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Abstract: Modeling tumor growth has proven a very challenging problem, mainly due to the fact that tumors are highly complex systems that involve 
dynamic interactions spanning multiple scales both in time and space. The desire to describe interactions in various scales has given rise to modeling 
approaches that use both continuous and discrete variables, known as hybrid approaches. This work refers to a hybrid model on a 2D square lattice focus-
ing on cell movement dynamics as they play an important role in tumor morphology, invasion and metastasis and are considered as indicators for the stage 
of malignancy used for early prognosis and effective treatment. Considering various distributions of the microenvironment, we explore how Neumann vs. 
Moore neighborhood schemes affects tumor growth and morphology. The results indicate that the importance of neighborhood selection is critical under 
specific conditions that include i) increased hapto/chemo-tactic coefficient, ii) a rugged microenvironment and iii) ECM degradation.
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Introduction
Tumors are highly complex, self-organized biological systems 
spanning multiple scales from the molecular to cell and further 
to tissue level. Tumors are characterized by their increased het-
erogeneity and their ability to dynamically interact and adapt 
to changes of the microenvironment. A tumor begins with a 
few cells that have gained the ability to proliferate uncontrolla-
bly. The extensive heterogeneity is reflected in both the genetic 
diversity of the tumor mass as well as in its complex microen-
vironment that accommodates molecules important for cellular 
growth, proliferation, and migration. The continuous interac-
tion among the cancer subpopulations and the tumor microen-
vironment drives tumor progression and invasion.

Tumor invasion involves the ability of tumor cells to 
migrate and invade into the surrounding host tissue micro
environment. Tumor cells are embedded in a fibrous material 
known as extracellular matrix (ECM), which is composed of 
macromolecules including collagens, laminin, and fibronec-
tin. The structure and composition of the ECM play a critical 
role in tumor invasion, morphology, and metastasis because it 

affects cell adhesion and motility.1,2 The ECM is constantly 
remodeled as the tumor grows. For example, cancer- 
associated fibroblasts produce extracellular proteins affecting 
the synthesis of ECM. Collagen filaments are reorganized 
and cancer cells produce enzymes that can degrade some of 
the components of the ECM. As the tumor mass becomes 
invasive, peripheral cells start detaching from the tumor mass, 
the compactness of its surface is lost, and tumor morphology is 
determined by the dynamic interactions between cells and the 
heterogeneous ECM. Cell movement is a complex process that 
has not yet been understood fully.2–6 It requires the activation 
of the actin-based machinery within the cell, which produces 
forces transmitted through cell–matrix adhesions on the sur-
face areas of the cell that are in direct contact with the ECM. 
Under this consideration, the heterogeneity of the matrix such 
as the stiffness of the fibers, the various pore sizes, and the 
orientations of structures such as blood vessels, muscle fiber, 
and ECM play a significant role in cell movement. In addition 
to their haptotactic movement, tumor cell migration can be 
driven by gradients of diffusible substances such as oxygen, 
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glucose, or other signals, a process known as chemotaxis. In 
order to facilitate their movement, tumor cells usually produce 
matrix-degrading enzymes (such as matrix metalloproteinases) 
that degrade the ECM locally.7 Furthermore, cancer cells can 
migrate either individually or collectively, increasing the com-
plexity of migration dynamics.

The emergence of tumor invasion is fatal and numer-
ous mathematical models and research work focus on under-
standing the underlying mechanisms with the ultimate aim 
to improve prognosis and therapeutic outcome.8–19 Mathe
matical models enable the exploration of multiple hypotheses 
that allow a better understanding of tumor evolution and its 
complex components, which cannot be easily tested in the 
laboratory. Furthermore, the models predict behaviors of the 
system that can either guide new targeted experiments or may 
be even used in clinical practice assuming a model is thor-
oughly validated. However, the complexity and diversity of 
the mechanisms that comprise tumor combined with its multi
dimensional nature make it a very challenging problem to 
model mathematically. Current mathematical models mostly 
focus on a single-scale modeling, the microscopic level that 
describes molecular interactions, the mesoscopic level that 
takes into account cellular interactions, or even the macro-
scopic level that describes tissue-level dynamics. Models that 
integrate various scales in their description are called multi-
scaled. In terms of their mathematical basis, the models are 
either discrete cell-based or continuum models. The discrete 
modeling approaches, usually model cells as individual entities 
that follow a set of rules, which allow them to interact with 
their environment.9,16 In this case, space and time are of dis-
crete nature. The rules determining cell’s behavior are usually 
biologically or experimentally inspired. On the other hand, 
the continuum methods approximate cancer cells and their 
microenvironment as continuous concentrations described 
by partial differential equations.17,20,21 Cell-based models are 
probably more appropriate for studying tumor invasion, as its 
evolution involves the migration of a few cells.

Discrete cell-based models can be further subdivided 
into (i) on-lattice, cellular automata models, which assume 
that cells lie on a fixed lattice structure, and (ii) off-lattice 
models, which are closer to a real representation of cells, but 
they are more difficult to implement.22 Each tumor cell in the 
cellular automata model is usually represented by a single lat-
tice site. The lattice structure can constrain the neighborhood 
on which cell–cell interactions occur. In square lattices, a cell 
can have either four (von Neumann neighborhood) or eight 
(Moore neighborhood) neighbors. Cellular automata models 
have been widely used to describe physical systems because of 
their strong advantage to remain simple, yet capable of pro-
ducing rather complex behaviors.

In this work, we present a hybrid approach, based on a 
model initially proposed by Anderson.1 Hybrid models address 
the multiscale nature of cancer complex phenomenon by com-
bining both discrete and continuous variables. A rule-based 

stochastic cellular automata model on a two-dimensional (2D) 
square lattice that describes cellular proliferation and move-
ment at cell level is combined with a continuum determinis-
tic model that describes the chemical/ECM dynamics of the 
microenvironment. We show how a simple extension from von 
Neumann to Moore neighborhood in cell migration can bet-
ter approximate cellular motility by minimizing the artifacts 
arising from lattice anisotropies and how the neighborhood 
selection can significantly affect tumor growth and morphol-
ogy under specific conditions.

Hybrid Model of Tumor Growth Description
The mathematical model utilized in this work consists of two 
interacting components, the discrete one reflecting the tumor 
cells and the continuous one representing the extracellular envi-
ronment. The environmental component refers to the tumor 
microenvironment that includes the oxygen concentration and 
the ECM density. Both are modeled by continuous variables, 
whereas the tumor cells are modeled in a discrete way using 
cellular automata that move, proliferate, and die indepen-
dently following a set of rules. We further assume that cells 
lie on a fixed square lattice structure and that each lattice site 
can accommodate only one tumor cell. Cells can move to a 
neighboring site that is not occupied by another cell. In cel-
lular automata, the two most commonly used neighborhoods 
are the von Neumann and the Moore neighborhoods, which 
take into account the four and eight neighbors of a cell, as seen 
in Figure 1. The main focus of this work lies on the analysis 
of how different neighborhood schemes affect cell movement 
and eventually tumor evolution and morphology. Hence, the 
way cell movement is approached plays a vital role and will be 
analyzed in detail in the following section.

Continuum component. Oxygen. We assume that the 
tumor is fully and homogeneously vascularized, ie, nutrient 
sources exist in every grid point of the computational domain. 
For simplicity, we assume that, the basic nutrient needed by 
the tumor cells for their growth and proliferation is oxygen.1 
Oxygen is produced by the established vasculature and dif-
fuses into the extracellular space. The equation that describes 
the spatiotemporal evolution of oxygen is the following:

Figure 1. The cellular automaton neighborhoods von Neumann and 
Moore are visually represented on the left and right, respectively.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Agent-based tumor growth modeling

69Cancer Informatics 2015:14(S4)

	   
∂
∂

= ∇⋅ ∇ + − −
o
t

D o bo c oo i j( ) ,β γ 	 (1)

where o(x,t) represents the oxygen concentration and Do,b,β,γ 
indicate the oxygen diffusion coefficient, the natural oxygen 
decay, the oxygen production by the sources, and its con-
sumption by tumor cells, respectively. The term ci,j ∈{0,1} is 
provided by the discrete model part (discussed in the next sec-
tion) and illustrates the absence or presence of a cancer cell on 
the grid point i,j. Consumption by healthy cells is assumed to  
be negligent.

It should be noted that real tumors are highly more 
heterogeneous than the above simplifications. Other com-
ponents of the microenvironment that the continuous 
compartment could accommodate, such as glucose and 
hydrogen ions, also play a significant role in tumor.23 On 
top of that, real tumor vessels are tortuous, dilated, and 
leaky; factors which considerably affect the homogeneity of 
nutrient supply and removal of waste products. However, 
considering that the focus of our model was to examine the 
tumor morphologies that arise from the discrete compo-
nent and not from the interactions of cells with a complex 
microenvironment, we preferred to oversimplify the con-
tinuous component. Nevertheless, as a step toward more 
realistic cases, cellular migration on a random ECM has 
also been investigated.

Discrete component. Cell life cycle and proliferation. Each 
tumor cell is individually tracked. Each cell can live or die 
depending on the local oxygen concentration. A living cell can 
proliferate if it is mature and if there is available space for its 
daughters or else it becomes quiescent. The lifecycle of a tumor 

cell is illustrated in the flowchart of Figure 2. Specifically, at 
each time step, the cell checks if the local oxygen level is under 
a certain threshold od. If that condition holds true, then the 
cell cannot continue living and dies. As soon as a cell dies, the 
space it was occupying is treated as vacant and can be filled by 
other cancer cells.

In this work, all tumor cells are assumed identical with 
respect to their phenotypic characteristics. Under this consider-
ation, all cells proliferate at the same rate. Tumor cells with local 
oxygen concentration above od prepare for proliferation, increas-
ing their age at each time step. We assume that the increment 
of the cellular age depends linearly on local resource availability 
such that limited oxygen results in smaller increments of the 
cellular proliferation age. Specifically, if the cell age is updated  
every t, the cell age is incremented by o(i,j)·t, where o(i,j) is the 
value of the normalized oxygen concentration available to the 
cell, for which value the inequality 0 # o(i,j) # 1 is true.

When a cell reaches its proliferation age, then it is ready 
to produce two daughter cells. However, proliferation can 
only occur if there is an empty space in the Moore neigh-
borhood of the cell in order to place its daughter cells. One 
daughter cell replaces the parent and the other is placed in a 
neighboring empty site. If no empty space is available, the 
cell enters the quiescent state. Cells in quiescent state are thus 
ready to proliferate but cannot do so due to space restriction. 
An active cell is considered a living cell that is not mature. 
Having reached their proliferation age, quiescent cells are 
considered mature and are assumed to consume half the oxy-
gen compared to the active cells.1 On the other hand, in the 
event that an empty space is found, the current cell resets its 
age and makes an exact copy of itself to the empty position. 
If during the proliferation, multiple empty spaces are found 
in the neighborhood, a random one is chosen. For simplicity, 
we assume that mutations do not occur during the prolifera-
tion process.

In order to avoid artifacts that would occur if all the 
cells reached their proliferation ages simultaneously, ini-
tial cell ages are randomly assigned to them. Additionally, 
at each iteration of the lifecycle execution, the cells are 
updated in a random order. This ensures that at each itera-
tion every cell randomly receives a different priority in the 
update queue.

Cell movement. Cancer cell movement is described in 
this work by the discretized form of the following advection– 
diffusion equation24:

	   

haptotaxis/chemotaxisrandom movement
2 ·( )c
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Equation 2 implies that cell motion is dominated by two 
processes. The first term corresponds to random motility (dif-
fusion), whereas the second term describes the directed migra-
tory response of cells to gradients of either fixed, nondiffusible 
molecules such as collagens and fibronectin or to unbound, 
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Figure 2. Cell life flow chart.
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diffusible chemicals such as oxygen, processes known as 
haptotaxis and chemotaxis, respectively. The choice of the 
directed movement does not affect the form of the equation, 
but only changes the interpretation of the guided movement 
term, c ⋅ ∇( )c f . It should be noted that if both chemotaxis and 
haptotaxis occur, a third term similar to the second term in 
Equation 2 can be easily added to describe the additive effect 
of these two processes.

The goal is to discretize movement and create rules that 
guide the cells in such a way that these discrete entities will 
behave like their continuous counterpart, namely, Equa-
tion  2.25 In order to achieve that, standard finite-difference 
methods were used to numerically solve such equations. In the 
context of continuous variables, such methods utilize Taylor 
expansions to approximate the differentials of an equation, 
yielding a description of the shift of concentration from one 
grid point to its neighboring ones. The idea is that if small-
enough space and time steps are used, the continuous solution 
can then be well approximated.

von Neumann neighborhood. The von Neumann neigh-
borhood consists of upper, lower, left, right, and of course 
the central lattice points of the grid. It is the simplest 2D 
scheme on which finite differences can be applied. Equa-
tion 2 can be discretized using a standard five-point scheme 
following the von Neumann neighborhood that yields1: 
c c P c P c P c P c P ci j

k
i j
k

i j
k

i j
k

i j
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P2,P3,P4 correspond to weights of concentration shifts as 
shown in Table 1.

Moore neighborhood. In finite differences, usually – but 
not necessarily – expansion of the neighborhood scheme 
increases the accuracy of the scheme as well as its compu-
tational load.26,27 We proceed by expanding the neigh-
borhood to include the four diagonal points as well as the 
orthogonal ones. Likewise the nine-point finite-differences 
scheme can be used to yield weights to all nine points of a  
Moore neighborhood:

c c P c P c P c P c P ci j
k

i j
k

i j
k

i j
k

i j
k

i j
k

i, , , , , ,
+

− + − += + + + + +1
0 1 1 1 2 1 3 1 4 −− −

+ + − + + −+ + +
1 1

5 1 1 6 1 1 7 1 1 8

,

, , , .
j

k

i j
k

i j
k

i j
kP c P c P c P

In short, we performed these calculations by approxi-
mating the first derivatives in two ways. The first approxi-
mation is the same as the one used in the von Neumann 
neighborhood and the second uses only the diagonal points. 
The latter approximation enables the computation of the 
weights to the extra four diagonal points. The final approxi-
mation for the derivative is defined as the average of the 
previous two. The corresponding weight values can be found 
in Table 2.

Choice of direction. Following the work of Anderson,1 the 
probability that a cell will move toward a corresponding direc-
tion is proportional to the weight that describes the continu-
ous concentration shift. To that purpose, the weights Pi are 
translated to ranges. The higher the weight value Pi, the longer 
the corresponding range Ri.

To construct the ranges Ri, at each time step, the weights 
Pi are calculated and normalized (dividing them by their sum) 
to obtain probabilities of motion. Then, five (or nine) probabil-

ity ranges are computed R P R P Pi j j
j

i

j

i

0 0
00

1

0= =
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Finally, a random number r is generated between 0 and 1, and  
depending on the range in which this number belongs to, the 
tumor cell under consideration remains stationary if r ∈ R0, 
moves left if r ∈ R1, moves right if r ∈ R2, moves down if  
r ∈ R3, and moves up if r ∈ R4. Additionally, exclusively for 
the Moore neighborhood moves diagonally right-down if r ∈ 
R5, moves left-up if r ∈ R6, moves right-up if r ∈ R7, and 
moves left-down if r ∈ R8.

If a cancer cell cannot move toward a certain region, such 
as in the case where the specific location is occupied by another 
cell, the weight Pi and the range Ri that lead toward that point 
are ignored. Furthermore, in case a weight is negative, then 
its absolute value contributes toward the opposite direction, 

Table 1. Weights of concentrations shifts for the von Neumann neighborhood.

Weight Concentration shift destination Value
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meaning that cells are attracted by the positive gradients and 
repelled by the negative gradients.

Directed movement scenarios. As discussed previously, cell 
movement is a complicated process and can have various driving 
mechanisms. Cells can move toward diffusible or nondiffusible 
chemicals and can migrate either individually or collectively 
depending on the absence or presence of cell–cell junctions. 
Furthermore, the structure and composition of ECM consider-
ably affect cellular movement. In our work, we investigate some 
simplified scenarios of chemotaxis and haptotaxis in order to 
demonstrate the effect a neighborhood selection may have in 
tumor growth and morphology under specific conditions.

The first set of experiments assumes that the directed 
cell movement is driven exclusively by chemotaxis where the 
chemical attractor is assumed to be the oxygen concentration. 
This means that tumor cells prefer to move to sites of higher 
oxygen concentration. This set of experiments was constructed 
in order to take advantage of the oxygen distribution, which 
produces a dynamic gradient of radial symmetry and forms a 
tumor that it is expected to approximate a circular shape.

The second set of experiments considers the haptotactic 
movement of tumor cells, where cells are assumed to move 
up to gradients of macromolecules of the ECM, f. Although 

it is reasonable to assume haptotaxis as one of the migration 
mechanisms followed by tumor cells, it should be noted that 
whether tumor cells move to denser areas of the ECM in vivo 
still remains an open question. The distribution of ECM is 
assumed random. As proposed in the work of Anderson,1 
a random distribution might be a more realistic representation 
of the highly heterogeneous ECM, while it allows the forma-
tions of invasive patterns under specific conditions. Further-
more, tumor cells usually remodel the ECM in order to further 
facilitate their movement. They produce matrix-degrading 
enzymes (such as matrix metalloproteinases) that degrade 
the ECM locally.7 In this work, we assume that tumor cells 
degrade the ECM locally when they are ready to move such 
that fi,j = 0 and that immediately after the cell leaves the lattice 
site the ECM is reset to its previous condition. This implies 
that the ECM is quickly remodeled so that the movement of 
a cell does not leave any trace behind it to facilitate the move-
ment of the other cells. Thus, cells migrate in an independent 
fashion making the emergence of invasion more difficult to 
occur. However, it should be noted that certain tumor types, 
like glioblastoma multiforme, have been observed to form 
invasive cell chains following paths of least resistance at least 
in in vitro experiments.28

Table 2. Weights of concentrations shifts for the Moore neighborhood.

Weight Concentration shift 
destination

Value
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1
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Time steps. In order to perform nondimensionalization, 
the duration of iteration is chosen and is represented by τ. The 
total simulation time [0, T] is segmented in pieces of τ length, 
each representing a single iteration of the model. Furthermore, 
each iteration time step is segmented in smaller steps noted as 
reaction time steps τr.

Reaction time step. The reaction step is assumed to be 
small enough for the model to be in a quasi–steady state. 
In essence, the running model compartment considers the 
variables controlled by the other model parts stable. From the 
perspective of a cell, for example, this means that during a 
reaction step the cell can follow its life cycle (ages, prolifer-
ates, and dies), while the state of the environment and the 
position of the cells are stationary. The respective principle is 
followed when calculating the next environment concentra-
tions and cell positions.

Compartmental time steps. In addition to the τr time step, 
each modeling compartment operates at its own independent 
time step as illustrated in Figure 3. In particular, the continu-
ous step τc is dictated by the method used to numerically solve 
the differential equation(s) that describe the microenvironment. 
Thus, in our case the continuous time step tc

h=
5
 depends on the 

spatial step. The grid is forced to be very fine because as men-
tioned earlier each lattice point represents a cell, in turn requir-
ing a small time step for the numerical solution. One could be 
tempted to choose the cell life and movement compartmental 
time steps equal to the continuous one; however, that would 
greatly impede the performance of the model.

As implied by the quasi–steady-state assumption, the 
environment and the cell positions remain unaffected while 
the life cycle updates the cell states. Therefore, the cell life 
flow chart in Figure 2 will always yield the same result. To 

avoid unnecessary calculations, the cell life step τl can be set 
equal to the reaction step τr.

The choice of the movement time step τm dictates how 
many times a cell will calculate the movement probabilities 
per reaction time τr. We set as k r

m
=

τ
τ  the number of possible 

movement attempts per reaction. For convenience, the move-
ment time step is forced to be divisible by the reaction time 
step resulting in k being a natural number: k ∈N. To ensure 
that the finite-differences scheme used to retrieve the move-
ment probabilities is valid, it is necessary that the value of P0 
is positive. Substitution of τ

τ
m

r

k
=  for P0 . 0 results in two 

different values for k depending on the neighborhood scheme 
chosen (kVN for von Neumann neighborhood and kMo for 
Moore neighborhood). Their corresponding values are shown 
in Table  3. It is noteworthy that the movement time step 
depends on both the diffusion coefficient Dc and chemotactic/ 
haptotactic coefficient c. In our experiments, both neighbor-
hoods are investigated and thus k is chosen to satisfy both 
inequalities: k k kVN Mo= { }min , .

Boundary conditions. When solving the Equation  1, 
which describes the oxygen, Dirichlet boundary conditions 
are preferred over no-flux (Neumann) boundary conditions. It 
is assumed that the surrounding domain is well vascularized, 
and thus the boundary oxygen is set to its maximum value of 1.  
It has been shown that this choice of boundary conditions 
results in computations that can approximate results as if the 
experiment was performed in a larger domain with no-flux 
boundary conditions, as long as the well-vascularized assump-
tion holds true.29

Simulation process and simplifications. In order to 
focus our study on cellular movement and the effect of neigh-
borhood schemes on tumor growth and morphology, many 
simplifications have been made.

i.	 Concerning the discrete part, a single phenotypic 
scheme was chosen to ensure that the movement and 
proliferation parameters are the same for all the popu-
lations. Furthermore, the cell–cell adhesion forces were 
ignored at this stage as we focus only on an expansion of 
the movement neighborhood.

0 T

Cell life step τι

Scaling time step τ

Movement step τm

Continuous step τc

0
Reaction time step τϒ τ

Figure 3. Visual representation of the time steps. See text for details.

Table 3. Choice of movements per reaction, k, for the two 
neighborhood cases.
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ii.	 The continuous part of the model was also stripped to its 
essentials to minimize run time and avoid any possible 
direct or indirect source for differentiation in the results 
arising from the interaction between the continuous con-
centrations of the microenvironment and the movement 
selection schemes. However, in a different set of experi-
ments, a random ECM has been applied as a step toward 
more complex environments. In all the experiments, the 
tumor is considered homogeneously vascularized and 
neoangiosis is not taken into account.

Implementation. The model was implemented using 
MATLAB, C, and openMP. The MATLAB platform 
was extensively used and served as the program backbone. 
It was utilized to code the discrete model, to visualize 
the data, as well as to extract the statistics presented. The 
solution of the continuous part of the model was imple-
mented in C due to its computational time-demanding 
nature. Also, the openMP library was used to perform 

the computations in parallel for additional speed up when 
using multicore CPUs.

Results and Discussion
The simulations were performed on a 2D regular grid of size 
L × L, where L = 1 cm. Table 4 shows the main parameters 
used in our model as well as the characteristic spatial (L) and 
temporal (τ) scales that are used in order to nondimensionalize 
our equations. The space step h was selected assuming that 
each site on the computational grid can be occupied by only 
one tumor cell and that the tumor cell diameter is approxi-
mately 25 µm. Additional parameter values can be found 
in Table 4.

The oxygen concentration was initially set to its maxi-
mum saturation value in the whole domain. A square of edge 
equal to 15 at the center of the grid was filled with tumor cells 
with probability equal to 0.7 for each point to be filled with a 
tumor cell. Thus, the initial cancer resides in a square on the 
center of the domain that is roughly 70% populated.

We investigate the effect of neighborhood selection 
on tumor evolution considering various distributions of the 
microenvironment.

i)	 We first assume a dynamic radial gradient arising from 
the distribution of oxygen that considers cells moving 
chemotactically toward higher oxygen concentrations.

ii)	 We then explore a random distribution of the ECM 
where cells are encouraged to move haptotactically to 
denser areas of the matrix.

In order to quantitatively describe the morphology of 
the simulated tumors, several commonly applied metrics for 
the characterization of tumor pattern formation were used. 
Specifically, the normalized radial variance was applied 
to the first (i) above-mentioned scenario of radial symme-
try, while the radius of gyration (gyradius) and roughness 

Table 4. Parameter values.

Symbol Description Values

L Domain size 1 cm

h Spatial step 25 µm

N Grid size 400

τ Iteration time step 16 hours

Do Oxygen diffusion parameter 10−5 cm2 s−1

β Oxygen production rate 0.25 (non-dimensional)

γ Cancer cell Oxygen uptake 25 10−7 M cells−1 s−1

α Oxygen decay 0.0125 (non-dimensional)

od Oxygen threshold 0.25 (non-dimensional)

Dc Cancer cell diffusion  
coefficient

10−10 cm2 s−1
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Figure 4. Results from the first set of 100 experiments, cancer cells after 100 iterations using the von Neumann and the Moore neighborhood at the left 
and the right column, respectively. The blue, green, and red cells denote living proliferative, living quiescent, and dead cancer cells, respectively.
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metrics were used in the second scenario (ii) of random 
distributions.12,14,30

Chemotactic movement to gradients of oxygen. In this 
set of experiments, it is assumed that cells move chemotacti-
cally directing their movement in response to oxygen concen-
tration gradients. Taking into account the exact solution of 
Equation  2 under ideal circumstances (if the attractor con-
sisted of round uniform radial gradients) and the fact that 
vascularization is homogeneous, the expected outcome is a 
round tumor.24

In this scenario, cell positions are affected by oxygen gra-
dients and oxygen concentrations are affected by cell positions. 
In practice, this adds a layer of interaction between the discrete 
and continuous components of the model. The parameters used 
in this set of experiments are as shown in Table 4. Further-
more, the proliferation time of tumor cells equals A p = 32 h,  
the haptotactic coefficient is set to χ = − − −10 8 2 1 1cm s M , and 
the diffusion coefficient of the random movement equals 
D cm sc = − −10 11 2 1.

To estimate the statistical significance of our results, 
100  sets of experiments were executed. Random initializa-
tions were performed for the cancer cell population between 
the experiments as described in the previous subsection, while 
conserving the same initial state for each von Neumann and 
Moore set. The tumors were left to grow for 100 iterations, 
which corresponds to 1,600 fictitious hours (about 66.6 days).

The emerging tumor morphologies of the first set of 
experiments after 100 iterations can be seen in Figure 4 for 
the two different neighborhood schemes. Additionally, the 
growth of the tumor population over time can be seen in the 
two Supplementary chemotaxis videos, one for each neighbor-
hood scheme. The corresponding oxygen distributions are also 
shown in Figure 5. The cells depicted with blue, green, and 
red color correspond, respectively, to proliferative, quiescent, 
and necrotic cancer cells. A proliferative rim of approximately 
25 cells width is formed in both cases, while a few quiescent 
cells are sparsely distributed around the boundary that is 

formed between the proliferative and necrotic cells. Due to 
the increased oxygen demands by tumor cells, necrosis covers 
most of the tumor at the end of the experiment.

In Figure 5, it can be seen that the selection of the neigh-
borhood scheme affects the tumor morphology. In particular, 
the cells following the von Neumann scheme tend to form 
tumors of diamond shape, while the cells moving based on the 
Moore neighborhood form tumors that approximate a circular 
shape. Considering that the oxygen concentration is directly 
affected by the distribution of tumor cells (Equation  1), 
a similar pattern is also observed in the corresponding oxy-
gen distributions as is shown in Figure 5. As expected, simi-
lar results are also produced when tumor cells are allowed to 
move chemotactically to a radially symmetric gradient similar 
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Figure 5. Results from the first set of 100 experiments, final Oxygen concentrations after 100 iterations using the von Neumann and the Moore 
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to the oxygen concentration but remains invariant over time 
(results in Section 1 of Supplementary Material).

To quantify the difference between the two neighbor 
selections, we define the radial variance metric as the variance 
of the distance of a tumor cell from the center and normalized 
it by dividing with the total number of the cells. For this met-
ric, the dead cells were also included. The normalized radial 
variance is thus defined as:

	   
d

N
r ri

i

N

var
= −

=
∑1

2
2

1

( ) ,

where ri corresponds to the distance of the i-th cell from the 
center, N to the total number of cells at that time point, and 
r  to the mean value of the distances ri. Among other shapes 
of the same size, circular discs have the smallest value of dvar. 
Figure 6 shows the mean values and the standard deviations 
of the normalized radial variance, dvar, for all the experiments 
over time. The Moore-based movement (depicted with green 
color in Fig. 6) shows consistently smaller value of the mean 
dvar than the corresponding von Neumann–based move-
ment (depicted with blue color in Fig. 6). Figure 7 shows the 
mean number of live cells over time measured again over the 
100  sets of experiments for the two neighborhood schemes. 
The standard deviations of the mean growth curves are 
depicted as well. Initially, the two curves coincide, however, 
after 45 fictitious days difference of the two population means 
reaches 260 cells.

In order to test the statistical significance of the differ-
ences, we first used D’Agostino–Pearson’s K2 test to verify 
the normality of each of our observations for every iteration 

and movement scheme individually. Then t-tests for unequal 
variances were performed between the von Neumann and 
the Moore set of experiments for every iteration. Note that 
no multiple comparison adjustment was used. Both the 
live cells and the normalized radial variance metrics at the 
final time point produced p-values less than 10−6, indicat-
ing statistically significant differences. It is noteworthy that 

Figure 8. The random extracellular environments after being smoothed 
by varying smoothing factors. The top concentration contains no 
smoothing (sf = 1), the one in the center was smoothed by sf = 2 and the 
bottom by sf = 8.
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Figure 7. Number of live cells over time measured over the 100 sets 
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the p-value of the radial variance drops below the threshold 
0.05 earlier (3rd iteration) than the live cancer cells (59th 
iteration) hinting that the cause for the inconsistency of the 
sum of the live cells is the movement neighborhood.

Haptotactic movement to gradients of random ECM. To  
demonstrate the effect of neighborhood selection in haptotactic  

movement, we assume that cells direct their movement in 
response to gradients of a random ECM. Various distribu-
tions of the ECM are considered as shown in Figure  8. In 
particular, the ECM distribution was created by drawing ran-
domly pseudorandom values from the standard uniform distri-
bution on the open interval (0,1) and smoothing the outcome 
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Figure 9. Final cancer cell distributions after 50 iterations. Blue cells are proliferating cancer cells and cells represented in green have entered the 
quiescent state. The von Neumann and the Moore results are shown in the left and the right columns, respectively. The first, second, and the third rows 
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through bilinear interpolation by a factor sf = {1,2,8} and 8. To 
further facilitate their movement, we assume that tumor cells 
locally degrade the ECM when they move in a way such that 
fi,j = 0 and that immediately after their movement the ECM 
is regenerated to its previous concentration.2,7 In this set of 
experiments, the haptotactic coefficient (χ ) and the cellular 
proliferation time (Ap) take values χ = ⋅ − − −4 10 8 2 1 1cm s M  and 
A p = 16 hours, respectively.

Figure  9 illustrates the emerging tumor morphologies 
for the different distributions of ECM and the two differ-
ent neighborhood schemes after 50 iterations (800 simulation 
hours). Figure 9 demonstrates the importance of ECM distri-
bution on tumor evolution. As can be seen (Fig. 9, columns), 
smoother ECM distributions produce more compact tumors. 
Furthermore, movement based on different neighborhood 
schemes also produces substantially different tumor mor-
phologies. It appears that allowing cells to additionally move 
toward its diagonal points causes them to follow paths and 
reach locations that they would not be able to access other-
wise. As the ECM becomes smoother (bottom row of Fig. 8), 
the emerging tumor morphologies for the different neighbors 
become more similar with each other (bottom row of Fig. 9) 
indicating that under the specific conditions the two approxi-
mations coincide.

To quantify the differences in spatial spread and invasive 
tumor morphology of the neighborhood schemes, the gyradius 
and the roughness metrics are introduced.12,14,30 The gyradius 
or radius of gyration is defined by:

	   
R N r rg c i cm

i

N c

= −−

=
∑1 2

1

( ) ,

where Nc,ri, and rcm are the total number of tumor cells, the 
distance of the i-th cell from the center of the domain, and the 

distance of the center of mass from the center of the domain, 
respectively. The roughness is defined as:
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N
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where Nbin is the number of bins made along the circumfer-
ence of a circle with a bin angle 

2π
N bin , di is the distance of 

the tumor cell farthest from the tumor center in the i-th bin, 

and d  is average over the di, d N dbin i
i

N bin

= −

=
∑1

1

. For our calcu-

lations, the bin number was set to N bin = 36. The time evolu-
tion of gyradius and roughness as well as the growth curves 
for this set of experiments are presented in Figures 10, 11, and  
12, respectively.
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It can be deduced that the importance of neighborhood 
selection is more evident as the distribution of the ECM 
becomes more rugged (top image of Fig.  8). As we have 
already mentioned, during the cellular migration process,  
a cell can only move to a neighborhood site that is empty. It 
is important to point out that the Moore neighborhood has 
twice the number of possible sites where a cell can move to 
comparing to the von Neumann neighborhood. When the 
ECM becomes harsh, this difference seems to play a signifi-
cant role in tumor expansion allowing tumor cells to better 
sense and exploit their microenvironment and thus follow the 
free pathways around them.

It is evident that the Moore neighborhood relative to 
the von Neumann neighborhood, results in (i) faster tumor 
expansion as reflected in the time evolution of gyradius,  
(ii) increased morphological asymmetry in terms of tumor 
roughness, and (iii) increased viable tumor population as indi-
cated by the growth curves.

Further experiments (results in Section  2 of Supple-
mentary Material) also show that the differences in tumor 
growth and morphology between the two neighborhood 
schemes are enhanced under conditions that seem to promote 
invasion such as increased haptotactic coefficient and ECM 
degradation. However, it should be noted that an extensive 
investigation of the conditions under which the differences 
are more/less evident is important in order to examine more 
complex microenvironments and tumor cell responses. Also, 
the validation of the outcomes with real biological experiments 
is necessary for confirming these observations.

Statistical study of haptotactic movement. In order to 
verify the robustness of our outcomes as far as haptotaxis is 
concerned, N different random ECM distributions were pro-
duced. The experiments were then repeated with the same set 
of parameters for both neighborhood schemes. Specifically, 
N = 100 experiments were conducted for each neighborhood 
scheme, while the values of the haptotaxis coefficient (χ ) and 
the cellular proliferation time (Ap) were χ = ⋅ − − −4 10 8 2 1 1cm s M  
and Ap = 16 hours, respectively. The tumor morphology over 
time of the first set of experiments can be seen in the Supple-
mentary haptotaxis videos. The experiments ran for 40 iterations 
(640 fictitious hours) and the time evolution of the gyradius, 
roughness, and the viable cell populations were estimated as 
shown in Figures 13, 14, and 15 correspondingly.

To test if the results had a statistical significance, we 
followed the same procedure as we did with the chemot-
axis results. We initially used the D’Agostino–Pearson’s 
K2 test to verify whether our results from each population/
iteration come from a normally distributed population. 
Then we performed coupled t-tests for unequal variances 
for all the time points between the von Neumann and the 
Moore set of experiments without using a multiple compar-
ison adjustment method. For all the metrics, the differences 
were statistically important after a number of iterations. 
The p-values produced in the final time points were less 

than 10−9 for all the metrics (the gyradius, roughness, and 
population size).

In consistence with real tumor experiments that sup-
port linear growth of tumor diameter over time,31,32 the mean 
gyradius of the von Neumann–and the Moore-based tumors 
both grow linearly with a slope of 0.81 and 2.52, respec-
tively. The difference in slopes indicates that the Moore-based 
tumors exhibit greater expansion rate. In addition, the tumor 
roughness is increased for the Moore-driven tumors, which 
implies higher invasion than the von Neumann–driven tumors. 
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It should be noted that contrary to the von Neumann neigh-
bor, the Moore neighbor predicts an initial slower expansion 
rate followed by a more rapid radial expansion.

Furthermore, the mean values of the viable tumor cell 
populations show that the cells following the von Neumann 
scheme result in reduced populations when compared to their 
Moore counterparts. What is more, the populations appear 
to switch to lower growth rates than the one they begin with. 
However, the growth deceleration takes place at different 
time points per case, 10th and 23rd iteration for the Moore 
and the von Neumann, respectively. At these particular time 
points, the growth slows down because oxygen levels fall 
below the viable threshold and necrotic cells appear. One 
would expect that the compact morphology would cause the 
center of the tumor to run out of oxygen faster than the inva-
sive morphology, which could allow the oxygen to diffuse 
further to the core between the tendrils. However, necrotic 
cells appear earlier in the aggressive morphology than in the 
compact. This can be explained if we account for the tumor 
cells in quiescent state, which, as discussed in section 2, have 
halved their oxygen consumption. If we sum the mean values 
for the proliferative populations and the half of the quies-

cent populations p
p

a
q+









2

, we get a measure of the total 

tumor oxygen consumption rate. Calculating that number at 
the aforementioned switching points, we get for both neigh-
borhoods that the total consumption is approximately 3600γ. 
Thus, we can see that not only the number of cells but also the 
cell state is consequential as well.

Combining the knowledge from the gyration and rough-
ness, it can be deducted that the major differences in the 
growth curves and morphologies can be attributed to the fact 
that the von Neumann–based tumors tend to grow in a con-
densed manner, which results in a tumor with many cells in 

quiescent state, while the Moore-based tumors tend to expand 
more easily adopting a tendril-like morphology with substan-
tially less quiescent cells.

Conclusion
The emergence of the invasive behavior throughout tumor 
evolution is highly associated with a fatal outcome. For this 
reason, the invasive phase of tumor growth has been the focus 
of numerous studies in an effort to understand its underly-
ing mechanisms and predict its emergence and characteristic 
patterns as tumor evolves destroying the surrounding host 
tissue microenvironment. Early prognosis and accurate pre-
dictions are of high significance in clinical practice and aid 
in the application of early and effective treatments.

In this work, a hybrid model for tumor invasion has 
been adopted1 by combining a continuum description of the 
variables that comprise the tumor microenvironment with a 
rule-based stochastic cellular automata model of the cellu-
lar behavior on a 2D square lattice. An expansion of a cell 
movement mechanism was introduced, enabling the cells to 
move from von Neumann neighborhood to Moore neighbor-
hood essentially doubling the possible locations to which a 
cell can move. Then, the impact of the neighborhood scheme 
selection in tumor cell movement, growth, and morphology  
was studied.

We first performed 100  sets of experiments within a 
chemotactic context where we assumed that cellular movement 
was directed by the gradients of oxygen distribution. Although 
a homogeneously vascularized tumor is assumed, as the tumor 
grows in size, the oxygen supply becomes inadequate for the 
increased metabolic demands of tumor cells, allowing areas 
of differentiated oxygenation to form within the tumor mass. 
Due to the radial symmetry of the problem, a tumor of circu-
lar shape is expected. With that in mind, in order to assess the 
distance between our results and the valid circular morphol-
ogy, we adopted a simple radial variance measure. The results 
showed that utilizing the Moore neighborhood, the method 
yields simulations closer to the expected circular morphol-
ogy. Thus, the inclusion of the diagonal points improved the 
resulting morphology, alleviating the computational artifacts 
presented by the previous von Neumann–based approach. 
Additionally, we showed that the neighborhood choice 
introduces statistically important differences in the cancer  
cells population.

Furthermore, haptotaxis has also been explored. The 
work of Anderson et al.9 has shown that even when tumors 
comprise heterogeneous subpopulations when the ECM dis-
tribution is assumed homogeneous, a symmetric tumor is 
formed, whereas a random distribution of the ECM might 
be more realistic and allows the formation of invasive tumor 
morphologies similar to those observed in real tumors. There-
fore, concentrations representing ECMs were initialized with 
random distributions, which were smoothed at a varying 
homogeneity degree. The Moore-based movement resulted in 
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Figure 15. Mean values of cancer populations over time. Dotted blue and 
green lines represent the mean populations for von Neumann and Moore, 
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lines contain the mean values of the populations plus and minus their 
standard deviations.
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tumor cells with a tendency to follow the ECM paths much 
easier, thus expanding faster and forming tumor patterns that 
highly differ from the corresponding von Neumann–based 
ones, which are considerably more compact. Furthermore, the 
simulations also show that as the ECM distribution becomes 
less smooth, the difference between the two neighborhood 
schemes becomes more evident. To quantify these different 
tendencies, we used the gyradius and the roughness metrics. 
All in all, should the environment allow it, the cells equipped 
with the expanded Moore neighborhood tumor cells are more 
prone to invasiveness. Finally, the robustness of our outcomes 
for the random extracellular cases was verified. We performed 
100 experiments for each neighborhood with varying ECM 
distributions but kept a stable smoothing factor. The evaluated 
gyradius, roughness, and cell populations of all the experi-
ments were submitted to a t-test, which showed that the devia-
tions manifested by the neighborhood choice affected all three 
of these aspects and they were statistically important.

As cellular migration is critical for tumor growth and 
invasion, it stresses the importance to describe movement as 
adequately as possible. Cellular automata models on a regular 
lattice remain very popular due to their simplicity and direct 
relation with the continuum approaches, if the latter are solved 
using the finite-differences schema. Although lattice anisot-
ropies arising from regular lattices can be circumvented by 
using random and isotropic lattices,14,30 as well as by using 
off-lattice models,12 we demonstrate in this work how a sim-
ple extension from von Neumann to Moore neighborhood in 
cell migration on a regular lattice can better approximate cel-
lular motility by minimizing the artifacts arising from lattice 
anisotropies and how the neighborhood selection can signifi-
cantly affect tumor growth and morphology. Our study also 
shows that the importance of neighborhood selection can be 
more evident under specific conditions such as increased hapto/
chemotactic coefficient, harsher ECM distribution, and ECM 
degradation. An extensive exploration of various microenvi-
ronments and tumor behaviors with increasing complexity is 
required in order to better approximate real tumor patterns 
and reveal the conditions under which the differences between 
the movement approaches can become more/less evident. To 
this end, as real clinical cellular-level data of invasive tumors 
are hard to find and are difficult to control, in vitro experi-
ments seem more promising for the validation of computational 
outcomes not least because they allow a better control of the  
involving components.33
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