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Modeling of trees failure 
under windstorm in harvested 
Hyrcanian forests using machine 
learning techniques
Ali Jahani1* & Maryam Saffariha2

In managed forests, windstorm disturbances reduce the yield of timber by imposing the costs of 
unscheduled clear-cutting or thinning operations. Hyrcanian forests are affected by permanent 
winds, with more than 100 km/h which cause damage forest trees and in result of the tree harvesting 
and gap creation in forest stands, many trees failure accidents happen annually. Using machine 
learning approaches, we aimed to compare the multi-layer perceptron (MLP) neural network, radial 
basis function neural network (RBFNN) and support vector machine (SVM) models for identifying 
susceptible trees in windstorm disturbances. Therefore, we recorded 15 variables in 600 sample plots 
which are divided into two categories: 1. Stand variables and 2.Tree variables. We developed the tree 
failure model (TFM) by artificial intelligence techniques such as MLP, RBFNN, and SVM. The MLP 
model represents the highest accuracy of target trees classification in training (100%), test (93.3%) 
and all data sets (97.7%). The values of the mean of trees height, tree crown diameter, target tree 
height are prioritized respectively as the most significant inputs which influence tree susceptibility 
in windstorm disturbances. The results of MLP modeling defined TFMmlp as a comparative impact 
assessment model in susceptible tree identification in Hyrcanian forests where the tree failure is 
in result of the susceptibility of remained trees after wood harvesting. The TFMmlp is applicable in 
Hyrcanian forest management planning for wood harvesting to decrease the rate of tree failure after 
wood harvesting and a tree cutting plan could be modified based on designed environmental decision 
support system tool to reduce the risk of trees failure in wind circulations.

Windstorm disturbances occur when sudden changes happen in wind loading and trees have not acclimatized to 
new conditions of the site1 in thinned or adjacent to clear-cut stands. In managed forests, windstorms reduce the 
yield of timber by imposing the costs of unscheduled clear-cutting or thinning operations2. Windstorms cause 
significant changes in forest management plans, climate change3 and carbon storage of forests4 especially in tem-
perate regions5. Therefore, we need to model the response of trees to wind pressure to achieve reliable prediction 
and develop new strategies in forest management6. We believe that it is possible to develop mathematical models 
to predict the role of wind in trees stability by discovering the response of trees to sudden windstorms. This 
approach allows forest managers to predict the impact of forest activities or silvicultural plans on tree stability 
in sudden windstorms. The modeling approach quantitatively describes the relationship between tree attributes 
and tree susceptibility under windstorm tension. Recently, mechanistic models have been developed for forest 
ecosystems where the natural phenomena are influencing forest succession7,8. These models are mainly based on 
stand and tree characteristics, and aim to identify trees having potential for failure or uprooting1,9.

The main advantages of artificial neural networks (ANNs) in comparison with classic logistic regression are 
summarized in data analyzing which results in developing more accurate predictive models10. ANNs model the 
structure of the human brain in data analysis and create a neural structure as the human brain analyses data in 
parallel by several neurons. ANN is structured by a series of mathematical equations to simulate environmental 
processes such as wind-susceptible tree identification. ANNs and machine learning techniques are some algo-
rithms that learn from samples and data without relying on rules-based system programming; while common 
statistical modeling formulates the relationships between input and output variables in the form of mathematical 
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equations. ANNs have a variety of advantages, such as the ability to implicitly distinguish complicated nonlinear 
relationships between inputs (independent variables) and outputs (dependent variables). ANNs also use multiple 
training algorithms and rules and less formal statistical training. These methods have very distinctive potential 
to determine all possible interactions between tree failure and ecological variables11. Considering that, ANN 
methods resulted in a significant increase in prediction accuracy (approximately up to 80% of water discharge 
studies) in comparison with multiple regressions12.

The literature review reveals some advanced technologies which can predict the relationship between human 
activities and ecological processes. For example, Jahani et al.13 determined MLP, RBF and SVM, as the most 
accurate models in the ecological process modeling to predict vegetation density loss in response to the tourist 
activities, based on the ecological conditions of national parks. Considering the lack of valid long term data 
sets (noisy data) and a considerable number of variables, which influence tree failure, machine learning tech-
niques and artificial intelligence will be applicable in susceptibility assessment and modeling in many ecologi-
cal phenomena14–16. For example, Jahani11 developed SFHCM (Sycamore Failure Hazard Classification Model) 
model for hazardous tree classification in urban green spaces using an artificial neural network technique. 
SFHCM classifies the susceptibility of Sycamore trees under wind pressure in four classes of tree failure within 
a year containing 1. Offshoots, 2. Branches, 3. Tree crown and 4. Whole tree failure. However, machine learning 
techniques, such as Multi-Layer Perceptron (MLP), Radial Basis Function Neural Network (RBFNN) and Sup-
port Vector Machine (SVM) has been applied in many types of ecological researches (e.g. Jahani and Saffariha17; 
Hong et al.18). We aimed to compare the MLP, RBFNN and SVM models for prediction of tree failure in forest 
ecosystems. The main objectives were to: (1) model tree failure potential in the windstorm of forest lands; (2) 
compare different machine learning techniques to identify the most accurate model; (3) prioritize the model 
inputs (tree and stand variables) using sensitivity analysis of the model; and (4) designing environmental deci-
sion support tool for wind-susceptible tree identification.

Materials and methods
Site selection.  Hyrcanian temperate forests, dominated by old broadleaf trees, are located in the north of 
Iran adjacent to the Caspian Sea. We selected the Neka Zalemroud forest in Mazandaran province as the study 
area for this research (36° 26′ 09″ to 36° 30′ 47″ N latitude and 53° 20′ 34″ to 53° 31′ 51″ E longitude) as the 
boundaries of sampling area have been illustrated in Fig. 1 by the authors. This forest has been covered with 2533 
hectares of old broadleaf trees such as Fagus orientalis, Carpinus betulus, Quercus castanafolia, Acer velutinum, 
Acer cappadocicum, Parrotia persica and some other species. This region is affected by permanent winds and the 
maximum wind speed is in the range of 10 to > 30 m/s. The windstorms with more than 100 km/h cause damage 
forest trees, including uprooting or stem breakage. The windstorms cause many tree failures annually, which is in 
result of the tree harvesting and gap creation in forest stands. Hence, we aimed to identify the uprooted or stem 
broken trees using the sample plots data after the windstorm with 100 km/h (4 h) on 21 March 2018.

Methods.  Data from field measurement of 600 sample plots in the study area were summarized before and 
after the windstorm in March 2018. ARC MAP 9.3 software was used to spatially locate the sample plots on the 

Figure 1.   The location of study area and sample plots (QGIS 3.12.0, https​://www.qgis.org/en/site/).

https://www.qgis.org/en/site/
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forest map. Also, the slope of plots was defined by topography map (1:50,000) in this software. The permanent 
sample plots were created by Department of Natural Resources of Mazandaran Province (in the structure of 
the forest management plan) as a part of government-sponsored “permanent sample plot” protocol to monitor 
the changes in the number of trees and species48. In this protocol, the centers of these sample plots are marked 
with a metal rod and the geographical coordinates are recorded. The attributes of all trees in the sample plots 
are recorded consisting of species, diameter at the breast height, tree’s height, number of trees, distance to the 
center of the plot, crown diameter and land, soil and climate characteristics of the plot location. On average, 
in each plot, there are about 10 to 20 trees with a diameter of more than 7 cm (marketable size), and using the 
recorded data of the trees, it is possible to identify each tree in subsequent monitoring. As the protocol dictates, 
preliminary data were recorded on the stage of creating plots by experts from the Provincial Department of 
Natural Resources in 201649. After the windstorm on 21 March 2018, these plots were investigated by the authors 
to find damaged and undamaged trees. The area of each sample plot was 1000 m2 and in the shape of the circle 
with 17.84 m radius. These plots were investigated to record harmed trees which were uprooted or stem broken. 
Sample plots are clustered into susceptible (with harmed trees) and unsusceptible (without harmed trees) plots. 
We recorded the forest stand attributes, as well as tree attributes, which influence the likelihood of trees to be 
damaged in windstorms. Therefore, we investigate the damaged and resistant trees in the plots within 1000 m2 
area. The stand variables were recorded in the plot area such as the mean of the trees’ height in the plot. Some 
plots (306 plots) were determined where the damaged trees were observed and some others (294 plots) were 
determined where the target tree in the middle of the plot was undisturbed. In a literature review, we found that 
stand and tree characteristics influence wind-susceptibility of trees (such as tree diameter and height, spread 
crown area, rooting system, soil type, stand density, topography, etc.1,3,19–21). Therefore, 15 variables in 600 sam-
ple plots were recorded that are divided into two categories: 1. Forest stand variables: Plot Slope (PS) (%), Soil 
Depth (SD) in plot area (cm), trees Mean Diameter at the Breast Height (MDBH) at plot (cm), trees Mean Height 
(MH) in plot (m), trees Density (De) in plot (Number of trees), trees Diversity (Di) in plot (Number of tree spe-
cies), Number of Thicker trees in diameter (than the target tree) (NTh), and Number of Taller trees (than the 
target tree) (NTa).

2.Tree variables (bigger than marketable size): Tree Area (TA) (occupied area by the tree) (m2), Tree Diameter 
at the Breast Height (TDBH) (cm), Tree Height (TH) (m), Tree Crown Diameter (TCD) (m), Mean Distance from 
Neighbor trees (MeDN) (m), Minimum Distance from Neighbor trees (MiDN) (m), and Maximum Distance 
from Neighbor trees (MaDN) (m). Tree heights and some more data were recorded in permanent sample plots 
before the windstorm. Therefore, we used the recorded data at the stage of creating plots, for damaged trees. In 
fact, 10 to 20 trees are recorded in each plot and using the recorded data of the trees (species, diameter, distance 
to the center of the plot, etc.) it is possible to identify target trees (damaged or undamaged) in subsequent moni-
toring. There are some other factors that influence wind-susceptibility of trees such as forest edge, tree diversity, 
and land form. In this research, we were looking for the impact of forest plan activities on tree failure; therefore, 
we neutralized forest edge effects by selecting sample plots inside the forest stands which are far from the forest 
edges. In land form variables, land slope was considered in stand variables, but altitude and geographical aspect 
of the hill, as well as tree diversity, were omitted because of limited variation in the samples.

Tree Failure Model (TFM) was developed by recording 15 variables of the trees and forest stands in 600 
selected sample plots. In fact, we designed three TFMs with three modeling techniques to achieve the most 
accurate one based on model accuracy assessment. The damaged trees in the plots were identified by two fea-
tures: (1) The tree was uprooted by wind forces along the windstorm. (2) The tree was uprooted or stem broken. 
Leaning trees (under windstorm force) were also counted as uprooted trees. The damaged tree was chosen as 
the target tree in susceptible plots (plots with a damaged tree). Also, the central tree was selected as the target 
tree in the wind-unsusceptible plots (plots without damaged tree). Indeed, the output of TFM will be in two 
classes of damaged trees (1) and stable trees (0). Hence, the response or output of the model will be a discrete 
class {0,1}. The accuracy of the model is assessed by confusion matrices which detect the number of accurate 
and false classifications of sample trees.

The new mathematical modeling approaches and machine learning techniques are needed to cover limita-
tion in data collection and forest inventories. Indeed, ANNs are over 50 years old, but just not often applied 
yet. History of ANN development represents this fact that learning algorithms and structure of neural net-
works are developed every year. Therefore, we developed artificial intelligence techniques in natural phenomena 
modeling11,17 namely MLP, RBFNN, and SVM.

Machine learning techniques rely on a specific concept that is "a set of weak learners develop a single strong 
learner" (by Freund and Schapire22, Breiman23 and Breiman et al.24). As it is known, a weak learner is a classifier 
correlating slightly with the real (target) classification; while a strong learner is well correlated with real (target) 
classification. Machine learning algorithms are trying to combine weak classification rules in a one strong clas-
sification rule. Based on this approach, we used 15 variables (even if we believe that these variables are not related 
to tree susceptibility in the wind) and tested some algorithms and variable weights to make weak learners or rules 
and combining them into one strong rule in the structure of three machine learning techniques.

Multi‑layer perceptron (MLP) neural network.  ANNs use different methods, such as feed-forward, 
backward, recurrent and other, to teach the network for output prediction. MLP is a multi-layer form of Feed-
forward neural networks without any cycle or loop. In Feed-forward neural networks, the information analysis is 
performed in one direction from the input layer, through the hidden layer to the output layer47. In this learning 
method, the errors of the network propagate from the output layer to inputs to revise the weights of input vari-
ables. MLP is a multi-layer Artificial Neural Network (ANN) model with self-learning mechanism which uses 
samples for classification. Indeed, MLP has been using some interconnected processing elements that are called 
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PEs (Processing Elements). MLP learns by using samples and transfer functions which are applied between neu-
rons and hidden layers in a computer program17. In the training process, each PE receives signals periodically 
from other PEs and sends the new signal to other processors. Considering inputs, MLP adjusts the weights of 
neurons continuously, and the learning process is completed.

We used some activation functions (such as logarithmic sigmoid, hyperbolic tangent, and linear transfer 
functions) which determine the relation between inputs and outputs and these functions were tested to achieve 
the best performance of MLP. Back Propagation (BP) method propagates the error of outputs to the input layer 
where the first random weights have been assigned. The weights of the network inputs will be justified until the 
best performance of the network is reached; and after that, the learning process will be completed7,11. Errors 
between Ynet (MLP output) and Y (real class of tree failure) are decreased by BP when the weight of neurons or 
Processing Elements (PEs) (w) and input variables (x) come to the best performance, and the output of jth PE 
on the kth layer (PEkj) will be achieved by Eq. (1):

Transfer functions are used in the structure of network, and neuron output value is determined by (Eq. 2).

Finally, weights of t samples will be adjusted by delta rule which has been summarized in Eq. (3).

By using the ANN function in MATLAB R2013b, 360 uniformly distributed random samples (60% of 600 
samples) were defined as training data set. 120 evenly distributed random samples (20% of 600 samples) were 
defined as validation data set, and 120 samples (20% of 600 samples) were determined as test data set. All data 
were normalized to the interval of 0 to 1 using the Min–Max technique by mapminmax function in MATLAB 
R2013b (Refer to Demuth and Beale25 for MATLAB codes for MLP neural network development and related 
preprocessing algorithms).

Radial basis function neural network (RBFNN).  Radial basis function neural network is architectur-
ally similar to the MLP with different activation function in the hidden layer. RBFNNs have been used in func-
tion approximation and classification in researches of the last decade13,26–28. RBFNN uses samples in two data 
sets of training and test. The radial function is applied in each neuron of the hidden layer; and the number of 
neurons depends on input matrix of variables. Considering two classes of trees failure (0 and 1) in this research, 
we have two output layers in the structure of RBFNN. Gaussian function is the most frequently used function 
in the hidden layers of RBFNN13,27. The Gaussian function can find the center of circular classifiers successfully. 
The Gaussian function regulates the centre of mentioned circular classifiers by Eq. (4).

In Eq. (4), input variables are structured in the matrix "x", radial basis function has been defined as Rj(x), 
centre of RBF function is presented as aj, and we have a positive real number as "ϭ". The outputs of network will 
be calculated by an output function Eq. (5).

In Eq. (5), the number of calculation nodes in the structure of hidden layers (j), the number of neurons (m), 
the weights of neurons (wik), and a bias value (bj) have been used to calculate output (yk).

Neuron weights (wjk) are updated continuously to decrease output errors until network training process 
comes to end. Network performance is calculated when the number of neurons and the weights of neuron or 
layers are fixed13. (Refer to Demuth and Beale25 for MATLAB codes for RBF neural network development and 
related preprocessing algorithms).

Support vector machine (SVM).  SVM is one of the machine learning techniques that requires quite a lot 
of data for training, but this method also provides more accurate results than other methods when the volume of 
training data is limited29,30. Therefore, SVM has been used for modeling in this paper to deal with this issue with 
the collected data along forest inventory.

As a classifier technique, SVM aims to determine the largest margin in decision boundaries that could 
separate classes of decision31. SVM is looking for the largest margin in the boundaries of classification when the 
uncertainties in the decision are expected27. This method of prediction minimizes the probability of over-fitting 
in classes limits of tree failure.

We have two datasets of training and test in the structure of SVM. The values of target are structured in a 
n-dimensional matrix so it is possible to find the most accurate boundaries and margins. Equation (6) is the 
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SVM model and equation parameters define: y(x) = SVM output, α_i = a multiplier, K = kernel function, and 
b = threshold parameter.

Then we defined Gaussian Radial Basis Function (RBF) in Eq. (7), in the context of non-linear SVM. As we 
know, RBF is the most popular function in the context of SVM with remarkable ability to control generalization 
of SVM classifier.

The parameters of Eq. (7) are: xi and xj = samples and γ = kernel parameter.
Finally, primal problem in Eq. (8) should be minimized to achieve the most accurate SVM for tree failure 

prediction.

In Eq. (8), the parameters are: 1/2||w||2 = the margin, Σξi = training errors and C = the tuning parameter.
SVM uses samples in two data sets of training and test. The classes of the target will be summarized in a 

n-dimensional matrix to determine the nearest classification boundaries and margins. (Refer to Demuth and 
Beale25 for MATLAB codes for SVM neural network development and related preprocessing algorithms).

Model selection.  MLP, RBFNN, and SVM models were run on the training dataset with 15 tree variables 
as inputs and tree failure classes in 600 selected trees as output. To evaluate prediction accuracy of the MLP, 
RBFNN, and SVM models, we used the confusion matrix to determine the percentage of accuracy in target tree 
classification. Also, the number of trees with accurate and failed classification will be detected11.

Sensitivity analysis.  Sensitivity analysis was designed to prioritize the most accurate model variables with 
respect to the significance of variables in output. Sensitivity analysis defines the usefulness of variables in model 
predictions. In sensitivity analysis, we changed each variable in the range of standard deviation with 50 steps 
while the other variables were fixed at the value of the average. Then, the standard deviation of outputs for each 
variable changes was measured as model sensitivity for that variable. Variables with high value in the outputs 
standard deviation are the most important variables with more influence on model outputs. The trend of model 
output changes with changing the most significant variables, in the range of standard deviation (50 steps) was 
illustrated in some figures to find out the way that model outputs are changing with variable changes (negatively 
or positively) (Refer to Kalantary et al.27 and Jahani et al.13.

Environmental decision support system (EDSS) tool.  Finally a user friendly GUI (Graphical User 
Interface) tool was designed as an EDSS for susceptible tree identification in windstorms. It is applicable for 
forest managers who are looking for hazardous trees to plan for tree protection and increase the forest stands 
resistant against windstorms. ANN models use a huge matrix of weights; so model execution should be in the 
mathematical software (in this research MATLAB R2013b). Users, who are not familiar with the software, need 
a simple tool to run the model on new samples and get the results of prediction. To design EDSS tool, we devel-
oped a GUI extension in MATLAB R2013b software. With this tool, users enter the values of trees and stands 
variables (based on forest inventory data in other target forests) and the susceptible trees will be identified only 
by pushing a button. The model will be run on the data and the model outputs for each tree will be appeared in 
a table (0 or 1).

Results
Totally 306 damaged trees (306 sample plots) were identified in this study. On the other hand, 294 plots did not 
contain the damaged tree; so the central tree in the plot was recorded as stable tree. The recorded variables of 
the tree and stand, which have been used as model variables, are illustrated in Table 1. Indeed, the minimum, 
mean and maximum of model variables define the limits of model validity in practice.

In this paper, the accuracy of three predictive models, namely MLP, RBFNN, and SVM, in tree susceptibility 
assessment and prediction, was tested. The most accurate model discovers tree and forest stand attributes which 
result in a greater chance of tree failure. Sensitivity analysis of the best model aims to find out which parameters 
and how influence the chance of tree failure in windstorm events.

Prediction performance of MLP.  The number of neurons and hidden layers, activation function, and 
training method may lead to different MLP prediction performances (Table 2). The best MLP structures, its’ 
accuracies and training functions have been reported in Table 2. Considering the accuracy of classification in 
training and test data sets (Table 2), the most successful training function is SCG and the topology of MLP is 
(15-27-1) which means that 15 variables as inputs, 27 neurons in hidden layer, and one neuron (failure class) in 
output layer. The tangent hyperbolic transfer function was detected as the best estimation function in hidden 
and output layers.
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Considering the confusion matrix in Fig. 2, we find remarkable accuracy of classification in MLP model for 
three data sets of training, validation, and test. The designed model resulted in 100% successful in tree failure 
classification in the training data set. The accuracy of classification was 95% in the validation data set, 93.3% in 
the test data set, and 97.7% in the all data sets. MLP failed six samples of 120 samples in the validation data set, 
eight samples of 120 samples in the test data set, and 14 samples of 600 samples in the all data set.

Table 1.   Statistical data of tree and stand variables.

Stand variables Mean ± Standard error Min Max Tree variables Mean ± Standard error Min Max

Plot slope (%) 10.79 ± 0.22 1 30 Tree Area (m2) 171.93 ± 2.18 61 295

Soil Depth (cm) 28.47 ± 0.44 10 50 Tree Diameter at the Breast Height (cm) 95.82 ± 0.84 35 142

Trees Mean Diameter at Breast Height (cm) 31.42 ± 0.26 15 50 Tree Height (m) 25.89 ± 0.07 19 32

Trees Mean Height (m) 19.3 ± 0.14 11 28 Tree Crown Diameter (m) 10.34 ± 0.08 5 16

Trees Density (N) 12.42 ± 0.11 5 19 Mean Distance from Neighbor Trees (m) 7.72 ± 0.05 4.5 9.9

Trees Diversity (N) 2.48 ± 0.03 1 4 Minimum Distance from Neighbor Trees (m) 4.44 ± 0.05 1.5 6.8

Number of Thicker Trees in diameter than the 
target tree (N) 1.63 ± 0.04 0 5 Maximum Distance from Neighbor Trees(m) 14.01 ± 0.04 11.5 15.8

Number of Taller Trees (N) 1.52 ± 0.03 0 5

Table 2.   The results of parameters tuning in MLP, RBFNN and SVM structure.

Activation function Training function Structure

Test set Training Data

Accuracy (%) Accuracy (%)

Tanh-Tanh Scaled conjugate gradient (SCG) 15–27-1 MLP 93.3 100

Spread Neurons Structure Test set Training Data

495 35 RBFNN 90.6 94.8

C γ Structure Test set Training Data

200 24 SVM 93.4 97.9

Figure 2.   The confusion matrix of MLP neural network.
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Prediction performance of RBFNN.  RBFNN has been designed with a feed-forward structure, input 
layer, a single hidden layer with Gaussian transfer function and an output layer. RBF neural network minimizes 
the error of prediction by using a variety of parameters which include: the number of neurons, spreads of radial 
basis functions, and mean squared error goal. In this research, RBFNN parameters were defined to minimize 
the error of prediction: the number of neurons = 5–250, the spread of radial basis functions = 15–600 and Mean 
squared error goal = 0. The best results of RBFNN have been represented in Table 2.

Considering the accuracy of classification in training and test data sets (Table 2), the most successful topol-
ogy of RBFNN is presented in Fig. 3. The optimized RBFNN has been structured with 15 variables as inputs, 35 
neurons in hidden layer with Gaussian transfer function, and one neuron (tree failure class) in output layer with 
a linear transfer function. The optimized RBFNN is illustrated at Fig. 3 in MATLAB R2013b software.

Considering the confusion matrix in Fig. 4, we find the accuracy of classification in RBFNN model for two 
data sets of training and test. The designed model resulted in 94.8% successful in tree failure classification in the 
training data set. The accuracy of classification was 90.6% in the test data set and 94% in the all data sets. RBFNN 
failed 25 samples of 480 samples in the training data set, 11 samples of 120 samples in the test data set, and 36 
samples of 600 samples in the all data set.

Prediction performance of SVM.  SVM requires parameter tuning to perform with high accuracy in the 
best configuration. Indeed, SVM uses some predefined functions, called kernels. The kernel structure drives data 
into a multi-dimensional space. SVM with Gaussian RBF function combines bell-shaped curves at support vec-
tors. The bell-shaped curves have a particular width which inversely depends on the value of γ.

We use the C parameter to the regular simplicity of curves. Indeed, as the value of the C parameter is 
increased, the classification curve is more intricate. In the RBF function in SVM structure, parameter gamma 
(γ) is used to modify the system variance and the smoothness of classification boundaries. Table 2 represents 
prediction accuracies for various SVM parameters of the training and test data.

Considering the accuracy of classification in training and test data sets (Table 2), the value of the most accurate 
parameter is C = 200 and γ = 24. Considering the confusion matrix in Fig. 5, we find the accuracy of classification 
in the SVM model for two data sets of training and test. The designed model resulted in 97.9% successful in tree 
failure classification in the training data set. The accuracy of classification was 93.4% in the test data set and 97% 
in the all data sets. SVM failed 10 samples of 480 samples in the training data set, eight samples of 120 samples 
in the test data set, and 18 samples of 600 samples in the all data set.

Considering the results of modeling in Fig. 6, the MLP model is defined as the most accurate model in 
susceptible tree identification in wind disturbances of forest. Comparing to RBFNN and SVM, the MLP model 
represents the highest accuracy of target tree classification in data sets. Therefore, TFMMLP (TFM that uses MLP 
technique) was detected as the most accurate TFM for target tree identification. After randomizing data, we 
separated training and test data sets so that the same training and test samples were applied for three modeling 
techniques. Indeed, MLP achieved more accurate results by assigning 20% of all samples for validation during 
the training process.

Figure 3.   The best structure of RBFNN model (MATLAB R2013b, http://www.mathw​orks.com).

Figure 4.   The confusion matrix of RBFNN neural network.

http://www.mathworks.com
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Sensitivity analysis of TFMmlp.  We performed a sensitivity analysis on the outputs of the optimal TFMmlp 
model. In Fig. 7, the share of each input variable on model output has been detected by sensitivity analysis. The 
sensitivity value is the standard deviation of model output changes in response to each variable changes. Consid-
ering to the classes of targets, model outputs will be appeared in two classes of 0 and 1. According to the results 
of sensitivity analysis, the variables of ’the mean of trees height’ (0.46) and ’the number of trees (stand density) in 
plots’ (0.44), ’tree crown diameter’ (0.43) and ’tree height’ (0.42) are prioritized respectively as the most signifi-
cant inputs which influence tree susceptibility in the windstorm (Fig. 7). Indeed, ’the mean of tree’s height’ and 
’the number of trees (stand density)’ are the most influential forest stand factors which increase the chance of 
tree failure in windstorm events. On the other hand, some tree characteristics increase the vulnerability of trees 
in windstorms which are ’tree crown diameter’ and ’tree height’.

Figure 5.   The confusion matrix of SVM neural network.

Figure 6.   The performance of the designed TFMs for susceptible trees identification.

Figure 7.   The impact value (0 to 1) of input variables on the tree failure model outputs in sensitivity analysis 
of model (trees Mean Height (MH), trees Density (De), Tree Crown Diameter (TCD), Tree Height (TH), 
Minimum Distance from Neighbor trees (MiDN), Number of Thicker trees (than the target tree) (NTh), Mean 
Distance from Neighbor trees (MeDN), Tree Area (TA), Soil Depth (SD), trees Mean Diameter at the Breast 
Height (MDBH), Maximum Distance from Neighbor trees (MaDN), Tree Diameter at the Breast Height 
(TDBH), Number of Taller trees (NTa), trees Diversity (Di) and Plot Slope (PS)).
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Considering trends in Fig. 8a,b, ’the mean of stand trees height’ and ’stand density’ in forest, are negatively 
correlated to tree susceptibility in the windstorm; so in forest stands where the mean of tree’s height and the 
number of trees (stand density) increase, the probability of trees failure reduces. Indeed, trees in dense forest 
stands with taller species are less vulnerable in windstorms. Considering trends in Fig. 8a,b, ’tree crown diameter’ 
and ’tree height’ in forest, are positively correlated to tree susceptibility in the windstorm so taller trees with high 
crown dimensions have a remarkable potential to be damaged in the windstorm.

TFMmlp provides a new tool as a decision support system for forest stands management to reduce the number 
of damaged trees in wind disturbances. The sensitivity analysis prioritizes ’the mean of trees’ height’, ’the number 
of trees (stand density) in plots’, ’tree crown diameter’ and ’tree height’ variables as the most significant charac-
teristics of forest trees and stands which influence trees stability in windstorms. These results could be used in 
forest management and silvicultural methods in respect to the trends.

Finally, a graphical user interface (GUI) was designed to run TFM model on new data when the forest 
managers are planning for tree cutting. Indeed, after tree harvesting, the characteristics of residual trees and 
forest stand will be changed. The changes are detectable before harvesting plan implementation by the designed 
EDSS tool. It means that changes on the tree and stand characteristics are measurable before the implementa-
tion of harvesting plan. The forest manager can easily predict the possibility of tree’s failure in the windstorm. 
GUI as an EDSS tool, will be run on new data just by pushing "Tree Failure Simulation" button in Fig. 9. As an 
example, Fig. 9 illustrates the results of two different tree harvesting plan on ten residual trees. We found four 
susceptible trees in the plan "a". Therefore, we modified the harvesting plan "a" to plan "b" (changing selected 
trees for harvesting) and as a result, the trees will be stable in future windstorms. The modification is conducted 
by changing the most significant factors in sensitivity analysis results and the trends in Fig. 8 (using changes in 
selected trees for harvesting).

Discussion
In temperate ecosystems, such as studied Hyrcanian forests, regular and permanent storm damage the environ-
ment heavily every year5,32. In this research, we have attempted to determine the accuracy of machine learning 
approaches, namely MLP, RBFNN and SVM in susceptible tree classification. Quantitative models such as regres-
sion and ANN were recently developed to model wind throw damage and trees failure11,33–36. The most popular 
empirical approaches use individual tree variables as predictors to develop wind damage models37,38. With the 
aim of models comparison, we developed TFMMLP with 15 trees and stand variables as predictors. In related 
researches, tree and stand variables have been used for windstorm disturbance modeling, for instance, the model 
Forest-GALES uses rooting depth and soil type as explanatory variables of regression models that determine tree 
resistance to be uprooted39. The results of our research indicate that the MLP as an ANN modeling approach 
can very successfully identify wind-susceptible trees during a storm with an accuracy of up to 93.3%. In this 
paper, we claimed to develop an accurate prediction model to identify the susceptible trees in the windstorm. 
As the results show, the MLP model identified the susceptible trees in 93.3% of tree samples (120 trees) truly. We 

Figure 8.   The trend of TFMMLP Output changes with varying the most significant variables.
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believe that this accuracy is acceptable, but future researches can develop more accurate models with consider-
ing the other variables of forest stands such as forest edge trees or forest harvesting methods. The reliable results 
of ANN modeling in tree failure hazard classification have been proved in previous researches, for example 
Jahani40 classified the risk of tree failure in an urban area by SFHR (Sycamore Failure Hazard Risk) model with 
MLP technique (two classes of tree failure in one and two next years). The results of MLP modeling, especially 
its remarkable accuracy (97.7%) in comparison with RBFNN (94%), and SVM (97%) results detected TFMmlp 
as a comparative impact assessment model in susceptible tree identification. It’s a rather good idea to have such 
models to lead into a (sustainable) policy question, and direct legal decisions and questions. Hanewinkel et al.14 
and Jahani41 found that ANN model could identify damaged trees better than the logistic regression models. 
The authors believe that the prediction of tree failure, in natural conditions of the site, depends on many tree 

Figure 9.   A snapshot of the Graphical User Interface of the Decision Tool for two cases with different plot 
characteristics (including trees Mean Height (MH), trees Density (De), Tree Crown Diameter (TCD), Tree 
Height (TH), Minimum Distance from Neighbor trees (MiDN), Number of Thicker trees (than the target tree) 
(NTh), Mean Distance from Neighbor trees (MeDN), Tree Area (TA), Soil Depth (SD), trees Mean Diameter 
at the Breast Height (MDBH), Maximum Distance from Neighbor trees (MaDN), Tree Diameter at the Breast 
Height (TDBH), Number of Taller trees (NTa), trees Diversity (Di) and Plot Slope (PS)).
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attributes. However, we have limited the studied factors on some plot and tree characteristics. The nominated 
trees for protection plan would be identified by these factors in studied forest, but the readers should consider 
the limitation of this research in the application of the model. Indeed, the MLP model would be the first choice 
in susceptible tree identification modeling under windstorms.

Jahani11 designed SFHCM as an environmental decision support system (EDSS) by ANN for tree hazard 
classification in an urban green space area when the ANN model output is affected by the root damages and the 
degree of leaning trees. But Hart et al.19 indicated that the removal of tree variables such as tree height and tree 
diameter at breast height in the sensitivity analysis did not have an adverse effect on ANN or regression model 
performance. On the other hand, they believe that ANN is sensitive to the removal of stand variables (gap size, 
stand mean diameter at breast height, stand mean height and stand density) and the model performs best when 
stand variables are available. The results of our research demonstrate that tree and stand variables play the same 
role in the TFMmlp model outputs so that ’mean of trees height’ and ’tree density’ variables are negatively, and 
’tree crown diameter’ and ’tree height’ are positively correlated with the susceptibility of trees in the windstorm. 
However using other factors such as forest edge, land form and tree diversity that are neglected in this research, 
could be help to improve the accuracy of models.

The developed EDSS tool, such as other proposed EDSS tools for ANN models (Refer to Jahani et al.17,42 
and Kalantary et al.52), is applicable in forest lands where the forest inventory data has been prepared. The new 
data will be based on forest inventory sample plots and forest managers use these sample plots data to identify 
susceptible trees for wind-damage. However, forest managers need forest inventory data and maybe the main 
TFMmlp application would be in protected forest or where the forests are facing windstorms more frequently.

Conclusions
 Such as other prediction models in forests43–46,50,51, TFMmlp was developed for forest managers to assess quickly 
the impact of cutting trees or thinning stands on tree failure risk in forest. Such as an early warning system53,54, 
TFMmlp would allow simulations of management approaches on the windstorm damage risk. TFMmlp requires 
extensive data sets of actual wind-damage for its development and could be applied to other forests if the new 
region conditions are comprehensively covered within TFMmlp training data set. However, TFMmlp could be 
retrained with new accuracy in any regions that have specific different conditions. The output of model pre-
dictions is applied in forest management planning for wood harvesting; especially when the tree cutting plan 
could be modified based on the designed EDSS tool outputs to reduce the risk of tree’s failure in forest wind 
circulations. The results revealed that MLP was the most accurate technique in susceptible tree identification 
in windstorm disturbance and the mean of trees’ height and density, tree crown diameter and tree’s height are 
respectively the most significant variables which influence tree susceptibility and should be considered in forest 
activities and tree harvesting.

Data availability
The datasets generated during and/or analysed during the current study are available in the Github and GOOGLE 
DRIVE repository, Data in Github: https​://githu​b.com/ajaha​niaja​hani/wind-paper​-raw-data. Codes in Github: 
https​://githu​b.com/ajaha​niaja​hani/Wind-paper​-data. Data in Google drive: https​://docs.googl​e.com/sprea​dshee​
ts/d/1Rorv​hLZ_l9j2C​-Aw012​ypEc3​DrwdG​tXInV​tvnZu​83mw/edit?usp=shari​ng. Codes in Google drive: https​://
drive​.googl​e.com/file/d/1iJak​5vqiy​OoU61​90GVx​EJt8k​nWmQt​PMg/view?usp=shari​ng. Also, all data generated 
or analysed during this study are included in this published article (and its Supplementary Information files).
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