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Heinz Läubli1,2,3, Javier O Garcia4, Hongqiao Lin5, Xiaoming Fu5, Andrea Garcia-
Bingman1,3, Patrick Secrest1,3, Casey E Romanoski3, Charles Heyser6,
Christopher K Glass3, Stanley L Hazen5, Nissi Varki1,7, Ajit Varki1,2,3*,
Pascal Gagneux1,7*

1Glycobiology Research and Training Center, University of California, San Diego, San
Diego, United States; 2Department of Medicine, University of California, San Diego,
San Diego, United States; 3Department of Cellular and Molecular Medicine, University
of California, San Diego, San Diego, United States; 4Department of Psychology,
University of California, San Diego, San Diego, United States; 5Department of Cellular
and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, United
States; 6Department of Neurosciences, University of California, San Diego, San Diego,
United States; 7Department of Pathology, Division of Comparative Pathology and
Medicine, University of California, San Diego, San Diego, United States

Abstract Aging is a multifactorial process that includes the lifelong accumulation of molecular

damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we

report evidence of a significant correlation between the number of genes encoding the

immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs)

and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main

member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the

development of exaggerated signs of aging at the molecular, structural, and cognitive level. We

found that accelerated aging was related both to an unbalanced ROS metabolism, and to

a secondary impairment in detoxification of reactive molecules, ultimately leading to increased

damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs

co-evolved in mammals to achieve a better management of oxidative stress during inflammation,

which in turn reduces molecular damage and extends lifespan.

DOI: 10.7554/eLife.06184.001

Introduction
Aging is controlled partly by genetic factors, such as insulin/IGF-1, mTOR, AMPK, and Sirtuin signaling

pathways (Lopez-Otin et al., 2013). Another important element affecting aging is thought to be

cumulative damage to macromolecules by reactive oxygen and nitrogen species (ROS/RNS) induced

by unbalanced cellular inflammatory responses, or generated via mitochondrial dysfunction (Berlett

and Stadtman, 1997; Dizdaroglu et al., 2002). A large proportion of reactive oxygen species (ROS)

formed in vivo is derived from the electron transport chain in mitochondria during cellular respiration.

Additionally, ROS are generated in blood and tissue phagocytes upon release of superoxide radicals

by NADPH oxidase in response to pathogens (Finkel and Holbrook, 2000). ROS can also be rapidly

induced from resident local cells and recruited leukocytes upon tissue injury. Evolution towards an

optimal trade-off between protective and damaging ROS levels in organisms includes the introduction

of a number of enzymatic and non-enzymatic anti-oxidant mechanisms to maintain homeostasis and
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mitigate damage. Accordingly, comparative studies have shown association between the longevity of

a species and the capacity of cells in its individuals to resist oxidative stress (Kapahi et al., 1999;

Andziak et al., 2006; Brown and Stuart, 2007). Understanding the finer details of this regulatory

process might also provide access to measures for alleviating and controlling conditions associated

with aging, a pressing medical challenge in a society with increasing lifespan.

In this study, we sought to determine whether the CD33rSiglecs impact aging and influence

lifespan in mammals. Siglecs are mainly expressed by cells of the immune system and bind broadly to

sialylated structures of the same cell or of neighboring cells through their extracellular domain

(Crocker et al., 2007). Two classes of Siglecs are defined based on sequence homology and

conservation. The first group (Sialoadhesin/Siglec-1, CD22/Siglec-2, MAG/Siglec-4 and Siglec-15)

share low sequence identity but are conserved across mammals. In contrast, the genes encoding

CD33rSiglecs underwent extensive rearrangements, including duplication, conversion, and pseudo-

genization, and therefore vary in number and in sequence between different mammal species

(Cao and Crocker, 2011; Padler-Karavani et al., 2014; Schwarz et al., 2015). For instance, mice and

humans (the two best studied organisms in this respect) express five and ten functional CD33rSiglecs,

respectively (Angata et al., 2004). CD33rSiglecs in humans are numbered (e.g., Siglecs-3, -5, -6, -7,

-8, -9, -10, -11, -XII, -14 and -16), while murine CD33rSiglecs (other than Siglec-3) are identified by

a distinct alphabetical nomenclature (Crocker et al., 2007; Macauley et al., 2014). Although

information regarding Siglec expression patterns is not comprehensive, it is known that many

members are expressed in a cell type-specific manner. For instance, among the murine CD33rSiglecs,

CD33 is expressed mainly in granulocytes, Siglec-E is expressed primarily in neutrophils, monocytes,

microglia, and dendritic cells, Siglec-F is mainly found in eosinophils and mast cells, Siglec-G is

predominantly expressed in B cells and some dendritic cells, and Siglec-H is primarily expressed in

plasmacytoid dendritic cells (Pillai et al., 2012). Although it is not possible to identify clear

CD33rSiglec orthologs between human and murine Siglecs, due to rapid Siglec evolution and deep

divergence time between mice and humans, some Siglec receptors (for instance, Siglec-E and Siglec-9)

are considered to be functional homologs (Läubli et al., 2014). Notably, there is no evidence so far for

eLife digest As we get older, we are more likely to become frail, be less mobile and develop

heart disease, diabetes, and other age-related diseases. This is partly due to damage to tissues and

organs that accumulates over the course of our lifetime. How quickly we age is controlled both by

our genetics and by the environment we live in.

It is thought that damage to DNA, proteins, and other molecules in the body caused by chemically

active molecules called reactive oxygen species (ROS) can influence aging. ROS are produced during

respiration, immune responses, and other important processes in cells, but in excessive amounts

they can be extremely harmful. To avoid damage to DNA and other important molecules, cells have

several ways to control the levels of ROS.

One of the other hallmarks of aging is the development of chronic inflammation in tissues around

the body, which is partly triggered by the immune system in response to cell damage. A group of

genes called the CD33rSIGLEC genes are involved in controlling inflammation. The genomes of

different mammal species carry different numbers of these genes, but it is not clear whether this

alters the aging process in these animals.

In this study, Schwarz et al. investigated whether the CD33rSIGLEC genes influence the lifespans

of mammals. Species with a higher number of CD33rSIGLEC genes generally have a longer lifespan

than those with fewer of these genes. Mice that were missing one of these genes and were subjected

to inflammation early in life showed signs of accelerated aging and had shortened lifespans

compared with normal mice. As predicted, these mice also had higher levels of ROS, which led to

a greater amount of damage to the DNA and other molecules in their bodies.

Schwarz et al.’s findings suggest that the CD33rSIGLECs co-evolved in mammals to help control

the levels of ROS during inflammation, thereby reducing the damage to cells and extending the

lifespan of the animals. Given that individual humans have different numbers of working

CD33rSIGLEC genes, it would be interesting to see if this influences human lifespan.

DOI: 10.7554/eLife.06184.002
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a significant degree of functional redundancy among Siglecs. Despite the general low affinity of Siglecs

towards the sialylated structures, it appears that each Siglec has unique sialoglycan specificity profile

with regard to the type of sialic acid, its linkage and the composition of underlying glycan structure.

Interestingly, CD33rSiglecs can transmit inhibitory signals into immune cells by phosphorylation of

intracellular ITIM or ITIM-like domains, thus quenching pro-inflammatory cascades (Crocker et al.,

2007). Recently, it has been shown that Siglecs can directly control Toll-like receptor (TLR) signaling by

sustaining sialic acid-dependent interactions with TLRs and CD14 (Chen et al., 2014; Ishida et al.,

2014). As the development of chronic inflammation is one of the hallmarks of aging (Franceschi et al.,

2005), we investigated whether the number of CD33rSiglecs has co-evolved to modulate the aging

process. We asked if the number of CD33rSIGLEC genes correlates with the maximum lifespan in

mammalian species and found there was indeed a strong link, which was maintained after correction for

phylogenetic or body mass constraints. We then tested if deletion of Siglec-E impacts longevity in mice.

Indeed, Siglec-E-deficient mice exhibited accelerated signs of aging compared to littermate controls.

We detected an increased rate of oxidative damage to cellular macromolecules at the systemic level,

which we found to be related to a disrupted ROS homeostasis and early signs of aging. Finally, we

tested the absence of Siglec-E in survival studies and found that these mice had significantly reduced

longevity. Our combined data indicate that CD33rSiglecs regulate inflammatory damage and that the

expansion of their number in the genome has coevolved with the extension of lifespan in mammals.

Results

The number of CD33rSIGLEC genes correlates with maximum lifespan
The evolutionary theory of germ line and disposable soma predicts that long-lived species assure their

longevity through investments in more resilient somatic tissues (Moore et al., 1991; Kirkwood,

1992). It follows then that genes involved in management of cellular stress and repair of damage

contribute to lifespan. Indeed, it has been experimentally shown that lifespan of eight mammalian

species correlates to the ability of their primary fibroblasts to cope with stress (Kapahi et al., 1999).

As Siglecs are capable of modulating cellular inflammatory responses and the number of genes

encoding CD33rSiglecs varies widely between species (Angata et al., 2004), we asked if

CD33rSIGLEC gene number correlates with maximum lifespan in mammals. A positive correlation

was observed between these two parameters in the 14 mammalian species tested (R2 = 0.7630)

(Figure 1A, Figure 1—figure supplements 1, 2). As the genes encoding CD33rSiglecs are mainly

found in a single syntenic cluster in each species, we considered the possibility that the observed

correlation could be due to factors associated with the chromosomal environment surrounding these

genes or due to hitchhiking effects with adjacent genes. We therefore examined the Kallikrein-related

peptidase (KLK) gene cluster, which is located in the chromosomal region immediately adjacent to

CD33rSIGLECs in most of the 14 species. Strikingly, the number of KLK genes showed a poor

correlation with mammalian lifespan (R2 = 0.1825) (Figure 1B). Next, we tested if the observed

correlation of CD33rSIGLEC/maximum lifespan was due to a general expansion of genes encoding for

cell surface receptors that interact with pathogens to initiate immune responses. Therefore, we

examined Toll-like receptor (TLR) genes, which play important roles in innate recognition of PAMPs

and DAMPs (Janeway and Medzhitov, 2002; Beutler, 2009), and genes for IgG Fc gamma

receptors, which bind the Fc region of IgG to regulate immune responses (Nimmerjahn and Ravetch,

2008). Predicted gene numbers for both families showed only marginal association with maximum

lifespan (Figure 1C,D).

Since closely related species may also share similar traits simply due to their common ancestry,

data from different species may not be statistically independent. To control for such effects, we used

phylogenetic comparative analysis using Phylogeny Generalized Least-Squares (PGLS) or Felsenstein’s

Independent Contrast (FIC) approaches. The correlation between CD33rSiglecs and longevity

remained very strong after such phylogenetic correction (Table 1 and Figure 1—figure supplement 3).

Moreover, the correlation was maintained after mathematical correction for body mass represented by

average adult body weight (Table 2), another factor known to correlate with metabolic rate and lifespan

(Manini, 2010). Overall, a positive correlation was shown between the residual maximum lifespan and

residual CD33rSIGLEC gene numbers (controlling for both body mass and phylogeny) (Figure 1E,F).

Since the time that these data were originally collected and evaluated, additional genome sequences

have become available. Therefore, in order to further test the strength of the correlation, we included
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the data from three short-lived primate genomes (Saimiri boliviensis, Tarsius syrichta, and Otolemur

garnettii). Interestingly, these genomes were found to have fewer CD33rSIGLEC genes (5, 5, and 4

genes, respectively). Addition of these data to the primary correlation did not change the statistical

significance of the association between number of CD33rSIGLEC genes and maximum longevity

Figure 1. Correlation between gene numbers in gene families and maximum lifespan in mammals. Numbers of

CD33rSiglecs (A), KLK (B), IgG Fc receptors (C), and TLRs genes (D) and maximum lifespan in 14 mammalian species

listed in Figure 1—figure supplement 1. (E and F) Correlation of CD33rSIGLECs and maximum lifespan after

correction for average adult body weight and phylogeny. PGLS: λ = 1, phylogenetic tree I (E) or tree II (F) were used.

The Pearson’s correlation coefficient (R2) for each plot is indicated.

DOI: 10.7554/eLife.06184.003

The following figure supplements are available for figure 1:

Figure supplement 1. Data of 14 mammalian species used for analysis of correlation.

DOI: 10.7554/eLife.06184.004

Figure supplement 2. Correlation between number of genes of each family and maximum lifespan.

DOI: 10.7554/eLife.06184.005

Figure supplement 3. Phylogeny and tree branch information.

DOI: 10.7554/eLife.06184.006
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(R2 = 0.661 in logarithmic scale, R2 = 0.752 in linear

scale). Furthermore, based on the different sample

size of different species tested, an adjusted value

of maximum longevity of 90 years for humans was

considered, in line with previous studies

(Lorenzini et al., 2005). Notably, the overall

correlation between number of CD33rSIGLEC

genes and maximum longevity remained strong

(R2 = 0.649 in the logarithmic scale, R2 = 0.843 in the

linear scale).

Taken together, these data indicate that the

number of CD33rSIGLEC genes correlates to

lifespan in mammals. This correlation appears to

be independent from phylogenetic constraints,

from effects of genomic location, from a generally

observed rapid evolution of receptors involved in

immune responses and from body mass.

Accelerated aging and reduced
lifespan of Siglec-E-deficient mice
We decided to use a mouse model to seek

experimental evidence for the observed correla-

tion, as mice have a simplified CD33rSiglec profile

compared to other mammalian model systems, in

terms of number of genes and expression

patterns. In fact, mice possess five CD33rSiglecs

(namely, CD33, Siglec-E, -F, -G, -H). Among

these, Siglec-E is the dominant receptor and it is

strongly expressed on neutrophils, tissue macro-

phages (Figure 2—figure supplement 1), and

microglia (Zhang et al., 2004; Claude et al.,

2013). We monitored the survival of mice lacking

Siglec-E (Siglec-E−/−) over the course of 100 weeks in comparison to their control wild type littermates

(WT) (Figure 2A). The survival study was carried out in two sequential cohorts totaling 117 WT and 120

Siglec-E−/− mice. Overall survival of the Siglec-E−/− males was markedly reduced compared to WT (48%

and 70% remaining, respectively, when the experiment was terminated). Similarly, relative to the WT, the

median survival of Siglec-E−/− females decreased by 17%. In an attempt to mimic natural conditions of

early exposure to inflammatory insults, we exposed all groups of mice to a non-specific antigenic

challenge early in life (heterologous cell membranes mixed with Freund’s adjuvant). This treatment did

not affect the viability of Siglec-E−/− mice over 100 weeks (Figure 2—figure supplement 2). No

differences in general appearance or body weight were noted and no signs of specific pathologies were

observed during the study (Figure 2—figure supplement 3). Hematological and biochemical analysis of

blood samples at periodic intervals and at termination of the study did not reveal significant differences

between the two groups (Figure 2—figure supplement 4). Additionally, there was no evidence

indicative of systemic chronic disease, such as increased leukocyte counts, microcytic anemia, or

hypoalbuminemia. Serum creatinine levels did not suggest diminished renal function. Higher values of

alanine aminotransferase were noted for Siglec-E−/− animals but were not statistically different from the

controls. Similarly, systematic histological analysis of multiple organs showed no evidence of

pathological abnormalities, though we observed sporadic instances of periportal liver inflammation,

and a slight increase in lung inflammation compared to control mice (Figure 2—figure supplement 5).

Examination of kidneys showed that more of the Siglec-E−/− mice exhibited minor age-related

glomerular changes, with thickening of glomerular tufts, visible on Periodic-Acid Schiff stains. These data

were in line with previous work on the same mice at a younger age (McMillan et al., 2013).

We submitted the mice to a series of analyses to test if Siglec-E−/− animals exhibited exacerbated

age-related defects. First, 80-week-old Siglec-E−/− mice showed a threefold increase in error rate in

the Barnes maze test compared to controls (Figure 2B,C). These results are consistent with previous

Table 1. Statistical analysis of the correlation

between number of genes and maximum life-

span, corrected for phylogeny

Gene family PGLS FIC

Tree I

CD33rSIGLECs 0.00016 0.00012

KLKs 0.49 0.17

TLRs 0.38 0.10

IgG Fc receptors 0.35 0.0016

Tree II

CD33rSIGLECs 0.00017 0.00011

KLKs 0.65 0.23

TLRs 0.32 0.14

IgG Fc receptors 0.39 0.0019

Phylogenetic comparative analysis was conducted in

COMPARE 4.6b using Phylogeny Generalized Least-

Squares (PGLS) or Felsenstein’s Independent Contrast

(FIC) approaches. Student’s t-values were computed

based on the regression slopes and the standard errors.

Two-tailed probability (p) value of a Student’s t-test was

estimated using a degree of freedom of 11. The

phylogenetic relationship of 14 mammalian species

represented by Tree I and Tree II are indicated in Figure

1—figure supplement 3. Note that although FIC

analysis obtained a significant p value for IgG Fc

receptor gene family, the p value increased to 0.56 when

human data was excluded. Thus, this correlation is

driven by one outlier data point.

DOI: 10.7554/eLife.06184.007
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reports of impairments in learning and in spatial

memory in aged mice (Kennard and Woodruff-

Pak, 2011). Deficits in the Barnes maze were not

due to alterations in locomotor activity

(Figure 2—figure supplement 6). Secondly,

a blind test involving three independent observ-

ers noted increased hair graying in Siglec-E−/−

males compared to WT (Figure 2D). Hair graying

is related to incomplete maintenance of melano-

cyte stem cells through loss of the differentiated

progeny that occurs physiologically during aging

(Nishimura et al., 2005). After termination of the

survival study, immunohistochemistry of liver

tissues revealed an increased frequency of focal

expression of beta-galactosidase, a marker of

senescent cells (Figure 2E). Moreover, examina-

tion of the epidermis revealed a 50% reduction in

thickness in animals lacking Siglec-E (Figure 2F).

Epidermis tends to thin with increasing age

through mechanisms that possibly involve sen-

escent cells (Lopez-Otin et al., 2013). Collec-

tively, these data indicate that deletion of Siglec-

E results in a faster progression of aging and,

consequently, to increased frailty leading to an

earlier death.

Disordered ROS metabolism in
Siglec-E−/− mice
Siglec-E regulates inflammatory states upon acute

stress (McMillan et al., 2013; Chang et al., 2014).

We speculated that aging might act as a chronic stimulus and investigated whether Siglec-E−/− mice

exhibited low-grade signs of inflammation. As noted above, some organs showed accumulation of

inflammatory cells (Figure 2—figure supplement 5). Inflammation was not due to anti-nuclear

antibodies, which are typical of some autoimmune diseases but were undetectable in the sera of

Siglec-E−/− and WT mice. To gain mechanistic insights, we analyzed the role of Siglec-E on the

management of oxidative stress in innate immune cells. Primary bone marrow neutrophils from

Siglec-E−/− mice were more prone to produce oxidative burst upon stimulation, compared to

controls (Figure 3A and Figure 3—figure supplement 1). Additionally, neutrophils lacking Siglec-E

secreted higher ROS per cell (Figure 3B). Similarly, thioglycollate-recruited peritoneal neutrophils

showed a 10% increase in ROS (Figure 3—figure supplement 2), corroborating the notion that

Siglec-E controls oxidative stress and that the elimination of CD33rSiglec receptors leads to

disordered ROS. These observations were also in line with what was shown with a microglial cell line

(Claude et al., 2013).

Since we found evidence of inflammation in the liver, we used a microarray to examine differential

gene expression in this organ in aged Siglec-E−/− animals. The liver is a central organ for the regulation

of glucose homeostasis, xenobiotic metabolism and detoxification, and steroid hormone biosynthesis

and degradation. Gene expression analysis in aged C57BL/6 mice has indicated that 40% of the genes

with changes in expression during aging are associated with inflammation (Lee et al., 1999; Cao

et al., 2001). Another set of genes undergoing changes is related to stress response and chaperones,

followed by genes involved in xenobiotic metabolism. Principal component analysis uncovered

a subset of genes whose expression differed significantly between genotypes. Pathway analysis of

differentially regulated genes suggested changes in leukocyte-mediated inflammation, including

increased activation of leukocytes and granulocyte movement, as well as an increase in ROS

metabolism in the Siglec-E−/− mice (Supplementary file 1). Interestingly, the glutathione S-transferase

protein 1 (gstp1) gene was found to be down-regulated. Gstp1 catalyzes nucleophilic attack by

reduced glutathione on a variety of electrophilic compounds (Hayes et al., 2005). The resulting

Table 2. Statistical analysis of the correlation

between number of genes and maximum

lifespan, corrected for body weight

Gene family t value p value

Tree I

CD33rSIGLECs 3.521435 0.004786

KLKs 0.360601 0.725226

TLRs −0.701822 0.497370

IgG Fc receptors 1.656519 0.125834

Tree II

CD33rSIGLECs 3.660917 0.003748

KLKs 0.180227 0.860251

TLRs −0.726465 0.482726

IgG Fc receptors 1.589586 0.140235

Phylogenetic comparative analysis conducted in CAIC

package. Average adult body weight and maximum

lifespan of 14 mammalian species were log-transformed

and phylogenetic regressions were run using pglmEs-

tLambda in the CAIC package in R. This function uses

the PGLS method and estimates λ with the average

adult body weight controlled for. Student’s t-values and

two-tailed probability (p) values are shown. The phylo-

genetic relationship of 14 mammalian species repre-

sented by Tree I and Tree II are indicated in

Figure 1—figure supplement 3.

DOI: 10.7554/eLife.06184.008
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Figure 2. Absence of immunomodulatory Siglec-E aggravates aging phenotypes and reduces lifespan in mice.

(A) Survival curves of WT and Siglec-E−/− male (n = 59–62) and female (n = 58–59) littermates. Data are from two

independent cohorts (cohort 1 included 31 WT and 38 Siglec-E−/− males, 31 WT and 33 Siglec-E−/− females. Cohort 2

included 28 WT and 23 Siglec-E−/− males, 27 WT and 26 Siglec-E−/− females). Log-rank test analysis showed

significant differences in the survival curves both in males and females (males: χ2 = 5.833, d.f. = 1 and p = 0.0157;

females: χ2 = 8.821, d.f. = 1 and p = 0.0030). (B and C) Mice at 80 weeks were assessed for spatial learning and

memory via Barnes maze. Latency to escape (B) and number of errors before finding the escape box (C) are

indicated in 3-day interval. Error bars reflect mean ± s.e.m. (n = 11). p was calculated with a Student’s t test. (D) Hair

graying of males was evaluated by three independent observers in a blind test. Average rank scores for each mouse

are indicated. Error bars reflect mean ± s.e.m. (n = 9–11). p was calculated with a Student’s t test. (E) Surviving mice

were sacrificed at 100 weeks of age. Representative field of β-galactosidase staining of liver. Arrows indicate cells

with increased localized staining. Scale bar is 100 μm. (F) Skin epidermal thickness was measured for WT and Siglec-

E−/−. Mean and s.e.m. are indicated, n = 12, p was calculated with a Student’s t test.

DOI: 10.7554/eLife.06184.009

The following figure supplements are available for figure 2:

Figure 2. continued on next page
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complexes are usually less toxic and are eventually metabolized and exported via a glutathione-

dependent transport system. In humans, early loss of Gstp1 expression due to promoter

hypermethylation results in increased cancer susceptibility (Lin et al., 2001). In male mice, Gstp1 is

quantitatively the principal glutathione transferase in the liver and is found at lower levels in other

organs (Knight et al., 2007). In liver fromWT male mice, anti-Gstp1 antibodies stained hepatocytes of

the zone 1 (Figure 3C). A less defined pattern was observed in liver sections of Siglec-E−/− mice.

Overall, we observed a substantial difference in staining (Figure 3—figure supplement 3).

Immunoblot analysis confirmed a 40% reduction in Gstp1 expression (Figure 3D). It is interesting

to note that Gsto1 gene, encoding for another glutathione S-transferase, was found to be negatively

regulated by age in a previous study (Cao et al., 2001). Thus, changes in the xenobiotic-metabolizing

capacity of the liver appear to be intimately connected to the aging process.

Taken together, these data indicate that absence of Siglec-E leads to a dysregulation of ROS

metabolism, resulting in increased levels of reactive species. This phenomenon is due to both an

increased production of vacuolar ROS and a deficiency of removal of ROS.

Siglec-E deficient mice accumulate higher oxidative damage
Many types of ROS that are formed to serve a signaling or protective function can also cause damage

spontaneously to lipids, nucleic acids, and proteins. Polyunsaturated fatty acids are a sensitive

oxidation targets for ROS because of a damaging chain reaction that takes place once lipid

peroxidation is initiated (Niki, 2009). DNA bases are also very susceptible to ROS attack, and

oxidation of DNA is believed to cause mutations and deletions (Fraga et al., 1990). Most amino acids

in a protein can be oxidized by ROS, with these modifications leading to a loss of function

(Brennan and Hazen, 2003). Such damage occurs constantly, and cells must repair it or replace the

impaired molecules. Defects that allow oxidative damage to accumulate can contribute to the origin

and progression of cancers and neurodegenerative diseases, and in general contribute to the

symptoms of aging (Berlett and Stadtman, 1997; Halliwell, 2013). Similarly, impairment of the

processes that control ROS levels can lead to molecular damage. We looked for signs of molecular

damage in the organs of the Siglec-E−/− mice, and found a 1.4-fold increase of DNA damage in liver

compared to WT (Figure 4A). This was in line with the evidence that glutathione S-transferases

protect cells against as much as 90% of the damage induced by electrophiles and other free radicals

(Vasieva, 2011). Brain, spleen, and heart tissues also showed a slight trend towards increase in DNA

damage (Figure 4—figure supplement 1). Notably, these differences were not detected in the

organs of 10-week-old mice (Figure 4—figure supplement 2). We then searched for oxidative

adducts in proteins elsewhere in the body and found elevated plasma protein-bound 3-nitrotyrosine

levels, a marker of protein modification by nitric oxide (NO)-derived oxidants (Figure 4B). Similarly,

liver of Siglec-E−/− mice showed a trend towards accumulation of oxidized amino acids in proteins

compared to WT (Figure 4—figure supplement 3). Furthermore, we detected a twofold increase

of F2-isoprostanes levels, including 8-iso Prostaglandin F2α and its metabolite 2,3-dinor-8-iso

PGF2α in the urine (Figure 4C,D). F2-isoprostanes are generated by non-enzymatic peroxidation

of arachidonic acid due to free radical species (Montuschi et al., 2004). Taken together, these

Figure 2. Continued

Figure supplement 1. Expression of Siglec-E in mouse tissues.

DOI: 10.7554/eLife.06184.010

Figure supplement 2. Exposure to human red blood cell membranes does not impact survival of Siglec-E−/− mice.

DOI: 10.7554/eLife.06184.011

Figure supplement 3. Deletion of Siglec-E does not alter body weight increase.

DOI: 10.7554/eLife.06184.012

Figure supplement 4. Hematology and serum chemistry values of male mice at the termination of the study.

DOI: 10.7554/eLife.06184.013

Figure supplement 5. Absence of Siglec-E is associated with overall increased inflammation in liver and lung.

DOI: 10.7554/eLife.06184.014

Figure supplement 6. Deletion of Siglec-E does not affect locomotor activity.

DOI: 10.7554/eLife.06184.015
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data indicate that elimination of Siglec-E leads to accelerated oxidative modification of DNA,

proteins and lipids at the systemic level, via elevated ROS and reactive nitrogen species (RNS)

production.

Discussion
CD33rSiglecs differ by a great degree in number, sequence and expression pattern among

mammalian species. Together with the evidence that many genes involved in the biosynthesis of

sialylated glycoconjugates are rapidly evolving and that some bacterial pathogens can also produce

Figure 3. Altered ROS homeostasis in mice lacking Siglec-E. (A) Neutrophils purified from bone marrow were

incubated with immunocomplexes. Cells producing vacuolar ROS were measured by flow cytometry after 60 min.

Representative of three experiments, for each n = 3. (B) Neutrophils secrete ROS upon stimulation with PMA for 60

min. Extracellular ROS were detected with a probe that does not cross the plasma membrane (n = 11–12).

(C) Representative Gstp1 immunohistochemistry in liver from WT or Siglec-E−/− male mice at 100 weeks. Expression

pattern is altered in the knockout mice. (D) Immunoblot analysis and quantification of Gstp1 expression in liver of

100-week-old mice. The level of Gstp1 protein is reduced of about 40%. p was calculated with a Student’s t test, n = 4.

DOI: 10.7554/eLife.06184.016

The following figure supplements are available for figure 3:

Figure supplement 1. Neutrophils lacking Siglec-E are more prone to oxidative burst.

DOI: 10.7554/eLife.06184.017

Figure supplement 2. Thioglycollate-elicited neutrophils from Siglec-E−/− produce higher ROS than WT controls.

DOI: 10.7554/eLife.06184.018

Figure supplement 3. Gstp1 is found in lower levels in the liver of Siglec-E−/− mice.

DOI: 10.7554/eLife.06184.019
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sialylated structures, this led to the hypothesis that CD33rSiglecs function to recognize self in the form

of the host sialic acids (‘self-sialome’), thereby dampening unwanted responses in the steady state by

immune cells, wherein CD33rSiglecs are prominently expressed (Crocker and Varki, 2001). Indeed, it

has been shown for several CD33rSiglecs that ligation of sialic acid results in the phosphorylation of

tyrosine residues of the intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs),

followed by the recruitment of phosphatases SHP-1 and SHP-2 that turn off the pro-inflammatory

cascade (Angata et al., 2002; Ikehara et al., 2004). Therefore, CD33rSiglecs engage in a dense

network of sialic acid-dependent interactions in cis on the cell membrane to provide homeostasis.

Figure 4. Increased oxidative damage in mice lacking Siglec-E. (A) Oxidative damage of DNA (AP sites, apurinic/

apyrimidinic sites) was measured in the liver from WT and Siglec-E−/− mice at 100 weeks, n = 10. (B) Nitrotyrosine

(NO2Tyr) accumulation in plasma proteins of Siglec-E−/− mice, n = 8. (C and D) Concentrations of F2-isoprostanes in

urine derived from free radical-induced oxidation of arachidonic acid. Values were normalized by creatinine levels to

account for dilution in urine. F2-Isoprostane levels are significantly higher in Siglec-E−/− mice. Data are mean ± s.e.

m., Student’s t test.

DOI: 10.7554/eLife.06184.020

The following figure supplements are available for figure 4:

Figure supplement 1. Spleen and brain of aged WT and mutant mice have equivalent levels of DNA damage.

DOI: 10.7554/eLife.06184.021

Figure supplement 2. Young Siglec-E−/− mice exhibit levels of DNA damage comparable to WT.

DOI: 10.7554/eLife.06184.022

Figure supplement 3. Oxidation of hepatic proteins.

DOI: 10.7554/eLife.06184.023
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However, higher affinity ligands on other cells can displace cis interactions to take advantage of the

inhibitory properties of CD33rSiglecs in these host cells. For instance, many cancer cells produce

a heavily sialylated cell surfaces to contact Siglecs of natural killer cells and neutrophils, allowing

successful escape from immune recognition (Hudak et al., 2014; Jandus et al., 2014; Läubli et al.,

2014). Similarly, bacterial pathogens expressing sialic acids can engage CD33rSiglecs (Carlin et al.,

2009; Chang et al., 2014) and might therefore represent strong driving forces for evolution of this

class of receptors (Varki, 2011). Of course, other yet unexplored functions of Siglecs might also be

associated to their variation in number.

In this study, we analyzed the expansion of CD33rSIGLEC genes in the context of evolution of

aging. To test our hypothesis that inhibitory CD33rSiglecs might affect aging by regulating ROS

homeostasis, we used mice as a simplified model system as deletion of Siglec-E results essentially in

the removal of most of the CD33rSiglec receptors from macrophages and neutrophils, which are the

main producers of ROS upon inflammatory stimuli. Mice lacking Siglec-E are viable, exhibit no

apparent developmental defect and reproduce normally (McMillan et al., 2013). Upon acute

challenge by lipopolysaccharide-induced airway inflammation or by intravenous administration of

bacteria, Siglec-E deficient mice develop exaggerated neutrophil recruitment to the lung and

produce higher levels of pro-inflammatory cytokines (McMillan et al., 2013; Chang et al., 2014).

However, as for other Siglec-deficient mice such as CD33 or Siglec-F null animals, no clear phenotype

was reported in absence of acute challenge (Brinkman-Van der Linden et al., 2003; Zhang et al.,

2007). Here, we showed that Siglec-E affects ROS homeostasis, and deletion of Siglec-E results in

overproduction of ROS. This, together with a secondary impairment in the radical-scavenging enzyme

Gstp1 expression leads to higher levels of oxidative adducts of proteins, lipids and DNA, which may

lead to acceleration of aging. We thus concluded that Siglec-E impacts aging in mice through

regulation of ROS homeostasis. Formally, we cannot state that the upregulation of ROS due to the

absence of Siglec-E is the direct cause of the observed molecular damage. In fact, the observed levels

of oxidation may be primarily due to the impairment of the detoxification system, which might be

controlled upstream by Siglec-E through ROS signaling. Interestingly, the latter hypothesis is in line

with a recent revision of the Harman’s free radical theory of aging that proposes that ROS generation

represents a stress signal to age-dependent damage, rather then being the primary cause of it

(Harman, 1956; Hekimi et al., 2011). However, our findings do support the concept that alteration of

the ROS homeostasis accelerates aging. It is also interesting to note that both genetic and

pharmacological intervention to reduce ROS levels has produced contrasting results in reverting aging

phenotypes, suggesting that too low or too high ROS levels can be equally deleterious. In light of this, it

is likely that overexpression of Siglec-E in mice might not result in lifespan expansion. Additionally, this

work complements a recent report showing Siglec-E in ROS management in the fibrinogen/β2-integrin
signaling pathway (McMillan et al., 2014). However, in our assays, bone marrow and peritoneal

neutrophils from Siglec-E−/− mice consistently showed a higher ROS production. Lastly, whilst we

suggest here that Siglec-E impacts inflammaging by a ROS-mediated mechanism, Siglec-E might also

modulate the ability to recognize and remove senescent cells in aging (van Deursen, 2014).

Even if the correlation between number of CD33rSiglec family members and lifespan is

particularly strong, a higher number of SIGLEC genes may not directly translate in a comparable

increase of CD33rSiglec pathway activity. Instead, it is quite possible that the observed gene

expansion relates to expression patterns in specific cell types that might ultimately influence

cellular CD33rSiglec repertoires. We suggest that specific CD33rSiglec members contribute to

the regulation of inflammation by interaction through distinct sialylated structures in vivo,

leading to improved regulation of inflammatory responses. Our finding that long-living mammals

tend to have more CD33rSIGLEC genes is in line with the ‘inflammaging’ theory (Franceschi

et al., 2000). Inflammaging postulates that lifetime exposure to antigenic load caused by both

clinical and subclinical infections, as well as exposure to noninfective agents, generates low-

grade inflammation. This yields additional cytokines and results in a vicious cycle that drives

immune system remodeling to a chronic proinflammatory state, ultimately leading to aging and

common age-related disorders (Finch and Crimmins, 2004; Finch et al., 2010). Therefore, age-

related diseases may represent the cost of an efficient defense against pathogens conferred by

strong inflammation in early life. It also derives that elements that protect against inflammatory

damage or mediate repair may have an impact on aging, and that species differences in those

elements may translate in distinct patterns of age-dependent disease. The evidence presented in
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this work is consistent with a role of CD33rSiglecs in modulating aging derived from chronic

inflammation. In fact, CD33rSiglecs are receptors of innate immune cells. Their primary function

is to recognize self-associated molecular patterns and modulate host immune responses by

regulating cellular reactions, survival, and production of cytokine mediators (Crocker et al.,

2007; Chen et al., 2009; Cao and Crocker, 2011; Varki, 2011). CD33rSiglecs counteract

random molecular damage, which is the main driver of aging. Lastly, CD33rSIGLEC gene number

correlates with longevity.

In summary, our data provide molecular mechanisms underlying the CD33rSiglec-dependent control

of oxidative stress and identify this gene family as modulators of aging pattern and lifespan in mammals.

Materials and methods

Animals
Siglec-E−/− mice were described in McMillan et al. (2013) and backcrossed with C57BL/6 animals.

Heterozygous mice were used to produce WT and Siglec-E−/− littermates control. Mice were housed

in cages of groups of 3–5 that did not change from weaning, at 20 ± 2˚C under a 12 hr light/12 hr dark

photoperiod. Mice were provided with unlimited access to water and to a soy-based chow (Dyets,

Inc., AIN-93M, Bethlehem, PA) supplemented with either 0.25 mg/g chow Neu5Gc (by adding

purified porcine submaxillary mucin) or 0.25 mg/g chow Neu5Ac (by adding edible bird’s nest, Golden

Nest Inc., Arcadia, CA). Addition of Neu5Gc or Neu5Ac did not significantly increase the caloric

content of the chow. Sterile inflammation was induced via intra-peritoneal injection with 200 μg of

human erythrocyte membrane ghosts in 200 μl PBS, along with Freund’s complete adjuvant, at an age

of 10 weeks. Human erythrocyte membrane ghosts were prepared as described previously (Hedlund

et al., 2008). A booster injection using Freund’s incomplete adjuvant with the same amount of

immunogen was given 2 and 4 weeks later. Mice were accessed periodically for evaluation of health

status, body weight, and blood tests. Deaths were recorded by animal technicians throughout the

study. Decisions for euthanasia of aged mice with severely compromised health were taken by animal

technicians, following the guidelines of Institutional Animal Care and Use Committee of the University

of California, San Diego, and without involving the scientists.

Evaluation of hair graying
At approximately 75 weeks of age WT or Siglec-E−/− male mice were ranked blind in order of visible

graying to coat fur. In total 26 mice were ranked, including 6 female mice (3 Siglec-E−/− and 3 WT)

which had no obvious graying in the coat and therefore acted as a negative baseline. The highest

graying was scored 25, and the lowest was scored = 0. The option was available to say that there was

no difference between some or all mice, in which case they would be given the same score, but this

option was not used by any of the analysts.

Immunohistochemistry
Organs were extracted from euthanized animals and either fixed in 4% paraformaldehyde (skin, liver,

lung, brain) or snap-frozen in OCT and stored at −80˚C. Fixed tissues were processed and embedded

in paraffin. Paraffin sections were de-paraffinized, blocked, and stained with antibodies following

protocols of the UC San Diego Mouse Phenotypic Core http://mousepheno.ucsd.edu/.

Antibodies
Antibodies were as following: goat anti-Siglec-E (R&D Systems, Minneapolis, MN), rabbit anti-Gstp1

(Sigma–Aldrich, St. Louis, MO), mouse anti-β-actin (Sigma–Aldrich), rabbit anti-β-actin (Cell Signaling,

Danvers, MA), anti-CD45 (BD Pharmingen, San Jose, CA), rat anti-Ly6G (clone 1A8, BD Pharmingen), mouse

anti-Gstp1 (BD Pharmingen), and rabbit anti-β-galactosidase (Bioss Antibodies, Woburn, MA). Secondary

antibodies were from LI-COR (Lincoln, NE) or Jackson ImmunoResearch Laboratories (West Grove, PA).

Epidermal skin thickness
Dorsal skin was dissected from mice, fixed in 10% paraformaldehyde, and embedded in paraffin.

Paraffin sections were prepared at 5-μm thickness and stained with hematoxylin and eosin. Digital

photomicrography using the Keyence B6000 (Keyence, Itasca, IL) was performed to collect 400×
images, and the epidermal thickness was measured with Keyence BZII Analyzer.
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ROS production
Bone marrow neutrophils were flushed from femur and tibia and purified by Percoll gradient. Peritoneal

neutrophils were obtained from peritoneal exudate 16 hr after intraperitoneal injection of 3%

thioglycollate. Purity was evaluated by flow cytometry with an anti-Ly6G antibody. For phagosomal

ROS, 1 million neutrophils were incubated for 60 min in 700 μl PBS containing 0.5% (wt/vol) glucose and

140 μg/ml Fc OxyBURST (Life Technologies, Grand Island, NY). ROS production was measured with

a BD FACScalibur (BD Biosciences). For extracellular ROS, half a million neutrophils were incubated

with 10 μg/ml OxyBURST Green H2HFF BSA (Life Technologies) and phorbol myristate acetate (PMA).

ROS production was monitored with a SpectraMax M3 (Molecular Devices, Sunnyvale, CA).

Microarray analysis
Resected liver samples were placed immediately into RNALater (Qiagen, Valencia, CA) on ice.

Tissues were homogenized using a Kinematica homogenizer. RNA was isolated from tissues using

RNeasy kit (Qiagen). Concentration and quality of RNA were measured by a NanoDrop ND-1000

spectrophotometer (NanoDrop Technologies) and by a 2100 Bioanalyzer (Agilent). Gene microarray

analysis was run by the UC San Diego Biomedical Genomics Microarray Core Facility using

a MouseRef-8 v2 Expression BeadChip (Illumina, San Diego, CA). A principal component analysis

(PCA) was conducted on the signals obtained from the data matrix (25,697 probes × 6 samples) with

Matlab (Mathworks, Inc., Torrance, CA). Data generated from gene array were analyzed for

differential geneexpression. Genes were considered differentially expressed with a p value <0.05
(Mann–Whitney U test), and a Log2 fold change of >1 or < −1. The generated list was analyzed

using Ingenuity Pathway Analysis.

Quantification of Gstp1 expression
For immunoblot analysis, liver tissues were washed with PBS and homogenized in RIPA buffer. Cell

lysates were spun at 10,000×g. Protein concentration of the supernatant was measured with a BCA kit

(Pierce, Rockford, lL). Proteins were run in a SDS-PAGE and transferred to a nitrocellulose membrane.

Membranes were incubated with antibodies. Signals were acquired with an Odyssey instrument (LI-

COR) and analyzed by Image Studio software (LI-COR).

For immunohistochemistry analysis, liver were fixed in 10% paraformaldehyde and embedded

in paraffin. Paraffin sections were prepared at 5-μm thickness and incubated with antibodies.

Images were collected using a B6000 microscope (Keyence). Simple image analysis on the

brightness (grayscale value of the image) was conducted with the Image Processing Toolbox of

Matlab (Mathworks, Inc.). Images were loaded into Matlab, normalized via z score, and then pixel

value histograms were inspected. Images were manually inspected for artifact and those pixels

were discarded from the analysis (as shown on the images as white lines on far right inset and

marked as green in the image to the left). Histograms often showed a bimodal distribution of pixel

values indicating a clear demarcation of positive staining. The middle value between this

bimodal distribution was used as a criterion to classify between negative and positive staining.

Then, the pixels were marked either as bright (red) or dark (blue) and counted. Visual inspection of

the classified image was compared to the original image, and if pixels were misclassified, the

midpoint was manually changed until the resulting image most clearly separated the tissue

differences.

Measurement of DNA oxidation levels
DNA was extracted from tissues with a DNeasy Blood & Tissue Kit (Qiagen). DNA concentrations of

each sample were adjusted to 0.1 μg/ml. The number of apurinic/apyrimidinic (AP) sites was

determined using the DNA damage Quantification Kit (Dojindo, Rockville, MD), following the

manufacturer’s instructions.

Analysis of oxidative adducts of proteins
At the time of harvest, all tissues were immediately rinsed in ice-cold PBS and frozen at −80˚C in PBS

containing 100 μM diethylenetriamine pentaacetic acid (DTPA) and 100 μM butylated hydroxytoluene

(BHT) in gas-tight containers overlaid with nitrogen. Analysis of oxidative modification of amino acids

was done by stable isotope dilution liquid chromatography with on-line tandem mass spectrometry
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(LC/MS/MS) using a HPLC interfaced to an AB SCIEX 5000 triple quadrupole mass spectrometer, as

described in Zheng et al. (2004).

Analysis of oxidative adducts of proteins from urine
Urine samples were spun to remove potential cellular debris and then frozen at −80˚C until the time of

analysis. Urinary creatinine (Cr) levels were quantified on an Abbott Architect machine (Abbott

Diagnostics, Abbott Park, IL), according to the manufacturer’s instructions. Immediately after thawing,

an internal standard (9α,11α,15S-trihydroxy-5Z,13E-dien-1-oic-3,3,4,4-d4 acid; PGF2α-d4; Cayman

Chemical Company) was added to the sample. Urinary levels of F2-IsoProstanes (PGF2α and 2,3-

dinor-PGF2α) were analyzed by stable isotope dilution LC/MS/MS using a HPLC interfaced to an AB

SCIEX 5000 triple quadrupole mass spectrometer. To adjust for variations in urinary dilution, the

results of F2-IsoProstanes are reported as ratios with urine Cr concentrations.

Barnes maze test
The Barnes maze test is a spatial learning and memory test originally developed in rats (Barnes, 1979),

but also adapted for mice (Bach et al., 1995). The Barnes maze task has the benefit of minimizing pain

and distress to the animal. The Barnes maze apparatus consists of an opaque Plexiglas platform 75 cm in

diameter elevated 58 cm above the floor. 20 holes, 5 cm in diameter, are located 5 cm from the

perimeter, and a black Plexiglas escape box (19 × 8 × 7 cm) is placed under one of the holes. Distinct

spatial cues are located all around the maze and are kept constant throughout the study. On the first day

of testing, a training session was performed, which consists of placing the mouse in the escape box and

leaving it there for 5 min. 1 min later, the first trial was started. At the beginning of each trial, the mouse

was placed in the middle of the maze in a 10-cm high cylindrical black start chamber. After 10 s the start

chamber is removed a bright light is turned on, and the mouse is allowed to explore the maze. The trial

ended when the mouse entered the escape tunnel or after 3 min elapsed. When the mouse entered the

escape tunnel, it remained there for one minute. When the mouse did not enter the tunnel, it is gently

placed in the escape box for one minute. The tunnel was always located underneath the same hole

(stable within the spatial environment), which is randomly determined for each mouse. Mice were tested

once a day for 9 days. On day 10, a probe test was conducted during which time the escape tunnel was

removed and the mouse allowed to freely explore the maze for 3 min. The time spent in each quadrant

was determined and the percent time spent in the target quadrant (the one originally containing the

escape box) was compared with the average percent time in the other three quadrants. Each session

was videotaped and scored by an experimenter blind to the genotype of the mouse. Measures recorded

include the number of errors made per session and the strategy employed by the mouse to locate the

escape tunnel. Errors were defined as nose pokes and head deflections over any hole that did not have

the tunnel beneath it. Search strategies were determined by examining each mouse’s daily session and

classifying it into one of three operationally defined categories: (1) Random search strategy—localized

hole searches separated by crossings through the center of the maze, (2) Serial search

strategy—systematic hole searches (every hole or every other hole) in a clockwise or counterclockwise

direction, or (3) Spatial search strategy—reaching the escape tunnel with both error and distance

(number of holes between the first hole visited and the escape tunnel) scores of less than or equal to 3.

Locomotor activity
Locomotor activity was measured using an automated monitoring system (Kinder Associates, San

Diego, CA). Polycarbonate cage (42 × 22 × 20 cm) containing a thin layer of bedding material was

placed into frames (25.5 × 47 cm) mounted with photocell beams. Each mouse was tested for 120 min.

Analysis of genomic sequences and gene prediction strategy
Sequences of previously reported human and mouse CD33rSiglecs were retrieved from HGNC

(http://www.genenames.org/) and MGI (http://www.informatics.jax.org/), respectively. NCBI anno-

tated CD33rSIGLEC genes from additional mammalian species were used as references for

orthologous gene searching. Additional putative CD33rSIGLEC genes were obtained by searching

available mammalian genome sequences at UCSC Genome Bioinformatics (http://genome.ucsc.edu/),

Ensembl (http://www.ensembl.org/index.html), and NCBI (http://www.ncbi.nlm.nih.gov/gene). As

SIGLEC genes contain introns, we adopted and modified a previously established search strategy

(Shi and Zhang, 2006). First, we used BLAT/TBlastN to identify the genomic location of a putative
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CD33rSiglec gene in a genome with a previously reported CD33rSiglec as a query. Secondly, Genscan

was used to predict the gene structure found in this genome location. Simultaneously, the genomic

DNA sequences of the putative CD33rSIGLEC gene and the known CD33rSiglec protein sequence

were used to conduct a protein-to-genomic sequence alignment by Wise2. Furthermore, to ensure

the accurate prediction of a CD33rSIGLEC, the obtained putative protein sequence was examined by

TMHMM V.2.0 or SPLIT 4.0 SERVER for the presence of a transmembrane domain and examined by

SignalP 3.0 Server for the presence of a signal peptide. Additional domain evaluation was also

conducted in Pfam 25.0 (http://pfam.sanger.ac.uk/) to find the existence of V-set and C2-set domains

in the putative CD33rSiglec-encoding gene. All candidates then underwent BLAST analysis against the

entire GenBank to ensure that their best hits are annotated as CD33rSiglecs. This step is important

because CD33rSIGLECs are known to be related to other SIGLEC genes (e.g., CD22, MAG, and

SIGLEC15), as well as other cell surface Ig-like receptors. The above gene search strategy was also

applied for predicting all of the KLKs, TLRs, and IgG Fc receptors in mammals under consideration,

though the criteria used in gene structure evaluation were gene family dependent.

Definition of functional genes
Based on previous studies on CD33rSiglecs some particular characteristics are considered in order to

define a gene as encoding a functional Siglec (Crocker et al., 1998). One criterion is that a Siglec

protein is capable of binding sialylated glycans. This binding activity requires a conserved arginine

residue in the Ig-like V-set domain. The other criterion is that a functional Siglec protein should contain

either a cytosolic tail with at least one ITIM motif or a transmembrane domain carrying a positively

charged amino acid. The eventually acquired candidate CD33rSiglecs in each species were considered

as true orthologs and used in our correlation analysis. Defining a functional gene using our gene

prediction approach is not black and white, due to the nature of incomplete genome sequences or

genome sequencing errors. Thus, a few rules were considered during our prediction process. First, when

entire exons of a gene (usually one or two) are missing due to a gap in the genome but ORFs remain

undisrupted in the available sequences, we treat the case as a functional gene. Second, different species

have variable quality of genome coverage. For example, human and mouse genomes have the highest

coverage (>12×) out of all mammals, whereas cat and pig genomes have the lowest ones (<5×).
Notably, we did not see a trend of higher genome coverage leading to more CD33rSiglec-encoding

genes. Moreover, even when we focused only on the species with comparable genome coverage

(opossum, dog, marmoset, cow, rhesus macaque, orangutan, chimpanzee, elephant, horse, and rat), the

correlation of the number of CD33rSiglecs and maximum life span was still maintained. Therefore, the

quality of genome sequencing in mammalian species likely had no impact on our overall findings and

conclusion. Finally, we also observed genome sequencing errors in the form of 1 bp mutations or indels

in two KLK genes, one IgG Fc receptor gene, and five TLR genes. In this study, such sequences were also

considered as functional genes in all species. Notably, the number of TLR genes predicted in several

mammalian species using our approach is equal to those reported earlier (Leulier and Lemaitre, 2008).

Longevity and body weight data
Data regarding maximum lifespan and average adult body weight for mammalian species are from AnAge:

the animal aging and longevity (http://genomics.senescence.info/species/) (deMagalhães and Costa, 2009).

Statistical analysis
Unpaired Student’s t-test was used for comparisons involving two groups. Lifespan analysis was

performed using log-rank (Mantel–Cox) test. Median survival refers the time at which half the subjects

have died. The Pearson’s coefficient was used to calculate correlation. All variables except the gene

number counts were log-transformed for statistical analyses. Prism 6 Program (GraphPad, La Jolla, CA)

was used for most of the statistical analyses. PGLS and FIC analysis were conducted in COMPARE 4.6b

(http://www.indiana.edu/∼martinsl/compare/) using a degree of freedom of 11, with three (one for

calculating contrast and two for estimating the slope and the intercept) subtracted from 14 (the total

number of taxa). Phylogenetic regressions controlled for the body mass were run using pglmEstLambda

in the CAIC package (Comparative Analysis of Independent Contrasts) in R. The function of

pglmEstLambda uses the PGLS method, estimating λ as an index of the strength of the phylogenetic

pattern in the data. The model included CD33rSiglec gene numbers as response, maximum lifespan and

body mass as covariates. For λ values, we followed the rationale described in Navarrete et al. (2011).
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Läubli H, Pearce OM, Schwarz F, Siddiqui SS, Deng L, Stanczak MA, Deng L, Verhagen A, Secrest P, Lusk C,
Schwartz AG, Varki NM, Bui JD, Varki A. 2014. Engagement of myelomonocytic Siglecs by tumor-associated
ligands modulates the innate immune response to cancer. Proceedings of the National Academy of Sciences of
USA 111:14211–14216. doi: 10.1073/pnas.1409580111.

Lee CK, Klopp RG, Weindruch R, Prolla TA. 1999. Gene expression profile of aging and its retardation by caloric
restriction. Science 285:1390–1393. doi: 10.1126/science.285.5432.1390.

Leulier F, Lemaitre B. 2008. Toll-like receptors–taking an evolutionary approach. Nature Reviews Genetics 9:
165–178. doi: 10.1038/nrg2303.

Lin X, Tascilar M, Lee WH, Vles WJ, Lee BH, Veeraswamy R, Asgari K, Freije D, van Rees B, Gage WR, Bova GS,
Isaacs WB, Brooks JD, DeWeese TL, De Marzo AM, Nelson WG. 2001. GSTP1 CpG island hypermethylation is
responsible for the absence of GSTP1 expression in human prostate cancer cells. The American Journal of
Pathology 159:1815–1826. doi: 10.1016/S0002-9440(10)63028-3.

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell 153:1194–1217.
doi: 10.1016/j.cell.2013.05.039.

Lorenzini A, Tresini M, Austad SN, Cristofalo VJ. 2005. Cellular replicative capacity correlates primarily with
species body mass not longevity. Mechanisms of Ageing and Development 126:1130–1133. doi: 10.1016/j.mad.
2005.05.004.

Macauley MS, Crocker PR, Paulson JC. 2014. Siglec-mediated regulation of immune cell function in disease.
Nature Reviews Immunology 14:653–666. doi: 10.1038/nri3737.

Manini TM. 2010. Energy expenditure and aging. Ageing Research Reviews 9:1–11. doi: 10.1016/j.arr.2009.08.002.
McMillan SJ, Sharma RS, McKenzie EJ, Richards HE, Zhang J, Prescott A, Crocker PR. 2013. Siglec-E is a negative
regulator of acute pulmonary neutrophil inflammation and suppresses CD11b beta2-integrin-dependent
signaling. Blood 121:2084–2094. doi: 10.1182/blood-2012-08-449983.

McMillan SJ, Sharma RS, Richards HE, Hegde V, Crocker PR. 2014. Siglec-E promotes beta2-integrin-dependent
NADPH oxidase activation to suppress neutrophil recruitment to the lung. The Journal of Biological Chemistry
289:20370–20376. doi: 10.1074/jbc.M114.574624.

Montuschi P, Barnes PJ, Roberts LJ II. 2004. Isoprostanes: markers and mediators of oxidative stress. FASEB
Journal 18:1791–1800. doi: 10.1096/fj.04-2330rev.

Moore JM, Peattie DA, Fitzgibbon MJ, Thomson JA. 1991. Solution structure of the major binding protein for the
immunosuppressant FK506. Nature 351:248–250. doi: 10.1038/351248a0.

Navarrete A, van Schaik CP, Isler K. 2011. Energetics and the evolution of human brain size. Nature 480:91–93.
doi: 10.1038/nature10629.

Niki E. 2009. Lipid peroxidation: physiological levels and dual biological effects. Free Radical Biology & Medicine
47:469–484. doi: 10.1016/j.freeradbiomed.2009.05.032.

Nimmerjahn F, Ravetch JV. 2008. Fcgamma receptors as regulators of immune responses. Nature Reviews
Immunology 8:34–47. doi: 10.1038/nri2206.

Nishimura EK, Granter SR, Fisher DE. 2005. Mechanisms of hair graying: incomplete melanocyte stem cell
maintenance in the niche. Science 307:720–724. doi: 10.1126/science.1099593.

Padler-Karavani V, Hurtado-Ziola N, Chang YC, Sonnenburg JL, Ronaghy A, Yu H, Verhagen A, Nizet V, Chen X,
Varki N, Varki A, Angata T. 2014. Rapid evolution of binding specificities and expression patterns of inhibitory
CD33-related Siglecs in primates. FASEB Journal 28:1280–1293. doi: 10.1096/fj.13-241497.

Pillai S, Netravali IA, Cariappa A, Mattoo H. 2012. Siglecs and immune regulation. Annual Review of Immunology
30:357–392. doi: 10.1146/annurev-immunol-020711-075018.

Prasad AB, Allard MWNISC Comparative Sequencing ProgramGreen ED. 2008. Confirming the phylogeny of
mammals by use of large comparative sequence data sets. Molecular Biology and Evolution 25:1795–1808.
doi: 10.1093/molbev/msn104.

Schwarz F, Fong JJ, Varki A. 2015. Human-specific evolutionary changes in the biology of siglecs. Advances in
Experimental Medicine and Biology 842:1–16. doi: 10.1007/978-3-319-11280-0_1.

Shi P, Zhang J. 2006. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter
receptor genes. Molecular Biology and Evolution 23:292–300. doi: 10.1093/molbev/msj028.

van Deursen JM. 2014. The role of senescent cells in ageing. Nature 509:439–446. doi: 10.1038/nature13193.
Varki A. 2011. Since there are PAMPs and DAMPs, there must be SAMPs? Glycan ‘self-associated molecular
patterns’ dampen innate immunity, but pathogens can mimic them. Glycobiology 21:1121–1124. doi: 10.1093/
glycob/cwr087.

Vasieva O. 2011. The many faces of glutathione transferase pi. Current Molecular Medicine 11:129–139. doi: 10.
2174/156652411794859278.

Zhang JQ, Biedermann B, Nitschke L, Crocker PR. 2004. The murine inhibitory receptor mSiglec-E is expressed
broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. European Journal of
Immunology 34:1175–1184. doi: 10.1002/eji.200324723.

Zhang M, Angata T, Cho JY, Miller M, Broide DH, Varki A. 2007. Defining the in vivo function of Siglec-F, a CD33-
related Siglec expressed on mouse eosinophils. Blood 109:4280–4287. doi: 10.1182/blood-2006-08-039255.

Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, Schmitt D, Fu X, Thomson L, Fox PL,
Ischiropoulos H, Smith JD, Kinter M, Hazen SL. 2004. Apolipoprotein A-I is a selective target for
myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. The
Journal of Clinical Investigation 114:529–541. doi: 10.1172/JCI21109.

Zmasek CM, Eddy SR. 2001. ATV: display and manipulation of annotated phylogenetic trees. Bioinformatics 17:
383–384. doi: 10.1093/bioinformatics/17.4.383.

Schwarz et al. eLife 2015;4:e06184. DOI: 10.7554/eLife.06184 19 of 19

Research article Genomics and evolutionary biology | Immunology

http://dx.doi.org/10.1073/pnas.1409580111
http://dx.doi.org/10.1126/science.285.5432.1390
http://dx.doi.org/10.1038/nrg2303
http://dx.doi.org/10.1016/S0002-9440(10)63028-3
http://dx.doi.org/10.1016/j.cell.2013.05.039
http://dx.doi.org/10.1016/j.mad.2005.05.004
http://dx.doi.org/10.1016/j.mad.2005.05.004
http://dx.doi.org/10.1038/nri3737
http://dx.doi.org/10.1016/j.arr.2009.08.002
http://dx.doi.org/10.1182/blood-2012-08-449983
http://dx.doi.org/10.1074/jbc.M114.574624
http://dx.doi.org/10.1096/fj.04-2330rev
http://dx.doi.org/10.1038/351248a0
http://dx.doi.org/10.1038/nature10629
http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.032
http://dx.doi.org/10.1038/nri2206
http://dx.doi.org/10.1126/science.1099593
http://dx.doi.org/10.1096/fj.13-241497
http://dx.doi.org/10.1146/annurev-immunol-020711-075018
http://dx.doi.org/10.1093/molbev/msn104
http://dx.doi.org/10.1007/978-3-319-11280-0_1
http://dx.doi.org/10.1093/molbev/msj028
http://dx.doi.org/10.1038/nature13193
http://dx.doi.org/10.1093/glycob/cwr087
http://dx.doi.org/10.1093/glycob/cwr087
http://dx.doi.org/10.2174/156652411794859278
http://dx.doi.org/10.2174/156652411794859278
http://dx.doi.org/10.1002/eji.200324723
http://dx.doi.org/10.1182/blood-2006-08-039255
http://dx.doi.org/10.1172/JCI21109
http://dx.doi.org/10.1093/bioinformatics/17.4.383
http://dx.doi.org/10.7554/eLife.06184


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /PDFXOutputConditionIdentifier (FOGRA27)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'eLife'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


