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Abstract

Over the long term, soil carbon (C) storage is partly determined by decomposition rate of

carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory,

decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their

sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alas-

kan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C

(cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C frac-

tions responded differently to warming. Specifically, after one year of decomposition, the

ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots

compared to control. Consistent with this pattern, potential activities of enzymes targeting

recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even

so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially

decomposed under control conditions whereas recalcitrant C losses remain unchanged

between control and warmed plots. Moreover, overall mass loss was greater under control

conditions. Our results imply that direct warming effects, as well as indirect warming effects

(e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-

recalcitrant C despite negative effects on overall decomposition.

Introduction

High-latitude soils store approximately 510 Pg of C, primarily owing to the buildup of recalci-

trant C [1], such as lignin. Much of this soil C has decomposition rates of years to centuries,

due to its complex chemical structure and exposure to cold temperatures [2–4]. Global warm-

ing is particularly rapid at high-latitudes [5–7] and as a result, decomposition of soil C may

increase, reducing high-latitude C stocks [3]. If so, the CO2 released from these soils might

form a positive feedback to global warming [3,7–10].

Moreover, recalcitrant C decomposition may be especially sensitive to temperature [3,11].

This idea is based on the theories of collision and enzyme kinetics, which imply that tempera-

ture sensitivity of decomposition is positively related to the complexity of the substrate [3,11].

In other words, the breakdown of complex recalcitrant C requires more enzymatic steps with

higher activation energies [11–13]. Accordingly, Davidson and Janssens (2006) predicted that

2˚C warming would increase decomposition of recalcitrant C by 21%, compared to only a 10%
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increase for non-recalcitrant C. The consequences of this difference should be exacerbated at

high-latitudes, where a 2–5˚C warming is predicted by the end of this century [7].

In addition to the direct kinetic effects of warming on decomposition, warming may also

select for microbial communities that preferentially degrade recalcitrant C [14,15]. For exam-

ple, some filamentous fungi are less tolerant to cold stress compared to yeasts [16] and might

proliferate under warming; in addition, some of these filamentous fungi are better at decom-

posing recalcitrant C [17]. Variation in microbial breakdown of recalcitrant C compounds can

disproportionately influence long-term C storage in soils [3,18]. However, changes in decom-

position of recalcitrant C, specifically, are rarely assessed in field-based warming experiments

[19] and are thus challenging to predict. In this warming experiment, Treseder and collabora-

tors [17] reported that warming induced a shift in fungal community composition toward taxa

that could break down recalcitrant C. Was there a concomitant shift in C use toward recalci-

trant C under warming? Here, we tested this question by examining decomposition of recalci-

trant C versus non-recalcitrant C in plant litter under experimental warming.

According to Hudson [20], lignin is more recalcitrant than soluble sugars, hemicellulose,

and cellulose due to its complex chemical structure. Although there is conflicting evidence

regarding long-term lignin stability [21] and the definition of recalcitrance [22], in this paper

we refer to lignin as recalcitrant C. We grouped the less chemically-complex soluble sugars,

hemicellulose, and cellulose, as non-recalcitrant C. We hypothesized that ratios of recalcitrant

C to non-recalcitrant C (i.e. lignin: soluble sugars + hemicellulose + cellulose) remaining in

decomposed litter would be lower in the warming treatment than in controls. In addition, we

predicted that extracellular enzymes produced by microbes would target recalcitrant C (rela-

tive to non-recalcitrant C) more under warming.

Methods

Field site

The study area was located in a mature black spruce (Picea mariana) forest on the Fort Greely

military base near Delta Junction, Alaska, USA (63˚55’N, 145˚44’W) [23]. At this site, the vege-

tation was dominated by black spruce with an understory of shrubs, mosses, and lichens. The

climate was cold and dry, with approximately 303 mm y-1 of precipitation and a mean annual

temperature of -2˚C. The growing season extends from mid-May to mid-September.

Warming experiment

In July 2005, a warming experiment was established as described in Allison & Treseder (2008).

Five pairs of 2.5 x 2.5 m plots were marked in a 1 km2 area; one plot from each pair was

assigned as the treatment while the other one was assigned as the control. Control plots were

left under ambient conditions while treatment plots were warmed passively with greenhouses

(closed-top chambers). Gutters and tubing were installed to direct precipitation into the green-

houses during the growing season. Greenhouses were left in place but the top plastic panels of

the greenhouses were removed in mid-September and re-installed in mid-May to allow snow-

fall to enter the warmed plots. The warming treatment increased air temperature on average

by 1.6˚C, and soil temperature (5 cm depth) by 0.5˚C. In addition, the warming treatment

reduced soil moisture by 22% on average due to higher evapotranspiration [24].

Litterbag experiment

On May 22, 2013, the warming experiment had been ongoing for eight years. On this date, we

detached brown senescent spruce needles of living black spruce trees near the experimental
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plots by shaking branches lightly and/or by touching them and collecting the fallen needles in

a plastic bag. Immediately after collection, we filled litterbags (10 x 10 cm, 1 mm mesh of

nylon covered with a layer of 1 mm fiberglass mesh) with 2 g of spruce needles. We deployed

four sets of two litterbags in the forest floor of each plot and took five subsamples of spruce

needles for initial litter chemistry analysis.

We retrieved a set of litterbags after 1, 2, 12, and 16 months. We combined the contents of

each of the two litter bags within each plot. Therefore, for each sampling time point we had

five samples from control plots and five from warmed plots (n = 5). In the lab, we determined

total fresh weight, then separated ~0.6 g for extracellular enzyme activity (EEA) measurements

and ~0.5 g for litter chemistry. The EEA subsample was stored at -80˚C, and the litter chemistry

subsample was stored at -20˚C. In addition, we used ~0.5 g from the first collection for fungal

DNA sequencing; these findings are reported in Treseder et al. [17]. We determined fresh

weight of the remaining litter, and dried it at 70˚C for two days to obtain percent dry weight.

We calculated litter mass remaining as the product of total fresh weight and fraction dry weight.

We have permission from Ft. Greely to work in this study location. No specific permissions

were required for the activities in the current study. All samplings took place within public

space in the forest and no military areas were accessed. No endangered or protected species

were involved in this research.

Litter chemistry

Litter samples were air dried for 48 hours and ground for 1 min in a Spex SamplePrep 8000D

mixer/mill (Spex SamplePrep LLC, New Jersey) using stainless steel vials and grinding balls.

To determine concentration of non-recalcitrant C (i.e. soluble sugars, cellulose, and hemicellu-

lose) and recalcitrant C (i.e. lignin), we processed litter samples following Talbot et al. [25].

Samples were fractionated following the International Association of Analytical Communities

(AOAC International) official Uppsala method [26]. In all cases, we performed triplicate mea-

surements of each of the five replicates. For each date and each assay, we used two blanks to

account for background absorbance.

Soluble sugars. First, we extracted and discarded lipids, waxes, and pigments with 100%

petroleum ether. Next, we extracted soluble sugars with 80% ethanol and removed starch by α-

amylase digestion. The starch-less fraction was used to determine glucose concentration by the

phenol-sulfuric acid method [27]. We then washed the samples with 95% ethanol and 100%

acetone, followed by drying at 70˚C for 48 hours to obtain a lipid- and sugar-free fraction to

quantify lignin, hemicellulose, and cellulose concentration.

Cellulose. We determined cellulose by the Updegraff method [28]. This method consists

of the removal of hemicellulose and lignin and the extraction of cellulose with acetic acid/nitric

acid followed by solubilization of cellulose in 67% sulfuric acid. We quantified cellulose con-

centrations via the Anthrone reaction in sulfuric acid at 100˚C in a water bath, and measured

absorbance at 620 nm. We used crystalline cellulose (MP biomedical cat. 02191499) as a

standard.

Hemicellulose. Similarly, we measured hemicellulose in the acetic/nitric extracts of the

Updegraff method by Hansen & Møller [29] with modifications following Aravantinos-Zafiris

et al. [30]. We used a mixture of 10:7.5:7.5:7.5:7.5:5:5 of glucose, xylose, arabinose, mannose,

galactose, fucose, and rhamnose as a standard. We quantified sugar concentrations by measur-

ing absorbance at 630 nm.

Lignin. Finally, we determined total lignin by the acetyl bromide method [31], in which

lignin is solubilized in 1:4 acetyl bromide:acetic acid solution and quantified by measuring

absorbance at 280 nm. We used alkali lignin (Sigma cat. 370959) as a standard.
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Extracellular enzymes

To assess decomposer investment in recalcitrant C degradation under warming, we assayed

the activities of four extracellular enzymes involved in decomposing different types of C, as

previously described [32,33]. We performed this assay on litter that had decomposed 12

months, since this was the timepoint with the highest enzyme activity (marginal enzyme activ-

ity was detected on previous dates and thus, not included in our analyses). Using pyrogallol as

the substrate, we assayed polyphenol oxidase (PPO) that degrades lignin as an index of the

enzymatic potential to decompose recalcitrant C. As an index of the enzymatic potential to

degrade non-recalcitrant C we assayed cellobiohydrolase (CBH) that targets cellulose, β-xylosi-

dase (BX) that targets xylose ―a component of hemicellulose― and β-glucosidase (BG) that

catalyzes the hydrolysis of glycosidic bonds in later steps of cellulose degradation (soluble sug-

ars). Litter samples were homogenized in 50 mM maleate buffer, pH 6.0, and pipetted into

microplates. We measured enzyme Vmax (nmol h-1 g-1 dry litter) at 4, 10, 16, 22, 28, and 34˚C

either colorimetrically (PPO), or fluorimetrically (CBH, BX, BG) on a microplate reader.

Enzyme Vmax values were obtained by fitting the Michaelis-Menten equation to reaction

velocities as a function of substrate concentration using the non-linear least squares (nls)

method in R. Enzymes were assayed across a range of temperatures and substrate concentra-

tions because these measurements were conducted as part of a separate study on the tempera-

ture sensitivity of enzyme Vmax and Km parameters. Fitted Vmax values were normalized to

an overall mean of 1 for PPO and 1/3 for each of the other three enzymes. With the normalized

values, we calculated activity ratios as PPO/(BG+BX+CBH) such that ratios>1 indicate

greater relative investment in recalcitrant C degradation. Because there were no interactions

between incubation temperature and the field warming treatment, activity ratios were aver-

aged across incubation temperatures to obtain a single ratio for each experimental plot.

Statistical analysis

To test our hypothesis, we conducted repeated measures analyses of variance (ANOVAs). Our

dependent variable was the ratio of recalcitrant to non-recalcitrant C remaining, and the inde-

pendent variable was warming treatment. Sampling date was the temporal factor. We con-

ducted the same tests for mass remaining of each C fraction and for overall mass loss. For

statistically significant ANOVAs, we followed up with post hoc t-tests to compare means

within each sampling date.

For our prediction that the EEA activity ratios of recalcitrant to non-recalcitrant C should

increase with warming, we performed a mixed-model ANOVA with block as a random factor.

Our independent variable was warming treatment, and our dependent variable was the EEA

activity ratio of recalcitrant to non-recalcitrant C. We log-transformed EEA activity ratios to

meet assumptions of normality. All data were analyzed using R software [34].

Results

The ratio of recalcitrant C to non-recalcitrant C remaining in decomposing litter was signifi-

cantly lower in the warmed treatments than in the controls, but only after 12 months of

decomposition (Fig 1, warming x date interaction, F3,24 = 3.102, P = 0.046). Interestingly,

across all sampling dates, significantly more litter mass remained in the warmed treatment

than in the control (Fig 2, F1,8 = 11.91, P = 0.009) and there was no significant interaction with

sampling date (F3,24 = 0.98, P = 0.419).

The warming effect on recalcitrant versus non-recalcitrant C after 12 months was attribut-

able to declines in the breakdown of cellulose and soluble sugars, but not lignin (Fig 3, S1

Table and S1 Appendix). Warming did not significantly alter lignin loss across sampling dates
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(F1,8 = 3.28, P = 0.108), but cellulose loss was significantly slower in the warmed plots than in

the control plots (F1,8 = 8.55, P = 0.019). In addition, soluble sugar loss was marginally reduced

by warming (F1,8 = 4.121, P = 0.077). Hemicellulose loss was not significantly altered by

Fig 1. Mass remaining of recalcitrant (lignin) to non-recalcitrant (cellulose, hemicellulose, and

soluble sugars) C over time. Across sampling times, the ratio was significantly lower in the warming

treatment (P = 0.032), but there was a significant interaction between treatment and time (P = 0.046). Data

are means ± SE, with n = 5 plots. †P < 0.10 for sampling date.

https://doi.org/10.1371/journal.pone.0179674.g001

Fig 2. Percentage total mass remaining in spruce needles over time. Decomposition was significantly

slower in the warming treatment compared to the control (P = 0.009). Data are means ± SE, with n = 5 plots.

*P < 0.05 for sampling date.

https://doi.org/10.1371/journal.pone.0179674.g002
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warming (F1,8 = 2.17, P = 0.179). There were no significant interactions between sampling date

and treatment for any of the chemical fractions (F3,24 < 1.89, P> 0.159 for all). Moreover,

warming nearly doubled the ratio of recalcitrant C-targeting enzymes (i.e., PPO) to non-recal-

citrant C-targeting enzymes (i.e., sum of BG, CBH, and BX) (Fig 4) (F1,4 = 46.86, P = 0.002).

Most of this change was driven by the non-recalcitrant enzymes whose normalized activities

declined from 1.29±0.11 to 0.86±21 (mean±SE) with warming. In contrast, normalized recalci-

trant enzyme activity remained similar (1.05±0.15 for control versus 0.94±0.22 with warming).

Discussion

In our study, we found that warming affected degradation of recalcitrant C versus non-recalci-

trant C. Specifically, ratios of recalcitrant to non-recalcitrant C remaining were lower in the

warming treatment compared to controls (Fig 1) despite slower overall litter decay (Fig 2).

This shift in C decay ratios occurred because decay of non-recalcitrant C declined significantly

with warming, but decay of recalcitrant C did not (Fig 3). Moreover, under warming, microbes

shifted their allocation away from extracellular enzymes that targeted non-recalcitrant C (Fig

4). Altogether, we accepted our hypothesis that warming would reduce the ratio of recalcitrant

C to non-recalcitrant C remaining in decomposed litter, consistent with a potential direct

kinetic effect of warming and/or a shift in the fungal community with increased ability to

break down recalcitrant C, as previously reported [17]. However, indirect warming effects like

drying might have also influenced our results. Below we will discuss this possibility.

Moisture is a major control over decomposition in cold biomes [5,35–39]. Indeed, moisture

constraints might have played an important role in decay dynamics in our experiment. Our

warmed plots are on average 22% drier than control plots [24]. This drying effect likely con-

tributed to declines in microbial biomass and soil respiration documented earlier in this field

Fig 3. Percentage of mass remaining of lignin, cellulose, hemicellulose, and soluble sugar in spruce

needles over time. Warming did not significantly affect lignin breakdown (P = 0.108) or hemicellulose

breakdown (P = 0.179). In contrast, warming slowed the breakdown of cellulose significantly (P = 0.019) and

soluble sugars marginally significantly (P = 0.077). Data are means ± SE, with n = 5 plots. *P < 0.05,

†P < 0.10 for sampling date.

https://doi.org/10.1371/journal.pone.0179674.g003
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experiment [24]. In fact, this drying effect might be responsible for the overall slower decom-

position in warmed plots compared to controls (Fig 2). Another abiotic factor that might be

exerting control over decomposition is nutrient availability. For example, increases of nitrogen

in soils can reduce fungal diversity [40] and biomass of microbial decomposers [41]. In a previ-

ous study in our experimental warming plots, warmed plots had a slight increase in nitrogen

availability compared to control plots [24].

In addition to the indirect effect of drying on decomposition, we may have observed a

direct warming effect. We found two lines of evidence for this effect. The first is the decline in

recalcitrant: non-recalcitrant C ratios after 12 months of decomposition (Fig 1). The second

is the shift in EEA away from enzymes that break down non-recalcitrant C (Fig 4). These

responses are consistent with theory based on thermodynamics of chemical reactions—recalci-

trant C is expected to be more temperature sensitive than non-recalcitrant C [3,11]. Even

though microbial activity declined in general, warmer temperatures could have allowed those

microbes that were active to better acquire energy from recalcitrant C. In addition, warming

may have selected for microbial taxa that produce fewer non-recalcitrant-degrading enzymes

because the resource returns from these enzymes were relatively lower under warming. How-

ever, this could be the effect of warming-induced drying. Previous research has shown that

EEA of non-recalcitrant degrading enzymes (i.e. carbohydrate-degrading enzymes) decreases

up to 63% with drying [42].

Treseder et al. [17] examined the fungal community composition in litterbags from the

current study. They reported that eight years of experimental warming had selected for

Fig 4. Extracellular enzyme activity (EEA) ratios of recalcitrant to non-recalcitrant C on litter retrieved

at 12 months. Recalcitrant enzyme activity is polyphenol oxidase, while non-recalcitrant enzymes are the

sum of cellobiohydrolase, β-xylosidase, and β-glucosidase. Warming significantly increased the ratio of

recalcitrant C decay enzymes to non-recalcitrant C decay enzymes (P = 0.002). Activities were measured in

units of nmol h-1 g-1 dry litter. Data are means ± SE, with n = 5 plots.

https://doi.org/10.1371/journal.pone.0179674.g004
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recalcitrant C-decomposers, mostly represented by free-living filamentous fungi. This finding

mirrors earlier observations by McGuire et al. [43], who found that the ability to use lignocel-

lulose was positively related to warming responses of fungal taxa after one year of warming in

this experiment. A warming experiment in Harvard Forest documented similar results with

bacteria, where the warming treatment tended to enrich putatively lignin-using bacterial taxa

[15]. These previous studies suggest that the relative increase in recalcitrant C degradation that

we found in our current study might be facilitated by community shifts toward microbial taxa

with the capacity to enzymatically access and use these compounds.

If losses of recalcitrant C in litter increase under warming, what are the potential conse-

quences for soil C storage? Decades- and century-old carbon is more temperature sensitive

than months- and years-old carbon [44]. In this sense, most soil organic matter in high latitude

ecosystems is considered recalcitrant since it is decades old or older [45]. Where soil moisture

does not become more limiting with warming, an increase in recalcitrant C decay could reduce

soil C storage. Nevertheless, the boreal forest we examined may not fit this scenario because

warming-induced drying appeared to limit microbial activity, which could mitigate losses of

soil C [46]. In our system, warming may serve to maintain the decomposition rates of recalci-

trant C despite negative effects of moisture limitation on overall decomposition.

Conclusion

In conclusion, our data suggest that in boreal ecosystems, recalcitrant C loss from litter dif-

fered in sensitivity to warming compared to non-recalcitrant C loss. Altogether, we found that

warming decreased the ratio of recalcitrant to non-recalcitrant C, accompanied by a higher

ratio of enzymes that target recalcitrant C. This change was consistent with previous observa-

tions of a shift in the fungal community toward lignin users. We stress the need to incorporate

empirical measurements of recalcitrant C losses into field warming manipulations, along with

assessments of microbial physiology like extracellular enzyme activities, to better assess the

fate of litter inputs under warming in the next century.

Supporting information

S1 Table. Litter chemistry in litter decomposed in control and warmed plots.

(PDF)
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(XLSX)
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