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Abstract

Liquid chromatography-tandem mass spectrometry was used to analyze plasma proteins of

volunteers (control) and patients with glioblastoma multiform (GBM). A database search

was pre-set with a variable post-translational modification (PTM): phosphorylation, acetyla-

tion or ubiquitination. There were no significant differences between the control and the

GBM groups regarding the number of protein identifications, sequence coverage or number

of PTMs. However, in GBM plasma, we unambiguously observed a decreased fraction in

post-translationally modified peptides identified with high quality. The disease-specific PTM

patterns were extracted and mapped to the set of FDA-approved plasma protein markers.

Decreases of 46% and 24% in the number of acetylated and ubiquitinated peptides, respec-

tively, were observed in the GBM samples. Significance of capturing disease-associated

patterns of protein modifications was envisaged.

Introduction

Post-translational modifications (PTMs) of proteins affect pathways linked to cell signaling/

transduction, trafficking, storing, expression, binding and/or affinity and cause serious health

consequences including cancer. PTMs in cancer include phosphorylation, acetylation, methyl-

ation, glycosylation, and ubiquitination [1]. Most PTMs alter the molecular mass of a protein,

therefore, mass spectrometry (MS) is the ideal analytical tool for PTM profiling of proteomes

[2]. However, PTMs can rigorously compromise protein identification results if proper

accounting of combinatorial variants is not performed. Although database search engines sup-

port options to identify peptides with specific modifications, search algorithms cannot com-

prehensively identify PTMs in a single pass because of high false discovery rates (FDRs) [3, 4].

The validation of the protein match to the mass-spectra usually relies on number of identi-

fied peptides, semi-probabilistic scores and sequence coverage. In liquid chromatography-tan-

dem MS (LC-MS/MS) experiments the sequence coverage roughly correlates with protein

abundance. A highly sensitive shotgun approach to peptide detection (below fmol levels) is
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characterized by low level of protein sequence coverage, which is a limitation of the bottom-up

approach in the characterization of PTMs of proteins [5].

There is no standardized procedure for PTM analysis; further advances are required in pro-

tein isolation, MS sensitivity and MS/MS data processing. The use of multiple proteases could

increase protein sequence coverage, thus increasing the probability to find PTMs [6]. Affinity-

based enrichment, for example, immobilized metal ion affinity chromatography or immunoaf-

finity and MS, make it possible to perform PTM characterization. However, even with specific

enrichment, only a few types of PTMs can be identified presumably by phosphorylation [7].

The simplest strategy for identifying PTMs from peptide MS data is running a “variable modi-

fication search”, in which a particular PTM (e.g., phosphorylation) is may occur on any

instance of selected amino acid residues (e.g., serine, threonine, or tyrosine) in all of the theo-

retical peptides from the entire search database. Otherwise, it is possible to run MS/MS search,

which enables to identify a range of modifications [8]. For example, Chick et al. [9] reported

that high-resolution MS/MS spectra achieved by instruments, such as the Orbitrap, often sup-

ply sufficient information to match modified peptides in so called “open searches”, that is,

when the precursor ion tolerance vastly increases, while the fragment ion tolerance is narrow

(0.01 Da). The authors confidently matched the proteome-wide dataset on HEK293 cells

(9,513 proteins and 396,736 peptides) to an additional 184,000 modified peptides by a Sequest

database search with a ± 500 Da precursor ion tolerance. In our work, we searched for PTMs

using commercial engine Mascot (Matrix Science) with which the separate searches were per-

formed with the variable mode either switched off or specified as acetylation, phosphorylation

or ubiquitination.

For this study, the glioblastoma multiforme (GBM) plasma samples were selected because

this tumor possesses high heterogeneity, which complicates therapeutic intervention [10]. The

importance of phosphorylation processes as regulators of pathways in GBM stem cells was

found [11]. GBM treatment is connected with histone deacetylase inhibitors, which have

shown promise for improving patient outcomes [12]. Removing acetyl groups from the lysines

of histone and nonhistone proteins alters transcription and promotes alternative post-transla-

tional lysine modifications such as methylation, ubiquitination, and phosphorylation [13].

The aim of this study was the proteomic profiling of post-translationally modified peptides

of plasma proteins in GBM. A multiple MS/MS search was used to produce the PTM-patterns

for FDA-approved plasma proteins [14] in GBM patients. We found that unravelling modified

peptides exhibit disease-specific patterns of PTMs, which putatively could indicate disease

risk, and the efficacy of drug therapy.

Materials and methods

Materials

All chemicals used in this study were HPLC-grade. Sequencing grade modified trypsin

(V5111) was obtained from Promega (Madison, WI, USA); 2,2-bicinchoninic acid was from

Pierce (Rockford, IL, USA). Other reagents and solvents were from Sigma-Aldrich and Acros

Organics.

Clinical samples

Patient recruitment and sample collection protocols were approved by the local ethics rules of

the Burdenko Research Institute of Neurosurgery (Moscow, Russia). Informed consent was

obtained from all patients. In total, 24 blood samples were gathered; twelve blood samples

were collected from patients (seven men and five women, age between 25 and 66 years) prior

to any treatment. All patients enrolling in the study were hospitalized with a first diagnosis of a
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primary high-grade glioma (grade IV or at least grade III). Afterwards tumors had been

assigned histologically to glioblastoma (GBM, WHO grade IV). In addition, 12 blood samples

(denoted as Control) were collected from age-matched healthy volunteers (age between 17 and

62 years, five men and seven women). Each blood sample was screened for viral and bacterial

infection markers of blood-transmittable diseases (HIV, hepatitis B, hepatitis C and syphilis).

Venous blood samples were obtained after an overnight fast into EDTA tubes and centrifuged

in a J2-21 centrifuge at 1,500g x 10 min at room temperature. The plasma was stored at −80˚C

in cryotubes until further processing.

Depletion of high abundant proteins from human plasma

The depletion was performed using Albumin & IgG Depletion Kit according to the manufac-

turer’s instructions (Sigma-Aldrich). Total protein concentration of depleted plasma samples

was determined with 2,2-bicinchoninic acid [15], using bovine serum albumin (BSA) as a

standard.

In-solution tryptic digestion

The depleted samples (175 μg of protein) for each GBM (n = 12) or control (n = 12) plasma

were in-solution digested in accordance with a standard protocol [16]. In brief, protein

denaturation and disulfide bonds reduction was performed with a solution containing

sodium deoxycholate, TCEP (Tris (2-carboxyethyl)phosphine hydrochloride), and

1,4-dithiothreitol, and alkylated with vinylpyridine. A 9.9 μL aliquot of 200 ng/ μL trypsin

solution was added to the sample and incubated at 44˚C for 2 h, after which another 11.4 μL

of trypsin was added, and the solution incubated at 37˚C for an additional 2 h, then the

enzymatic digestion was stopped by the addition of 9.6 μL of formic acid and then centri-

fuged (15 min).

LC-MS/MS analysis

Separation and identification of the peptides were performed on a Ultimate 3000 nano-flow

HPLC (Dionex, USA) connected to Orbitrap Exactive (Thermo Scientific) mass spectrometer

equipped with a Nanospray Flex NG ion source (Thermo Scientific). 1 μL of Peptide separa-

tion was carried out on a RP-HPLC column Zorbax 300SB-C18 (C18 particle size of 3.5 μm,

inner diameter of 75 μm and length of 150 mm) using a linear 90-min gradient from 95% sol-

vent A (water, 0.1% formic acid) and 5% solvent B (water, 0.1% formic acid, and 80% acetoni-

trile) to 60% solvent B over 95 min at a flow rate of 0.3 μL/min.

Mass spectra were measured in the positive ion mode. Data was acquired in the Orbitrap

Exactive analyzer with resolution of 70,000 (at m/z 400) for MS and 15,000 (m/z 400) for MS/

MS scans. Survey MS scan was followed by MS/MS spectra acquisition for the ten most abun-

dant precursors. For peptide fragmentation higher energy collisional dissociation (HCD) was

used, the signal threshold was set to 17,500 for an isolation window of 1 m/z and the first mass

of HCD spectra was set to 100 m/z. The collision energy was set to 35%. Fragmented precur-

sors were dynamically excluded from targeting for 10 s. Singly charged ions and ion with not

defined charge state were excluded from triggering MS/MS scans. Three independent LC-MS/

MS runs were performed for each sample.

We acknowledge the IBMC “Human Proteome” Core Facility for assistance with the gener-

ation of mass-spectrometry data.
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Data processing

A total of 36 LC-MS/MS runs were carried out for blood-depleted plasma from GBM

patients as well as control. Raw files were merged into two mgf-files by Progenesis LC-MS

software (Nonlinear Dynamics Ltd.). Each of the mgf files containing feature list for protein

identification searched by Mascot software (www.matrixscience.com). Searched results

were re-imported into Progenesis LC-MS to assign chromatographic featured with protein

identifications.

Protein identification in Mascot software was performed with decoy [17] against SwissProt

(SP, 2012_11 version, .fasta format) for Homo sapiens. Trypsin was specified as the proteolytic

enzyme; up to 1 or 2 missing cleavages were allowed. Pyridylethylation (C) was used as static

modification, while oxidation of methionine was set as variable. To examine the phosphoryla-

tion, acetylation or ubiquitination status of the proteins/peptides Mascot search was addition-

ally performed with one of the following modifications setting as variables: phosphorylation of

serine, threonine and tyrosine (Phospho S, T, Y); acetylation of lysine and N-terminal of pro-

teins (Acetyl K, protein N-term); or ubiquitination of lysine (GlyGly K). Charge states of +2,

+3, and +4 were taking into account for parent ions. Mass tolerance was set to ± 15 ppm for

parent ion masses and ± 0.01 Da for fragment ion masses; false discovery rate (FDR)� 1%.

The peptides reported by Mascot with significance index (SI) > 13 were selected for separate

analysis.

Statistical analysis was performed using R software [www.r-project.org]. The distributions

of proteins sequence coverage were analyzed via Anderson-Darling and Shapiro-Wilk normal-

ity tests using functions “ad.test” and “shapiro.test” from packages “nortest” and “stats”,

respectively. Comparisons between control and GBM samples across various types of PTMs

were evaluated with two-sided Wilcoxon test (wilcox.test function). Violin plots were gener-

ated using ’beanplot’ package [18]. Comparison of fractions of post-translationally modified

proteins and peptides was performed using “prop.test” function.

Reproducibility (repeatability) for the three replicate LC-MS/MS runs per sample was cal-

culated as accordance, i.e., the chance that two identical test materials analyzed by the same

laboratory under standard repeatability conditions will both be given the same result [18a].

This metric was used due to its capability to deal with the qualitative (Bernoulli) data. Calcula-

tions were performed according the formula 1 from the Langton et al [19], using in-house

developed PHP-script [http://php.net/].

accordance ¼
kðk � 1Þ þ ðn � kÞðn � k � 1Þ

nðn � 1Þ
; ð1Þ

where k—number of runs per sample where particular protein was identified; n—total number

of runs per sample.

Results and discussion

Due to widespread recognition of the importance of PTMs [20] nearly all MS/MS search algo-

rithms support a PTM-sensitive mode. The standard strategy for identifying PTMs from

peptide MS/MS data is a “variable modification search”, in which a particular PTM (e.g., phos-

phorylation) is allowed to occur on selected amino acid residues (e.g., serine, threonine, or

tyrosine) in all of the theoretical peptides from the entire search database [3].
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Analysis of GBM plasma proteome upon PTM-sensitive search

The examination of the plasma proteome was performed by Progenesis LC-MS software (Non-

linear Dynamics Ltd.), with which two peak lists were generated and exported for MS/MS

search. We used Mascot engine, to perform a database search for possible modifications

enabled using a target_decoy approach for extracting PTM peptides with FDR� 1%. First, the

search was carried out, restricting for any PTM. Second, we separately searched the same raw

data for the cases in which variable modifications were allowed to be acceptable but only for

one modification at a time. That modification was phosphorylation of every serine, lysine, and

tyrosine, either acetylation of every lysine and protein N-term or ubiquitination of every

lysine. Therefore, we obtained the variable modifications as separate sets of search results.

Thirdly, we checked for PTM patterns specific to the control versus GBM plasma samples.

The lists of identified proteins for the control and GBM plasma samples (including number

of peptides per protein, score, sequence coverage and normalized protein abundances) are

given in S1–S8 Tables.

LC-MS/MS analysis revealed 3,227 peptides, which represented 446 proteins in the con-

trol plasma. This basic list of identified proteins was denoted as noPTMs, because the MS/

MS search was conducted by prohibiting any modifications. Among the reported proteins,

~32% were represented by a single peptide only. For GBM plasma, 4,642 peptides and 597

proteins were determined (Columns 1 and 5, S9 Table); 28% of these were represented by

single peptide.

Shotgun proteomics is not a high reproducibility method due to involving a complex mix-

ture of proteins (e.g., purified from an organelle or associated with a particular disease state),

cutting the proteins into peptides by sequence-specific proteolysis, separation of resulting pep-

tides by LC and then analyzing the mixture of peptides using MS, for example tandem MS

[21]. Therefore, to establish the repeatability of the protein identifications each sample was

measured in triplicate. Repeatability for the three replicate LC-MS/MS runs per sample was

calculated as accordance: the chance (percentage) that replicates analyzed under repeatability

conditions would produce the same list of identified proteins/peptides [22]. The accordance

for protein identifications was the average (mean) of these probabilities for each sample, and

was 86±27% for control and 84±29% for GBM plasma.

Expanding the database search with possible protein/peptide phosphorylation (“Phos-

pho”), acetylation (“Acetyl”) or ubiquitination (“GlyGly”) expectedly led to an increase in

the number of identified proteins in the control plasma. A total of 3,649, 5,871 and 5002 pep-

tides, were assigned to 519, 878 and 739 proteins, respectively, were observed dependently

on the type of modification. The number of identified proteins in GBM plasma samples was

significantly lower: 402 phosphorylated, 466 acetylated and 597 ubiquitinated species (S9

Table). Therefore, modification-sensitive MS/MS searching resulted in a decreased number

of identified peptides and proteins in the depleted plasma of GBM patients in comparison to

the noPTMs search.

Variable modifications did not affect the fraction of proteins identified by one peptide.

According to the data in S9 Table, the portion of proteins revealed by a single peptide was on

average 29.5±2.1% for the control (n = 4, where n was noPTMs + three PTM datasets) and

27.8±1.0% (n = 4) for the GBM, which was not a significant difference (p>0.05). There was

also no difference between the control and GBM samples in terms of the average numbers of

peptides (4,437 ± 1,219 vs. 4,111 ± 627) or proteins identified by two peptides (8±1% vs. 10±
2%). The fractions of non-quantifiable proteins, for which Progenesis LC-MS generated no

quantitative data, for both the control and GBM samples were approximately the same

(40 ± 8% vs 35 ± 5%).
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One or two protein-specific peptides are typically enough to confirm the presence of a pro-

tein within a sample. However, to characterize the protein by PTMs, higher sequence coverage

is required [23]. For further analysis, we selected only identifications, that were made by multi-

ple peptides (� 3). For such identifications, an average sequence coverage was ~36% for pro-

teins from the control and GBM plasma (S9 Table): 34%–37% as the mean and 31–35 as the

median. These observations closely match those of the literature data [24, 25].

We used a violin plot [26] to illustrate that the sequence coverage distributions showed no

difference in all four types of modifications (Fig 1). So, on average there were no marked dif-

ferences in the MS/MS search results due to PTM settings or samples’origin (Table 1, Fig 1

and S9 Table). It is possible to conclude that PTM and noPTM datasets were both equal in

terms of the quality of MS/MS search results.

We observed two simultaneous events for identifications by multiple peptides due to the

search parameters (i.e., with noPTMs or PT set) in control and GBM samples (Table 1). The

fraction of proteins represented by�3 peptides was increased in the GBM samples when

the search was performed with possible phosphorylation (Phospho), p = 0.004; and did not

change when the search was performed with possible acetylation (Acetyl) or ubiquitination

(GlyGly) (p-0.088 and 1.000, respectively). Conversely, when phospho-target searching was

performed in the controls and compared to the noPTMs search, the difference was insignifi-

cant (p = 0.621) and significant when the search was performed with possible acetylation or

ubiquitination (p<0.001 in both cases). We cannot say whether or not these observations are

essential for interpretation of MS/MS search reports. To capture PTMs, it is usually necessary

to widen the window for the parent ion to make it incorporable with the peaks that are shifted

from the original mass due to possible modifications. Such a shift can sufficiently influence the

FDR due to the growth of combinatorial complexity. In our experiments, we controlled for

FDR in the range of 0.74–0.82% for all searches (S9 Table).

We compared the number of highly confident identifications normalized to the total num-

ber of proteins in particular PTM/noPTMs datasets. From Table 1 it is possible to expect an

increase in the quality of identifications in GBM due to an increase in the percentage of the

proteins identified by multiple peptides at PTM-sensitive search up to 28±5% from 23% for

noPTMs. Although the fraction of no PTMs proteins was higher in the controls, the fraction of

proteins identified by�3 high-quality peptides for phosphorylation was higher in GBM as

Fig 1. Sequence coverage for various protein PTMs. Identification by Mascot of� 3 peptides per protein.

The adjusted inverse normalized values are displayed as a violin plot, comparing distributions between control

and GBM samples. Horizontal bars indicate the mean (dashed line) and median (solid line) values for each

group.

https://doi.org/10.1371/journal.pone.0177427.g001
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compared to the controls. However, for these cases the difference was insignificant (p = 0.083

and 0.098, respectively). The difference in the proportion of identified proteins in the GlyGly

search was nearly significant (p = 0.0054). In the case of Acetyl, 16% of the proteins were iden-

tified by�3 peptides in the control and 28% in the GBM samples; it is the only case when the

difference was statistically relevant (p<0.001, Table 1).

Modified peptides in GBM samples

Analysis of the Mascot and Progenesis LC-MS reports revealed differences for PTM-specific

MS/MS data linked to the presence or absence of modified peptides in GBM samples, as com-

pared to the controls. The example of alpha-2-HS-glycoprotein 2 (FETUA) is illustrated in

Table 2. Seventeen peptides (�7 aa) were detected in the control plasma. Of these, 12 peptides

were observed with no possible protein/peptide modifications. Considering possible phos-

phorylation (Phospho S, T, Y), we observed three additional peptides (nos. 8, 10 and 16) for

FETUA. The appended data revealed by PTM-targeted search increased the sequence coverage

by ~4%. The MS/MS spectra of the representative phosphopeptide no. 10 and corresponding

unmodified peptide no. 9 (CDSSPDSAEDVR) with respective reporter ions are shown in Fig

2. The detection of the fragment phospho ion y(7) in the peptide 132Ser-Arg144 enabled unam-

biguous identification of the phosphorylation site at the Ser138 residue for alpha-2-HS-

glycoprotein.

Analyzing FETUA peptides, we noted that 10 unmodified peptides with nos. 1, 2, 4–6, 9,

13–15 and 17 were revealed in the control and GBM samples. As for phosphopeptides nos. 8,

10 and 17 were also found in both types of samples. Table 2 shows that there was a single mod-

ified peptide (no. 11) absent in the control plasma but present in GBM samples. This means

that this modified peptide could be used as a component of the PTM pattern that separates

groups of samples.

We also observed the reverse situation when a modified peptide was presented in the con-

trol and absent in the GBM. For example, a PTM-sensitive search did not reveal acetylated and

phosphorylated peptides of phosphatidylcholine-sterol acyltransferase (LCAT_HUMAN) in

GBM samples, but such modifications were observed in the controls.

Modified peptides for FDA-approved plasma biomarkers

By implementing LC-MS/MS with control and GBM plasma, we identified 7,221 peptides,

which represented ~1,300 proteins and >1000 peptides were modified. Among these proteins,

we detected 37 FDA-approved biomarkers [14]. There are several preliminary communica-

tions that some of these biomarkers (e.g. serum albumin, serum alpha 1-acid glycoprotein, and

Table 1. Number of identified proteins/peptides due to PTM-sensitive MS/MS search for control and GBM plasma samples.

Parameter Portion of proteins identified by� 3 high quality

peptides*
Portion of quantified peptides

Control GBM Control GBM

noPTMs 28% 23% (– 5%) 69% 53% (– 4%)

Phospho 27% 32% (+ 5%) 61% 69% (+ 8%)

Acetyl 16% 28% (+ 12%) 36% 63% (+ 7%)

GlyGly 19% 23% (+ 4%) 44% 53% (+ 9%)

noPTMs—search with no PTMs allowance; Phospho—search with possible protein phosphorylation; Acetyl—search with possible acetylation; GlyGly—

possible ubiquitination.

* Peptides automatically selected for identification and quantification by Progenesis LC software.

https://doi.org/10.1371/journal.pone.0177427.t001
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C-reactive protein) provide prognostic information in patients with GBM [27–29]. Most iden-

tified FDA-approved protein markers were quantified in all control and GBM plasma samples.

Only transferrin receptor protein 1 was absent in the control list of proteins identified using

the noPTMs search mode.

One hundred unique PTM peptides proteotypic for FDA plasma markers were identified in

the control plasma samples. These included 33 phosphorylated, 38 acetylated and 29 ubiquiti-

nated peptides (Table 3). We observed a decrease in the number of modified peptides: up to

75 in the GBM compared to 100 in the control samples, however, this difference was not

significant (p = 0.061). Further analysis revealed changes in the number of acetylated and ubi-

quitinated peptides of FDA biomarkers in the GBM and control samples. The number of ubi-

quitinated peptides decreased by 24% in the GBM samples, whereas there was a 46% reduction

in the number of acetylated peptides.

In contrast, the number of phosphopeptides did not change in GBM compared to control

samples. Most phosphopeptides identified in control and GBM samples were quantified. Only

the peptide KEFMSQGNK attributed to the complement C1r subcomponent appeared only in

11 samples (three control and eight GBM) under Phospho-sensitive search conditions (S10

Table). Despite of it, Progenesis LC-MS software recruited this phosphopeptide for quantita-

tive analysis of complement C1r in both types of plasma obtained from control and diseased

patients.

For the complement C1q subunit B (C1QB) there were no modified peptides at all. For

some proteins, modified peptides that encompassed PTMs of one type (Table 3) were

Table 2. Enrichment of plasma Alpha-2-HS-glycoprotein (FETUA_HUMAN, 367 aa) sequence coverage with peptides assembled from MS/MS

search for phosphorylated peptides.

## no Start-End Peptide Mr (expt) noPTMs1 Phospho (S,T,Y)2

Control GBM Control GBM

1 29–57 R.QPNCDDPETEEAALVAIDYINQNLPWGYK.H 3410.58 + + + +

2 58–67 K.HTLNQIDEVK.V 1195.62 + + + +

3 58–99 K.HTLNQIDEVKVWPQQPSGELFEIEIDTLETTCHVLDPTPVAR.C 4902.45 + nd + nd

4 68–99 K.VWPQQPSGELFEIEIDTLETTCHVLDPTPVAR.C 3724.85 + + + +

5 104–120 R.QLKEHAVEGDCDFQLLK.L 2077.03 + + + +

6 107–120 K.EHAVEGDCDFQLLK.L 1707.79 + + + +

7 132–143 K.CDSSPDSAEDVR.K 1384.56 + + nd nd

8 132–143 K.CDSSPDSAEDVR.K + Phospho (ST) 1464.52 nd nd + +

9 132–144 K.CDSSPDSAEDVRK.V 1512.65 + + + +

10 132–144 K.CDSSPDSAEDVRK.V + Phospho (ST) 1592.62 nd nd + +

11 144–159 R.KVCQDCPLLAPLNDTR.V + Phospho (ST) 2075.00 nd nd nd +

12 188–211 R.AQLVPLPPSTYVEFTVSGTDCVAK.E 2626.34 nd + nd +

13 219–225 K.CNLLAEK.Q 894.46 + + + +

14 226–231 K.QYGFCK.A 849.46 + + + +

15 318–337 R.HTFMGVVSLGSPSGEVSHPR.K 2080.02 + + + +

16 318–337 R.HTFMGVVSLGSPSGEVSHPR.K + Phospho (ST) 2159.98 nd – + +

17 341–361 R.TVVQPSVGAAAGPVVPPCPGR.I 2063.01 + + + +

Sequence coverage 42% 48% 46% 52%

Notes:
1 –Mascot searching without taking into account possible PTMs;
2 –Mascot searching with taking into account possible protein phosphorylation (Phospho S,T,Y)

nd—not detectable

https://doi.org/10.1371/journal.pone.0177427.t002
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identified. For example, FIBB, HEMO, FINC and APOA were associated exclusively with

phosphopeptides. Eight proteins, CRP, APOA1, CFAB, C1S, CERU, F13B, THBG and FA10,

contained acetylated peptides only. CHLE, APOB, FA9, C1R, RET4 and F13A, carried PTMs

of all three categories. The most abundant case was simultaneous observation of two different

PTM types in the same protein (but different peptides), for example, acetylation and ubiquiti-

nation or phosphorylation and acetylation. Such generalization was true for high-abundant

albumin, as well as low-abundant von Willebrand factor (VWF_HUMAN).

C1R, THBG, FIBG and RET4, contained peptides with more than a single modification,

that is, a single peptide incorporated two modified sites (e.g. phosphorylated and ubiquitinated

at the same time) (Table 3). For example, peptide KEFMSQGNK (C1R) comprised ubiquitina-

tion at site [9]K together with phosphosite [5]S, which were detected in eight of 12 GBM sam-

ples. Another four samples contained peptide KEFMSQGNK with only ubiquitination at site

[9]K. In addition, there was a peptide FLDSNIK from apolipoprotein B-100, where two differ-

ent modifications occurred at the same amino acid residue. This observation is consistent with

Chick et al. [8], who observed, mono-, di- and tri-methylation jointly with acetylation of the

same site. Choudhary et al. [30] has reported that every peptide present after digestion exhibits

8–12 modified forms, supposing multiplex modifications at the same site. For such multiplex-

modified peptides, we observed peculiarities in quantitative analysis. For example, the peptide

FLDSNIK with ubiquitination at site [7]K and acetylation at the same site [7]K was detected in

12 GBM samples but expressed quantitative differences between individuals. The peptide aver-

age normalized abundance in GBM samples nos. 13–16 and 22 was >10-fold compared to that

in samples nos. 14–21 and 23, and 73-times higher than in sample no. 24.

Fig 2. MS/MS spectra of non-modified (A) and phosphomodified (B) peptide DSSPDSAEDVR (2+) of

alpha-2-HS-glycoprotein (FETUA_HUMAN) GBM plasma. Monoisotopic mass of neutral peptide Mr (calc)

1,592.62. Variable modification S7–Phospho (ST) with neutral loss 97.98. [y(10)] in a non-modified peptide

was not detected.

https://doi.org/10.1371/journal.pone.0177427.g002
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Changes in the occurrences of PTM peptides of FDA-approved plasma biomarkers are

present in Fig 3. The difference between the portions of Phospho, Acetyl and GlyGly peptides

(bar height is proportional to the fraction of modified peptides) for GBM versus control was

not significant (p = 0.779, 0.072 and 0.338, respectively). However, analysis of acetylated pep-

tides demonstrated that 15 (40%) of 38 acetylated peptides (Table 3) carried N-terminal (Nt)

acetylation. These peptides matched eight FDA-approved biomarkers (ALBU, APOA1, APOB,

C1R, FIBA, FIBG, TRFE, and von Willebrand factor). Progenesis LC-MS quantified all of

these Nt-acetylated peptides in all 12 control plasma samples. We observed a reduction of

100% in Nt-acetylated peptides in 12 GBM plasma samples (S11 Table).

Some studies have addressed Nt-acetylation and ubiquitination in high-grade glioma [31, 32].

Nt acetylation is one of the most common covalent modifications in eukaryotes, and dysregula-

tion of this PTM is a trait of many human cancers [31, 33]. The data presented in the paper are in

accordance to the known literature on a central part of the pathway in various malignancies,

including glioblastoma. A lot of evidence indicates that Nα-terminal acetyltransferases, which are

dysregulated in numerous human cancers, can serve as therapeutic targets [33]. Thus, a reduced

number of Nt-acetylated peptides may have important therapeutic implications for GBM.

PTM-sensitive patterns, specific for the FDA-approved plasma

biomarkers

We selected PTM patterns that distinguished GBM datasets from the control ones. The GBM-

negative pattern was associated with the presence of a modified peptide in the control plasma

and a corresponding absence of the same peptide in GBM samples. Conversely, the GBM-posi-

tive status denoted the absence of a modified peptide in control plasma and its presence in GBM.

To illustrate the distribution of PTM patterns, we mapped our results onto the list of 37

FDA-approved plasma proteins identified in the control and GBM samples (Table 4). Sixty-

Fig 3. Changes in the fractions of PTM peptides of FDA-approved plasma biomarkers in GBM

compared to control.

https://doi.org/10.1371/journal.pone.0177427.g003
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Table 4. GBM-negative and GBM-positive patterns’ counted for FDA-approved plasma proteins.

##

No.

Protein name Mass,

kDa

No. of PTM patterns

Phospho (S, T, Y) Acetyl (K, protein N-

term)

GlyGly (K)* Total

GBM-

negative

GBM-

positive

GBM-

negative

GBM-

positive

GBM-

negative

GBM-

positive

GBM-

negative

GBM-

positive

1 Apolipoprotein B-100 518 4 4 4 2 4 2 12 8

2 Apolipoprotein(a) 501 1 2 nd nd nd nd 1 2

3 von Willebrand factor 309 nd nd 3 nd 1 nd 3 nd

4 Fibronectin 269 2 nd nd nd nd nd 2 nd

5 Complement C4-A 196 2 nd 1 1 nd nd 3 1

6 Complement C5 188 nd nd nd nd 4 nd 4 nd

7 Complement C3 187 2 nd 2 nd nd nd 4 nd

8 Alpha-2-macroglobulin 163 nd nd 1 1 nd 1 1 2

9 Ceruloplasmin 122 nd nd 1 nd nd nd 1 nd

10 Fibrinogen alpha chain 96 nd 4 3 nd nd nd 3 4

11 Plasminogen 91 1 1 nd 1 nd nd 2 1

12 Transferrin receptor protein

1

88 nd 2 nd nd nd 1 nd 3

13 Complement factor B 86 nd nd 1 nd nd nd 1 nd

14 Coagulation factor XIII A

chain

84 nd 1 1 nd nd nd 1 1

15 Complement C1r

subcomponent

83 nd nd 1 nd nd 2 1 2

16 Complement C1s

subcomponent

77 nd nd nd 1 nd nd nd 1

17 Serotransferrin 77 nd nd 1 nd 1 nd 2 nd

18 Coagulation factor XIII B

chain

76 nd nd 1 nd nd nd 1 nd

19 Serum albumin 73 nd nd 2 1 1 nd 3 1

20 Cholinesterase 68 nd nd nd nd 1 nd 1 nd

21 Biotinidase 62 1 1 nd nd nd 1 1 2

22 Fibrinogen beta chain 57 1 nd nd nd nd nd 1 nd

23 Alpha-2-antiplasmin 55 nd nd nd nd 1 nd 1 nd

24 Coagulation factor X 55 nd nd nd nd nd nd nd nd

25 Antithrombin-III 53 nd nd 1 1 nd nd 1 1

26 Coagulation factor IX 52 nd 1 nd 1 nd nd nd 2

27 Hemopexin 52 1 nd nd nd nd nd 1 nd

28 Vitamin K-dependent protein

C

52 nd nd nd nd 2 1 2 1

29 Fibrinogen gamma chain 51 nd nd 1 nd nd nd 1 nd

30 Thyroxine-binding globulin 47 nd 1 1 nd 1 1 2 2

31 Alpha-1-antitrypsin 47 nd 1 1 nd 1 1 2 2

32 Haptoglobin 45 nd nd nd 1 1 nd 1 1

33 Apolipoprotein A-I 31 nd nd 1 nd nd nd 1 nd

34 Complement C1q

subcomponent subunit C

26 nd nd nd nd 1 1 1 1

35 Complement C1q

subcomponent subunit B**
27 nd nd nd nd nd nd nd nd

36 C-reactive protein 25 nd nd 1 nd nd nd 1 nd

(Continued )
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five modified peptides resembled the GBM-negative pattern, while 40 others exhibited the

PTM-positive pattern. About half of the proteins (17) matched both GBM-positive and GBM-

negative patterns; 15 proteins resembled exclusively GBM-negative patterns; and three pro-

teins, namely transferrin receptor protein 1, complement C1s and coagulation factor IX, were

GBM-positive. Coagulation factor X (FA10_HUMAN) did not contain PTM peptides that

could be used for separating control against GBM.

The number of patterns did not depend on the number of the high-scoring peptides identi-

fied by the MS/MS method for each protein. Fibronectin was identified by >65 high-quality

peptides that delivered only two Phospho-negative patterns, while RET4 identified by 10 pep-

tides had three GBM-negative and two GBM-positive patterns (Table 4). Fibrinogen exhibited

no other pattern except for the GBM-negative phosphorylation. Serum albumin did not affect

the patterns linked to phosphorylation, while acetylation was present in three patterns, and

one pattern was attributed to ubiquitination.

As shown in Table 4, there was no a relationship between the molecular masses of the pro-

teins and the number of PTM-sensitive patterns in them, that is, the proteins with comparable

masses had different PTM patterns. For example, apolipoprotein B-100, the abundant plasma

species weighing >0.5 MDa, collected 20 patterns, whereas apolipoprotein(a) with comparable

mass had only three. Also, C-reactive protein and retinol-binding protein 4, which are of simi-

lar weight (25 and 23 kDa, respectively), were quite different single modified peptide detected

in C-reactive protein versus five pattern-making peptides revealed for the retinol-binding pro-

tein (see Table 4).

We identified disequilibrium of Nt-acetylated and ubiquitinated proteins in GBM, as com-

pared to the control samples. This suggests that aberrant de-modifications of plasma proteins

could happen in glioblastoma. At the proteome level, it was observed that, in disease, it is easier

to lose than gain, at least in regard to PTMs.

Conclusions

The simple method to perform PTM-mining using embedded options of MS/MS search

engine was investigated using GBM as an illustrative example. Application of a Mascot search

for single variable protein/peptide PTMs, such as phosphorylation, acetylation or ubiquitina-

tion, increased the fraction of the proteins identified by� 3 peptides for GBM spectra. A data-

base search gave an opportunity to enrich the sequence coverage for the given plasma protein

by gathering peptides from several search runs with variable modifications. The higher-level

modification of proteins in the GBM plasma was observed in comparison with the control

samples. In the majority of cases, the distinction of GBM patterns was due to a sufficiently

lower number of acetylated and ubiquitinated peptides in GBM. We found a reasonable option

to unravel modified peptides that exhibit disease-specific patterns of PTMs. The most notable

Table 4. (Continued)

##

No.

Protein name Mass,

kDa

No. of PTM patterns

Phospho (S, T, Y) Acetyl (K, protein N-

term)

GlyGly (K)* Total

GBM-

negative

GBM-

positive

GBM-

negative

GBM-

positive

GBM-

negative

GBM-

positive

GBM-

negative

GBM-

positive

37 Retinol-binding protein 4 23 1 nd 1 nd 1 2 3 2

* maximum missed cleavages: 2.

** does not contain modified peptides.

https://doi.org/10.1371/journal.pone.0177427.t004
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changes were found in relation to Nt-acetylated peptides. It is known that alterations of pro-

teins Nt-acetylation correlate to a low survival rate and aggressiveness of various tumors [33].

We suggest that decrease or increase in the number of modified plasma proteins (PTM-sensi-

tive patterns) could serve as a disease-unspecific indicator of a health threat. It was demon-

strated by using up-to-date MS/MS that such changes could be easily captured at the level of

the high-abundant FDA-approved proteins markers, in contrast with the current concept of

biomarker discovery by MS with high-sensitivity targeted methods applied to a small number

of candidate markers. Notwithstanding, the obtained data are correlated with the results of

Geyer et al [34], who suggested a strategy of plasma proteome profiling consisting of the mea-

surement of large numbers of plasma proteins at the greatest possible depth. These high-

dimensional profiles could indicate current disease risk as well as efficacy of lifestyle changes

or pharmacological interventions.
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