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ABSTRACT

Beer is one of the most popular beverages in the world and it has an irreplaceable place in culture. Although invented later
than ale, lager beers dominate the current market. Many factors relating to the appearance (colour, clarity and foam
stability) and sensory characters (flavour, taste and aroma) of beer, and other psychological determinants affect consumers’
perception of the product and defines its drinkability. This review takes a wholistic approach to scrutinise flavour
generation in the brewing process, focusing particularly on the contribution of the raw ingredients and the yeasts to the
final flavour profiles of lager beers. In addition, we examine current developments to improve lager beer flavour profiles for
the modern consumers.
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INTRODUCTION

Beer is one of the most popular alcoholic beverages in the world
and it has long been documented in the history of civilisa-
tion (Hill and Stewart 2019). Brewing practices vary worldwide

but develop upon the basic guidelines formulated in Germany
in 1516 to regulate commercial brewing – Reinheitsgebot (Purity
Law). Under the Purity Law, beer consists of three main ingre-
dients: water, barley malt and hops; additionally, yeasts were
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introduced later after J. H. van den Broek and Louis Pasteur inde-
pendently affirmed the importance of yeasts in alcoholic fer-
mentation (Barnett 2000). Each of these ingredients influences
the quality and sensory properties of the resulting beer (Wun-
derlich and Back 2009). The water quality is strictly controlled
and ancillary factors such as pH values and mineral concentra-
tions (water hardness) influence the type of beer that can be pro-
duced. Barley malt is considered the main raw material in brew-
ing and its liquid extract is called wort. Cereals other than barley
malt (adjuncts) are used outside of Germany, particularly in trop-
ical and subtropical regions to reduce production cost (Taylor,
Dlamini and Kruger 2013). Hops are added during wort boiling,
adding bitterness to beer and assisting beer microbial stability
(Almaguer et al. 2014). Finally, yeasts convert wort fermentable
sugars to ethanol and carbon dioxide, and through their com-
plex biochemical pathways produce secondary metabolites that
characterise the final aromatic profiles of beers (Hazelwood et al.
2008; Pires et al. 2014).

Among the myriad of beer types in the world, fermenta-
tion style separates beer into two categories: top fermented beer
– ale, and bottom fermented beer – lager. Ale is usually pro-
duced at temperatures between 15–26◦C by Saccharomyces cere-
visiae. Higher temperature renders this beer type fruitier than
lagers, attributed to more ester formation by yeasts. In his-
tory, ale consumption predominated Europe until the 16th cen-
tury, around when lager was invented in Bavarian monasteries
(Pavsler and Buiatti 2009). The introduction of the Reinheitsge-
bot restricted brewing to the period between Michaelmas, the
feast of St Michael on September 29th and the feast of St George,
April 23rd (Monerawela and Bond 2017a). As a result, brewing
was conducted in the colder months of the year. In order to
preserve the beer for consumption throughout the year, monks
introduced the practice of storing and maturing the fermented
beer in cool dark caves, hence the use of the term, Lager –
derived from the German word ‘lagern’, to store (Pavsler and
Buiatti 2009). The introduction of these laws and new customs
contributed to the emergence and domestication of a new inter-
species hybrid yeast, Saccharomyces pastorianus (Gallone et al.
2016; Monerawela and Bond 2017a). The hybrid yeasts contain
genetic materials from at least two different strains of S. cere-
visiae and the cryotolerant strain S. eubayanus (Dunn and Sher-
lock 2008; Okuno et al. 2016). S. eubayanus is a cold-adapted
strain first isolated in Patagonia, South America but later found
in other wild environments in South and North America, Aus-
tralasia and Asia, but only interspecific hybrids with S. cere-
visiae have been found in Europe (Peris et al. 2016). The com-
bination of inherited traits, such as high fermentative capac-
ity from S. cerevisiae and cryotolerance from S. eubayanus has
resulted in a novel yeast better adapted to fermentation in a cool
climate at temperatures between 8 and 14◦C. Compared to ale,
lager beer enjoys a clean and crisp flavour persona and accounts
for 84% of global consumption [https://www.thebusinessresearc
hcompany.com/report/beer-global-market-report].

A quintessential quality of beer is its sensory properties.
These can vary from brand to brand, and consumers will have
their favourites. This review focusses on the means of produc-
ing various flavour compounds in lager with a specific focus on
the contribution of raw materials (barley malt and hops), and
yeasts during fermentation. We discuss the range of these com-
pounds, consider approaches that are currently undertaken to
improve the intensity and the variety of aromas and flavours
in lager beers, and compare analytical methods to study these
flavour compounds.

Brewing

Barley malt and hops
Barley malt contains starch, cellulose and hemicellulose, pro-
teins, lipids, polyphenol, vitamins and minerals. Starch resides
in the endosperm and makes up for 63% dry weight of the grain.
It appears in semi-crystalline granules and consists of amy-
lose (20–25%) and amylopectin (75–80%; Wunderlich and Back
2009). Amylose and amylopectin are polymers formed by glu-
cose via α(1 → 4) and α(1 → 6) glycosidic bond. Starch hydrolysis
to dextrin and fermentable sugars during malting and mashing
are mainly carried out by α- and β-amylase. Another important
nutrient in the endosperm is protein, which is about 8–13.5%
grain dry weight and is essential in generating free amino nitro-
gen and sustaining foam and colloidal stability in the final prod-
uct (Steiner, Gastl and Becker 2011). In addition to sugars and
nitrogen sources, barley malt contains about 3% lipid that can
impact foam stability and off-flavours related to beer aging (Van-
derhaegen et al. 2006; Gordon et al. 2018). Polyphenols represent
0.1–0.3% grain dry weight and affect colour, foam and colloidal
stability (Jongberga, Andersen and Lund 2020).

Hops (Humulus lupulus) is responsible for the distinctive bit-
terness and the microbial stability of beer. Hops contains sev-
eral chemical components, but two are crucial to brewers: hop
resins contributing to bitterness, and hop essential oils respon-
sible for aromas (Almaguer et al. 2014). Hops resins contain α-
acids (humulones) and β-acids (lupulones; Hughes 2009). The α-
acids are the effective components that isomerise to iso-α-acids
(cis- and trans-isohumulone) during wort boiling, producing the
bitter taste. Hops (pellets) and hop products can be added dur-
ing wort boiling, before filtration, or to flavour a beer after pro-
duction (Wunderlich and Back 2009). Hop essential oils comprise
mainly of terpene hydrocarbons and oxygenated compounds.
Monoterpene myrcene, and the sesquiterpenes humulene and
caryophyllene along with several other compounds are respon-
sible for the pungent hoppy smell of beer (Hughes 2009).

The process
The brewing process has been extensively reviewed in book
chapters and many journal articles (Bamforth 2000; Briggs et al.
2004; Hughes 2009; Wunderlich and Back 2009; Alves et al. 2020).
Briefly, brewing comprises of malting, milling, mashing, lauter-
ing, wort boiling (and whirlpooling), fermentation, maturation
and storage (Fig. 1). Malting and mashing break down starch and
protein respectively to fermentable sugars and digestible nitro-
gen sources such as free amino acids and short peptides to facil-
itate healthy fermentation. Malting is a similar process to ger-
mination (Fincher 2010), and consists of steeping, germination
and kilning. Upon water uptake in steeping, the plant hormone
gibberellic acid triggers the expression of hydrolytic enzymes in
the aleurone layer to degrade storage proteins and starch in the
endosperm. The most important hydrolytic enzymes are α- and
β-amylases, starch debranching enzymes and endo- and exo-
peptidases (Fincher 2010). More than 40 endogenous endopep-
tidases have been identified (Jones and Budde 2005). Malting is
conducted for 3–6 days at temperatures between 12 and 18◦C
(Briggs et al. 2004). The process is completed by kilning – drying
germinated barley at temperatures up to 80◦C for pale malt, to
inactivate the enzymes, to reduce the grain moisture to between
4 and 6%, and to produce colours and aromas (Briggs et al. 2004).
Milling is a physical process to break down starch and protein,
facilitating downstream enzyme modification in mashing.

https://www.thebusinessresearchcompany.com/report/beer-global-market-report
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Figure 1. Major steps in the brewing process.

Mashing refers to a process of mixing ground malts (and
other cereal grists) and water in a controlled ratio at a pro-
grammed temperature regime to extract sugars and nitrogen
materials for fermentation (Briggs et al. 2004). Apart from sug-
ars, nitrogenous materials in the wort are crucial for fermenta-
tion. Free amino nitrogen (FAN) mainly refers to amino acids,
di- and tri-peptides and ammonia that can be taken up by
the yeasts (Stewart, Hill and Lekkas 2013; Hill and Stewart
2019). Both malting and mashing contribute to the release of
FAN; however, the percentage contribution by each process is
still under debate (Osman et al. 2002; Jones and Budde 2005;
Lekkas, Hill and Stewart 2014; Aldred, Kanauchi and Bamforth
2021). There are several mashing systems: traditional infusion
mashing, decoction mashing, temperature-programmed infu-
sion mashing and double mashing. Trends are turned towards

temperature-programmed infusion mashing (Briggs et al. 2004).
Infusion mashing consists of a series of controlled tempera-
ture stands optimal for certain types of enzymes. Traditionally,
a temperature between 40 and 50◦C is considered optimal for
proteases (Jones and Budde 2005), 60 and 65◦C for β-amylase
and 70 and 75◦C for α-amylase. A mash-off at 78◦C at the end
is applied to deactivate enzymes. FAN contribution during the
protease rest depends on malt variety and quality. In mod-
ern brewing practice, brewers prefer to eliminate the ‘protease
rest’ due to the concern of energy consumption and lipid oxi-
dation contributing to aldehyde off-flavours in beer aging. On
the other hand, exogenous proteases can be applied (outside of
Germany) to increase FAN and to improve extract yield when
poor malt quality is present or when high quantity of adjuncts
is employed.
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Table 1. Typical sugars and nitrogen materials in 12◦P wort.

Selected components in wort g/L

Glucose and fructose 9–12
Sucrose 4–5
Maltose 56–59
Maltotriose 14–17
Free amino nitrogen 0.10–0.25

Adapted from Briggs et al. 2004.

The Maillard reaction and the Strecker degradation in mash-
ing contribute to beer flavours. The Maillard reaction is a reac-
tion between reducing sugars and nitrogen materials containing
an α-amino groups, such as free amino acids, peptides and pro-
teins (Ferreira and Guido 2018). This reaction, also referred to as
non-enzymatic browning, is responsible for malt colour after kil-
ning. The Maillard products can result in more higher alcohols
production after fermentation (Dack et al. 2017). On the other
hand, the Strecker degradation of amino acids leads to aldehy-
des contributing to off-flavours in beer (Hernandez-Artiga and
Bellido-Milla 2009).

After mashing, the final wort is obtained by lautering – filter-
ing and sparging through a grain bed and boiled with hops. Addi-
tionally, boiling evaporates dimethyl sulphide (DMS) – a product
of S-methylmethionine from kilning (Briggs et al. 2004), deacti-
vates enzymes, and sterilises the wort before fermentation. In
summary, the final wort contains fermentable sugars includ-
ing glucose, fructose, sucrose, maltose, maltotriose, free amino
nitrogen and various nutrients for yeasts to function and prop-
agate (Table 1). The concentration of mainly sugars from malt
and other soluble content in wort can be measured by the Plato
Gravity Scale, and expressed in Degree Plato (◦P). The composi-
tion of FAN, particularly the amino acid profile in wort, directly
affect flavour output after fermentation (He et al. 2014).

The Yeasts: genetics and biochemistry of flavour
compound production

The hybrid genome
The heterogeneous S. pastorianus hybrids used for lager fermen-
tations are classified into two distinct groups, the Saaz group
(Hybrid Group I) and the Frohberg group (Hybrid Group II). Both
groups originated from hybridisation events between different
strains of S. cerevisiae and S. eubayanus (Dunn and Sherlock 2008;
Libkind et al. 2011). Group I strains are known to have a greater
tolerance to lower temperatures and a poor utilisation of mal-
tose and maltotriose, while Group II strains can use maltotriose
as a carbon source (Gibson et al. 2013). The genomes of Group I
strains have an approximate diploid S. eubayanus and a haploid
S. cerevisiae DNA content. In contrast, Group II strains have an
approximate 2n S. cerevisiae and 2n S. eubayanus DNA content.
Furthermore, the chromosome copy number varies between
strains of the same group with copy number of Group I strains
ranging from 45 to 52 and Group II strains ranging from 42 to 84
(Monerawela and Bond 2018).

Next Generation Sequencing and genomic analysis showed
that the resultant hybrid strains not only possess chromosomes
of both parental strains but also hybrid chromosomes with
known recombination breakpoints (Bond et al. 2004). Some of
these breakpoints are located in coding regions, leading to a
unique set of hybrid genes in the genus Saccharomyces (Nakao
et al. 2009; Hewitt et al. 2014; Okuno et al. 2016; Monerawela and

Bond 2017b). In addition to hybrid chromosomes, translocations
between chromosomes of the same sub-genome (Sc-Sc, Se-Se)
and between chromosomes of different sub-genomes (Sc-Se, Se-
Sc) are also observed.

Several scenarios have been proposed to account for the
origin of S. pastorianus strains. Dunn and Sherlock originally
hypothesised that both Group I and Group II arose from two
independent hybridisation events with Group I emerging from a
hybridisation of a haploid S. cerevisiae and a diploid S. eubayanus.
Group II, in contrast, was hypothesised to have originated from
a diploid S. cerevisiae and S. eubayanus strains (Dunn and Sher-
lock 2008). Later, as more genome sequences became available,
it was discovered that Group II yeasts contain two different
S. cerevisiae sub-genomes that can be distinguished by Single
Nucleotide Polymorphisms (SNPs), with one sub-genome shared
with Group I strains. This, together with information that both
groups share some common recombination events between the
parental chromosomes, led to the hypothesis that both groups
arose from at least two different sequential hybridisation events
between S. cerevisiae and S. eubayanus. The first hybridisation
event may have occurred between a diploid S. eubayanus strain
and a haploid S. cerevisiae ‘Ale’, strain (Monerawela et al. 2015;
Monerawela and Bond 2017a). This progenitor hybrid gave rise
to the Group I strains while Group II strains arose from a sub-
sequent hybridisation with another S. cerevisiae strain. Both
groups then evolved independently with Group I strains encoun-
tering a significant loss of the S. cerevisiae genome and both
groups undergoing further recombination events between the
sub-genomes (Okuno et al. 2016; Monerawela and Bond 2017a;
Salazar et al. 2019).

The genome data is also consistent with a scenario in which
both groups come from a single hybridisation event between
a diploid S. eubayanus strain and a heterozygous S. cerevisiae
diploid strain with Group I strains experiencing a selective loss
of a significant proportion of the heterogeneous S. cerevisiae sub-
genome due to different brewing conditions during the domes-
tication process (Okuno et al. 2016; Salazar et al. 2019).

While great strides have been made to understanding the
complexity of S. pastorianus genomes, much remains to be dis-
covered, specifically in relation to flavour and aroma production
during fermentation. The plasticity of the genomes and their
aneuploidy may explain their adaptation and evolution in the
brewing media (James et al. 2008; Rancati et al. 2008).

While the sequences of a large number of S. pastorianus
genomes, 31 to date, are now deposited at the National Center
for Biotechnology Information (NCBI https://www.ncbi.nlm.nih
.gov/genome/browse/#!/eukaryotes/342/, providing researchers
with a vast amount of information on the genomes, just one
genome, the Group II strain CBS1483 is fully annotated and
assembled into chromosomes (Salazar et al. 2019). To date, a fully
assembled and annotated genome of Group I strains has yet to
be deposited at NCBI. The recently developed open-source tool
for functional annotation of hybrid aneuploid genomes, Hybrid-
Mine, will greatly aid in the annotation of S. pastorianus strains
(Timouma, Schwartz and Delneri 2020).

Uptake of sugars and amino acids
The first sugars metabolised in wort are glucose and fructose.
These sugars can be imported by facilitated diffusion via hexok-
inase or high-affinity transport via hexose transporters (Romano
1982; Bisson and Fraenkel 1983; Lang and Cirillo 1987; Lewis
and Bisson 1991; Fig. 2). When hexoses are present in wort, the
synthesis of maltose and maltotriose transporters are inhib-
ited (Federoff, Eccleshall and Marmur 1983; Hu et al. 2000), but

https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/342/
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Figure 2. Overview of the main metabolic pathways involved in the synthesis of higher alcohol, acetate esters and medium-chain fatty acid esters in S. pastorianus.
The major biochemical pathways for the production of higher alcohols and esters from branched-chain and aromatic amino acids are shown. The enzymes required
for each step are shown in purple. The triple arrows indicate that several steps are omitted. The higher alcohol, 2-phenylethanol, is produced from the degradation
of the imported phenylalanine or the degradation of phenylpyruvate from the Shikimate pathway. Isoamyl alcohol is produced from the degradation of imported
leucine or from the transformation of pyruvate in the mitochondria. The fatty acid esters ethyl hexanoate and ethyl octanoate are derived from transesterification of

medium chain fatty acids. The major transporters for amino acids are shown as are the transporters for the major sugars found in wort. PEP: Phosphoenolpyruvate,
E4P: Erythrose-4-Phosphate, DAHP: 3- deoxy-D-arabino-heptulosonate-7-phosphate, α-KIV: α-ketoisovalerate, α-IPM: α-isopropylmalate and α-KIC: α-ketoisocaproate.

once these sugars are consumed, maltose is the next sugar to
be used. At least three maltose permeases have been identified,
namely Mal, Agt1 and Mtt1/Mty1 (Jespersen et al. 1999; Salema-
Oom et al. 2005; Vidgren, Ruohonen and Londesborough 2005),
and are encoded by gene alleles from both parental strains. At
least five Mal transporters are encoded by genes at five inde-
pendent MAL loci (MAL1-4 and MAL6). Each locus, all located
in subtelomeric regions, contains three genes that are required
for maltose metabolism. MALX1 genes – X designating the locus
number – encode for the maltose transporters (MalT). MALX2
genes encode for α-glycosidases (MalS). MALX3 genes encode for
transcriptional activators that regulate the previous two genes
(MalR; Han et al. 1995). MAL11, also known as AGT1, is the only
transporter of the 6 Mal loci that can import a wide range of
sugars, including maltotriose. The S. cerevisiae-like copy of AGT1
is non-functional in S. pastorianus as it has an early stop codon
within the open reading frame (Vidgren, Ruohonen and Londes-
borough 2005; Vidgren et al. 2009; Vidgren and Londesborough
2012). Mtt1 is another transporter found in S. pastorianus strains.
It is 90% similar to MAL31 and 54% similar to AGT1 (Salema-Oom
et al. 2005). Therefore, maltotriose is imported into S. pastorianus
by Se Agt1 and Se and Sc Mtt1 and its uptake differs between
Group I and Group II strains and also between strains from the
same group (Vidgren et al. 2010; Magalhaes et al. 2016).

Amino acids uptake from wort involves at least 16 amino acid
permeases, 12 of which are constitutively expressed, while four
are regulated via catabolite repression (Boulton and Quain 2008;

James and Stahl 2014). The uptake occurs at the early stage of
fermentation when ethanol level is low. The process depends on
the type of permeases, their specificity, competition for binding
by amino acids and feedback inhibition of certain permeases.
Yeasts display preferences for different amino acids; based on
their uptake rate, amino acids can be separated into four groups
(Jones and Pierce 1964; Lekkas et al. 2007; Stewart, Hill and Lekkas
2013). In addition to importing amino acids from the wort, S. pas-
torianus can synthetise de novo all amino acids (Ljungdahl and
Daignan-Fornier 2012).

Production of flavour compounds in S. pastorianus
Higher alcohols and their corresponding acetate esters are
metabolites produced from the secondary metabolism of amino
acids via the Ehrlich pathway (Hazelwood et al. 2008). It is
the branched-chain (leucine, isoleucine and valine), aromatic
(phenylalanine, tryptophan and tyrosine) and sulphur contain-
ing (methionine) amino acids that produce the major flavour
compounds (Dickinson, Harrison and Hewlins 1998; Iraqui et al.
1998; Dickinson et al. 2000). Each higher alcohol and acetate
ester produces a distinctive aroma or flavour. For example, 2-
phenylethanol and 2-phenylethyl acetate impart rose and honey
notes; whereas isoamyl alcohol and acetate impart banana and
fruity notes (Table 3; Pires et al. 2014; Dzialo et al. 2017; Holt et al.
2019).

The Ehrlich pathway consists of three steps (Fig. 2; Hazel-
wood et al. 2008; Pires et al. 2014). Firstly, the α-amino group of the
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amino acid is transferred to α-ketoglutarate in a transamination
reaction, leading to an α-ketoacid intermediate. This is carried
out by the transaminases Aro8p/9p and Bat1p/2p: the former
mainly acts on phenylalanine, tryptophan and tyrosine, while
the latter acts on leucine, valine and isoleucine. Aro8p/Aro9p
have broad substrate specificity and display activity towards
leucine, methionine and α-aminoadipate. Next, the α-ketoacid
is converted to a fusel aldehyde in an irreversible decarboxyla-
tion step by decarboxylases Pdc 1p,5p, 6p and Aro10p. Finally, the
fusel aldehyde is reduced to a higher alcohol by two main classes
of enzymes: alcohol dehydrogenases and aryl-alcohol dehydro-
genases encoded by large multigene families (Nordling, Jörnvall
and Persson 2002; Dickinson, Salgado and Hewlins 2003). The
enzymes involved in the Ehrlich pathway vary in cellular local-
isation and substrate specificity (Fig. 2). The catabolism of aro-
matic and branched-chain amino acids is regulated by Nitrogen
Catabolite Repression (NCR) and by negative feedback inhibition
by the terminal amino acid (Hofman-Bang 1999; Cooper 2002).

Esters are an important class of aromas in beer. These
molecules have a lower olfactive threshold than higher alco-
hols and generally have a better aromatic impact (Saison et al.
2009). There are two main groups of esters. Firstly, acetate
esters are produced by the esterification of higher alcohols
and ethanol with a molecule of coenzyme acetyl-CoA, catal-
ysed by acetyltransferases. The reactions can occur in both
the cytosol and mitochondria by Atf1p/Atf2p and Eat1p respec-
tively (Fig. 2; Fujii et al. 1994; Nagasawa et al. 1998; Kruis et al.
2017). Secondly, medium-chain fatty acid esters are formed by
Acyl-coenzymeA:ethanol O-acyltransferase, Eeb1p and Eht1p,
whereby ethanol is added to medium chain fatty acids such as
hexanoate and octanoate (Saerens et al. 2006).

The genes and proteins involved in the Ehrlich pathway have
been well characterised in S. cerevisiae and it is known that
other yeast species belonging to the Saccharomyces sensu stricto
complex produce the same flavours but at different concen-
trations under the same fermentation conditions (Pérez et al.
2021). The complex genome of S. pastorianus with two sub-
genomes from different Saccharomyces species raises an inter-
esting question about the participation of the sub-genomes in
flavour production. In total, two previously discovered S. pasto-
rianus unique genes, LgATF1 and LgATF2, were later identified
as being encoded by the S. eubayanus genome (Yoshimoto et al.
1999; Verstrepen et al. 2003). The high sequence identity between
the sub-genomes in S. pastorianus leads to the possibility of
trans-regulation of S. cerevisiae and S. eubayanus sub-genomes.
Bolat et al. (2013) showed that in S. pastorianus, the deletion of
the S. eubayanus-like copy of ARO80, the transcriptional activa-
tor that regulates amino acid biosynthetic genes, did not affect
the expression of the S. eubayanus ARO10 gene, indicating that
there is a trans-regulation between sub-genomes and that tran-
scriptional factors may be interchangeable. Trans-regulation of
sub-genomes has also been studied in an interspecific hybrid
of S. cerevisiae and S. paradoxus (Tirosh et al. 2009). The inter-
specific hybrid showed that trans effects exhibited condition-
dependent regulation. Also, this trans-regulation may be due
to a new environmental sensing obtained from a new genomic
combination, or new interactions between cis-trans regulators.
Trans-regulation may also occur through the formation of hybrid
protein complexes consisting of proteins encoded by each sub-
genome, or through competition for substrates and co-factors.
Several studies have shown the formation of chimeric pro-
tein complexes in interspecific hybrids (Piatkowska et al. 2013,
Dandage et al. 2021). One such chimeric complex, Trp2p/Trp3p

Table 2. Average values of aromatic flavour compounds of Group I
and Group II strains.

Group I Group II Threshold
Average
(mg/L)

Average
(mg/L) (mg/L)

Acetaldehyde 13.62 10.04 10∼25
Ethyl acetate 7.87∗∗ 20.13∗∗ 30
Ethyl propionate 0.34∗ 0.46∗ –
Isobutyl acetate 0.02∗∗ 0.07∗∗ 1.6
Ethyl butyrate 0.12 0.10 0.4
1-Propanol 5.37∗∗ 7.87∗∗ 800
Isobutanol 7.92 8.86 200
Isoamyl acetate 0.52∗∗ 1.24∗∗ 1.2–1.6
1-Butanol 0.25 0.75 450
Isoamyl alcohol 36.74 34.65 70
Phenylethyl
acetate

0.60∗∗ 1.05∗∗ 3.8

Phenyl ethanol 15.72 10.77 125
Ethanol (%) 4.78 5.40 -

Adapted from Mertens et al. 2015. P-value < 0.05∗, < 0.01∗∗. Threshold values

adapted from Miller 2019. Hyphen, not calculated in beer.

that catalyses the first step in tryptophan biosynthesis pro-
duced a fitness advantage in growth medium lacking trypto-
phan. These findings show that the proteome of interspecific
hybrids can lead to new combinations of protein complexes that
may impart a better adaptation to specific conditions. Currently,
our knowledge of the effects of hybrid protein complexes on
flavour profiles in S. pastorianus is limited, however in a recent
study the presence of hybrid complexes as well as sub-genome-
specific complexes in S. pastorianus have been proposed (Timo-
uma et al. manuscript submitted).

Several studies have measured the major flavour compounds
produced by Group I and Group II lager yeasts under varying fer-
mentation conditions in wort (Ekberg et al. 2013; Walther, Hessel-
bart and Wendland 2014; Mertens et al. 2015). The aromatic pro-
files were shown to vary significantly depending on the fermen-
tative conditions. Variables such as temperature, oxygen dis-
solved in the media, carbon source and concentration of sugar
and FAN have been shown to impact the concentration of higher
alcohols and esters in the beer (Dzialo et al. 2017). As part of
a study to generate new interspecific hybrids, the flavour pro-
files of seven Group I strains and 10 Group II strains were anal-
ysed (Mertens et al. 2015). A meta-analysis of this data reveals
that Group II strains produce a better aromatic profile than
Group I strains: esters such as ethyl acetate, isoamyl acetate and
phenyl acetate were produced at higher levels by Group II strains
(Table 2).

While it is difficult to ascertain the contribution of each
sub-genome of S. pastorianus to the final aromatic profile in
lager yeasts, lager-style beer fermentations have been carried
out using different strains of the parent S. eubayanus (Mardones
et al. 2020). These strains were shown to produce different aro-
matic profiles to S. pastorianus, suggesting that the complex
hybrid genome may produce a more complex aroma and flavour
profile.

Beer flavour analysis

The synergy of raw materials, process and yeasts culminates
in the complex matrix end product – beer, containing a large
variety of volatile and non-volatile compounds (Briggs et al.
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2004). Among the large number of volatile molecules, only a few
dozen play relevant roles in beer sensory properties (Table 3).
Higher alcohols and esters are the most important compounds
imparting characteristic aromas and flavours to lager, whereas
aldehydes and ketones, particularly diketones, are considered
off-flavours. For instance, diacetyl and 2, 3-pentadione – by-
products from valine and isoleucine biosynthesis in yeasts
(Krogerus and Gibson 2013a), are described as butterscotch and
undesirable in lager beer (Pires et al. 2015). In addition, sulphur
compounds such as hydrogen sulphide (H2S) and dimethyl sul-
phide (DMS) are off-odours. Change of concentrations of these
compounds occurs in maturation. Diacetyl can be reduced by
yeasts to acetoin and 2,3-butanediol, that possess higher detec-
tion threshold than that of diacetyl; however, the removal of
diacetyl is strain and condition dependent (Briggs et al. 2004;
Krogerus and Gibson 2013b). Hydrogen sulphide is decreased
during cold storage and carbon dioxide purging (Briggs et al.
2004). Hops are key ingredients in beer, and hop essential oils
are responsible for hoppy smells – particularly terpene hydro-
carbons (Hughes 2009). Part of the oxygenated compounds from
these terpenes are volatiles adding aromas to beer. Linalool,
from β-myrcene and the most abundant terpene alcohol, is an
indicator of hop aroma (Almaguer et al. 2014). Other terpene
alcohols, such as citronellol and geraniol are present at lower
amounts (Dietz et al. 2020; Table 3).

Measuring flavour compounds

From a flavour detection perspective, higher alcohols and esters
are considered ‘easy-to-analyse’ (Martins et al. 2020). They are
chemically stable during extraction and their concentrations
are above ppb (μg/L) level. These compounds can be readily
analysed by headspace extraction (static headspace, dynamic
headspace and solid phase microextraction) followed by gas
chromatography (GC) with flame ionisation detector (FID) or
mass spectrometry detector (MSD; Kobayashi, Shimizu and
Shioya 2008). Compared to other extraction techniques, solid
phase microextraction (SPME) has become very popular due to
its ease of use, high sensitivity, reproducibility and low cost. It
requires neither solvents nor previous sample preparation and is
highly automated (Zhu and Chai 2005). Therefore, for this review,
we focus on the measurement of confirmed flavour compounds
using the SPME-GC method.

Headspace-SPME-GC has been successfully applied to the
determination of flavour compounds in beer (da Silva, Augusto
and Poppi 2008; Kobayashi, Shimizu and Shioya 2008; Saison
et al. 2008; Cajka et al. 2010; Charry-Parra, DeJesus-Echevarria and
Perez 2011; Riu-Aumatell et al. 2014). There are some limitations
to the SPME extraction: in a complex system such as beer, ana-
lytes may compete for absorption. Modification has been made
to overcome these difficulties: higher extraction temperature
improves mass transfer in the multi-phase system. Cold fibre
SPME was developed to retain the fibre absorption while heat-
ing the sample (Wang, Wang and Shu 2020).

Sensory and current aromatic studies

Consumer’s perception of quality depends on the appearance
and the sensory characters of beer and many other psychologi-
cal determinants; among all these, beer flavour, taste and aroma
are crucial (Briggs et al. 2004; Garcia-Munoz et al. 2014). Accord-
ing to definitions in the international methods agreed by the
European Brewery Convention (EBC) and the American Society
of Brewing Chemists (ASBC), flavour refers to ‘the combination

of olfactory and gustatory attributes perceived during tasting,
including tactile, thermal, pain and kinaesthetic effects’. Taste
means ‘sensory attribute resulting from stimulation of the gus-
tatory receptors in the oral cavity by certain soluble substances’
and aroma is ‘an odour with a pleasant connotation’ (Analytica
1997). Overall, more than 800 volatile organic compounds (VOCs)
have been found in beer (Sohrabvandi, Mortazavian and Rezaei
2011; Donadini, Fumi and Newby-Clark 2014). These compounds
contribute to the citrusy, herbal, spicy, flowery, fruity and some-
times also to off-flavours (Ravasio et al. 2018). Therefore, under-
standing the nature and content of the volatile substances is
important for the selection of raw materials and yeast strains
(da Silva, Augusto and Poppi 2008).

There are two types of approaches for aromatic study,
sensory-guided ‘targeted’ approach and flavour-omics
approach. The targeted approach was firstly proposed by
Patton and Josephson in 1957, known as odour activity value
(OAV) (Patton and Josephson 1957). It and its modifications
have been successfully applied to the understanding of the
compounds that contribute to beer flavour (Reineccius and
Peterson 2013; Witrick, Pitts and O’Keefe 2020). However, the
targeted approach can only study compounds that directly
produce a sensory response. It ignores potential ingredient
interactions (Campo et al. 2006; de-la-Fuente-Blanco et al. 2020).
The flavour-omics approach consists of untargeted chemical
profiling and multivariant analysis. It can lead to a better under-
standing of chemical inputs and their impact on beer flavour.
A challenge for untargeted chemical profiling-multivariant
analysis is beer contains too many volatiles as the variable
inputs. A rule-of-thumb applies that the beer sample size
should be 10 times that of the independent variables – flavours
(Hair, Ringle and Sarstedt 2013), which means the beer samples
size is enormous. It’s impossible to perform a study with a
complete VOC profiling.

A possible compromised solution would be to select the
important volatiles based on the result of non-targeted profil-
ing with semi-quantitative measurement, and then to construct
the sensory prediction model with quantitative result of selected
volatiles. In non-targeted profiling, the analytical coverage is
crucial to prevent the missing of any substance. The coverage
must be improved in two ways: a wider range of VOC extrac-
tion and better separation. Higher coverage of extraction can be
achieved by combining the results from different VOC extraction
methods (Zhang et al. 2020). Bidimensional GC is a promising
tool for better separation (Ong and Marriott 2002). A high ana-
lytical throughout can be achieved by using short GC separation
time and VOC extraction time that match each other. A typical
fast GC has a running duration of 3–20 min (Zoccali, Tranchida
and Mondello 2019). Some faster extraction techniques have
been developed, such as vacuum assisted SPME, thin-film SPME
and dispersive solid phase extraction (Reyes-Garces et al. 2018;
Milheiro et al. 2019; Vakinti et al. 2019).

Improving flavour profiles for today’s consumer

There is a desire for continuous improvement in raw ingredi-
ents, process and yeast strains by breweries to sustain compet-
itivity in the market. Technology advancement in the brewing
industry is primarily driven by quality improvement and cost
reduction. Cost reduction can be achieved by lowering the grain
bill through adjunct addition or raw material optimisation, yet
the main concern rests on energy consumption (Bamforth 2000;
Taylor, Dlamini and Kruger 2013; Yorke, Cook and Ford 2021).
Effort has been made to enhance productivity via high gravity
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Table 3. Selected key aromas in beer.

Selected alcohols Concentration (mg/L) Organoleptic description

Ethanol 20 000–80 000 Alcoholic, strong
1-Propanol 3–16 Alcoholic
2-Propanol 3–6 Alcoholic
2-Methylbutanol 8–30 Alcoholic, vinous, banana
3-Methylbutanol 30–70 Alcoholic, vinous, banana
2-Phenylethanol 8–35 Roses, bitter, perfumed

Selected esters Concentration (mg/L) Organoleptic description
Ethyl acetate 10–60 Solvent-like, sweet
3-Methylbutyl acetate (isoamyl acetate) 0.5–5.0 Banana, ester, solvent
Ethyl hexanoate 0.1–0.5 Apple, fruity, sweet
Ethyl octanoate 0.1–1.5 Apple, tropical fruit, sweet
2-Phenylethyl acetate 0.05–2.0 Roses, honey, apple, sweet

Selected aldehydes Concentration (mg/L) Organoleptic description
Acetaldehyde 2–20 Green, paint
Propanal 0.01–0.3 Green, fruity
Butanal 0.03–0.02 Melon, varnish
2-Methylpropanal 0.02–0.5 Banana, melon
trans-2-Butenal 0.003–0.02 Apple, almond
2-Methylpropanal 0.02–0.5 Banana, melon
Hexanal 0.003–0.07 Bitter, vinous
trans-2-Nonenal 0.00001–0.002 Cardboard
Furfural 0.01–1.0 Papery, husky
5-Methylfurfural <0.01 Spicy
5-Hydroxymethylfurfural 0.1–20 Aldehyde, stale

Selected vicinal diketone Concentration (mg/L) Organoleptic description
2,3-Butanedione (diacetyl) 0.01–0.4 Butterscotch
3-Hydroxy-2-butanone (acetoin) 1–10 Fruity, mouldy, woody
2,3-Butanediol 50–150 Rubber, sweet, warming
2,3-Pentnedione 0.01–0.15 Butterscotch, fruity
3-Hydroxy-2-pentanedione 0.05–0.07

Terpens derived from hops Concentration (ug/L) Organoleptic description
Linalool 1–470 -
Citronellol 1–90 -
Geraniol 1–90 -
α-Terpineol 1–75 -
α-Eudesmol 1–100 -
Humulenol 1–1150 -
Clovanediol 51–677 -

Adapted from Baxter and Hughes, 2001. hyphen (-) no descriptor

(13–18◦P) or very high gravity (>18◦P) brewing and heat-tolerant
yeast strain development (Puligundla et al. 2020). On the other
hand, product development is thriving in the pursuit of diverse
and novel flavours. In contrast to traditional beer consumers,
current consumers favour more flavoursome choices or flavour
diversity as evidenced by the Craft beer movement. Healthy liv-
ing trends also propels brewers to explore options like low alco-
hol beer, light beer (low calorie beer) and gluten free beer. Here
we describe some approaches that have been taken to improve
product diversity and flavour profiles.

Flavoursome choices

The application of pure starter culture in industrial brew-
ing secures fermentation stability and product quality
(Walther, Hesselbart and Wendland 2014), but restricts flavour
diversity; thus, many brewers look for alternative ways to
enhance the flavour profile. One natural approach, often
referred to as bioflavouring is to conduct fermentations with

non-conventional yeasts (NCY; Vanderhaegen et al. 2003). NCYs
are also playing an important role in the pursuit of new varieties
of beers such as non-alcoholic and low-alcohol beer (NABLAB).
This beer type is highly desirable in the current societal climate
of responsible drinking and healthy living. NCYs can be used
either as a pure starter culture (Steensels and Verstrepen 2014;
Steensels et al. 2015; Michel et al. 2016; Bellut et al. 2018) or as
a supplement in various mix-fermentation methods (Canonico
et al. 2016; Michel et al. 2016; Ravasio et al. 2018; Tan et al. 2021).
The selection criteria for a brewing-suitable strain includes
wort carbohydrate utilisation, ethanol tolerance, flocculation
behaviour and fruity flavour production. Most non-conventional
yeasts produce isoamyl acetate (Steensels and Verstrepen 2014),
a banana note and a standard indicator of fruity flavour. A total
of two NCYs currently in commercial use are Saccharomycodes
ludwigii and Pichia kluyveri (Saerens et al. 2010; Crafack et al.
2013). Other yeast species being explored for beer production
include but are not limited to Torulaspora delvrueckii, Bret-
tanomyces anomalus, Brettanomyces bruxellensis, Candida shehatae,
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Candida tropicalis and Zygosaccharomyces rouxii (Michel et al.
2016). Additionally, NCYs can generate novel fruity flavours;
some of these are not present in traditional beer (Gamero et al.
2016; Michel et al. 2016; Bellut et al. 2018,2019; Bellut and Arendt
2019; Bellut, Krogerus and Arendt 2020). Health concerns propel
the development of light (low calorie) beer and gluten free
beer. These products derive from enzymatic manipulation of
amylolysis and proteolysis of raw materials in the brewing
process and are extensively reviewed elsewhere (Cela et al. 2020;
Gumienna and Gorna 2020).

Yeast strain improvement

Improvement of desirous traits in the yeast strains complement
and enhance the alterations to the brewing process for today’s
consumer. Flavour profiles can be expanded or improved by
altering amino acid metabolism in the lager yeast. One approach
is to increase flux through the Ehrlich pathway to achieve higher
concentration of higher alcohols and acetate esters. The biosyn-
thesis of amino acids in yeast cells is regulated by feedback inhi-
bition by the final product at the first irreversible reaction step in
the biosynthetic pathway, the committed step. For the branched-
chain amino acid, the committed steps are the first steps in
leucine and isoleucine biosynthesis catalysed by the Leu4p and
Leu9p for the former and Ilv1p for the latter (Holmberg and
Petersen 1988; Kohlhaw 2003). For the aromatic amino acids,
the committed step is the production of 3- deoxy-D-arabino-
heptulosonate-7-phosphate by the enzymes Aro3p and Aro4p
(Fig. 2; Braus 1991). Mutants that disrupt the negative feedback
regulation can be obtained by growing yeasts in the presence of
analogues of the terminal amino acid. Strejc et al used the amino
acid analogue 5,5,5-trifluoro-DL-leucine to increase flux through
the leucine biosynthetic pathway. The resultant mutant strains
produced three times more isoamyl acetate (Strejc et al. 2013).

Classical mutagenesis, involving UV radiation and chemi-
cal mutagens such as ethyl methane sulfonate (EMS), methyl
methane sulphonate (MMS) and N-methyl-N′-nitro-N-nitroso-
guanidine (MNNG), have been used to isolate mutants with
altered flavour profiles. This approach needs a robust selec-
tion method due to the high number of mutants produced.
Growth on the amino acid analogue, thiaisoleucine, was used
as a selection following chemical mutagenesis to obtain yeast
strains overproducing the flavour compound 2-methyl-butanol
(Kielland-Brandt, Petersen and Mikkelsen 1979).

Mutants with reduced off flavours can also be produced. In
one study, cells were treated with EMS and exposed to chlorsul-
furon, which inhibits acetohydroxy acid synthase, the enzyme
responsible for α-acetolactate production. The selected strains
had reduced levels of diacetyl, an off flavour with a smell of but-
ter or butterscotch (Gibson et al. 2018). UV mutagenesis followed
by selection in the presence of disulfiram and ethanol was used
to reduce the production of acetaldehyde, a flavour that imparts
notes of green apples, fresh cut grass and walnuts (Shen et al.
2014).

Hybridisation is a common technique that can be used to
obtain new yeast strains with improved flavour profiles. Sac-
charomyces pastorianus is a sterile hybrid and does not produce
many viable spores, making it difficult to produce new strains
by classic mating and sporulation. Several new approaches such
as spore-to-spore mating, rare mating and mass mating have
been developed to create new inter- and intraspecies hybrids
(Steensels et al. 2014). Several new hybrids of S. cerevisiae and
S. eubayanus were generated through spore-to-spore mating. The
resultant hybrids not only showed a wide aromatic compound

production but also a higher tolerance to higher temperatures.
Some of the hybrids produced a better aromatic profile com-
pared to both parental strains (Mertens et al. 2015).

Rare mating and mass mating between natural auxotrophs
have also been used to create hybrids (Zaret and Sherman 1985;
Boeke et al. 1987; Toyn et al. 2000; Krogerus et al. 2015, 2016). Rare
mating involves the generation of a hybrid from strains of differ-
ent ploidy, obtaining a final hybrid with a high ploidy that must
be submitted to a stabilisation process. In mass mating, spores
from both parental strains are mixed, obtaining strains with a
ploidy roughly of 2n. These techniques have been extensively
reviewed by (Krogerus et al. 2017).

Another interesting approach is directed evolution, whereby
cells are grown for several generations (100–200 generations)
under a specific selection pressure. Growth in the presence of
chlorosulfuron, produced strains with reduced levels of the off-
flavour diacetyl following selection (Gibson et al. 2018). Directed
evolution has also been used to generate strains with improved
thermotolerance, maltotriose utilisation and ethanol tolerance
(Gibson et al. 2020). In one such study, an adapted strain pro-
duced a 5-fold uptake of maltotriose resulting in higher alco-
hol production, improved fermentation attenuation and had no
impact in aroma formation (Brickwedde et al. 2017). Directed
evolution following UV mutagenesis produced an S. eubayanus
strain capable of utilising maltotriose. The new strain contained
a novel chimeric MALT gene resulting from the recombination
of MALT genes. This novel gene is similar to MTY1 gene and
enables the utilisation of this sugar (Brouwers et al. 2019).

High-gravity wort and very-high gravity wort are defined
as fermentations with a higher content of fermentable sug-
ars and increased FAN. Such fermentations have the potential
to produce higher concentrations of ethanol, higher alcohols
and esters. However, the high concentration of sugars increases
osmotic pressure producing negative effects on the cells, such as
increased cell volume, decreased cell viability and ethanol tox-
icity (Casey, Magnus and Ingledew 1984; Cahill et al. 2000). This
can lead to stuck and sluggish fermentations and problems in
repitching (Sigler et al. 2009). To overcome these problems, some
strains have been generated by different techniques. James et al.
evolved strains using EMS and growth in high-gravity wort at
high temperatures (James et al. 2008). The selected strains pro-
duced higher concentrations of ethanol but additionally showed
chromosome rearrangements, demonstrating that the plastic-
ity of this hybrid genome may play a key role in the adaptation
to stresses like heat or high gravity wort. Similar approaches
have generated strains with a better tolerance of ethanol and
increase fermentation performance in VHG fermentation (Blieck
et al. 2007; Huuskonen et al. 2010).

Future perspectives

Saccharomyces pastorianus strains are unique hybrids found in
breweries but not in natural environments. As newly evolved
strains, dating back to just the Middle Ages, their genomes are
still in flux and can undergo rearrangements in response to
stress. The strains show a wide range of diversity in chromo-
some and gene content and such genome plasticity appears to
provide the classic ‘hybrid vigour’ that has allowed adaptation
to the unique environs of the lager fermentation vat. The pres-
ence of two sub-genomes has not only generated a unique set of
hybrid genes but also allows for the potential of trans-regulation
and the formation of chimeric protein complexes between the
products of the two sub-genomes. A re-examination of the pro-
teome and transcriptomes using current technology and the



10 FEMS Yeast Research, 2021, Vol. 21, No. 5

quantitative integration of this data with more fully annotated
and assembled genomes will greatly expand our understanding
of the role of yeast metabolism in flavour compound production.
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