analysed.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
The multi-region exome-sequencing data have been deposited in the European Genome-
Phenome archive under the accession code EGAS00001003434. The TCGA
gastroesophageal dataset referenced during the study is available from the NIH GDC
Data Portal website (https://portal.gdc.cancer.gov). All the other data supporting the
findings of this study are available within the Article and its Supplementary Information
files and from the corresponding author upon reasonable request. A Reporting Summary
for this Article is available as a Supplementary Information file.
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