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Background: Patients with multiple sclerosis (MS) often undergo complex

treatment regimens, resulting in an increased risk of polypharmacy and

potential drug-drug interactions (pDDIs). Drug interaction databases are

useful for identifying pDDIs to support safer medication use.

Objective: To compare three different screening tools regarding the detection

and classification of pDDIs in a cohort of MS patients. Furthermore, we aimed at

ascertaining sociodemographic and clinical factors that are associated with the

occurrence of severe pDDIs.

Methods: The databases Stockley’s, Drugs.com and MediQ were used to

identify pDDIs by screening the medication schedules of 627 patients. We

determined the overlap of the identified pDDIs and the level of agreement in

pDDI severity ratings between the three databases. Logistic regression analyses

were conducted to determine patient risk factors of having a severe pDDI.

Results: The most different pDDIs were identified using MediQ (n = 1,161),

followed by Drugs.com (n = 923) and Stockley’s (n = 706). The proportion of

pDDIs classified as severe was much higher for Stockley’s (37.4%) than for

Drugs.com (14.4%) and MediQ (0.9%). Overall, 1,684 different pDDIs were

identified by at least one database, of which 318 pDDIs (18.9%) were
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detectedwith all three databases. Only 55 pDDIs (3.3%) have been reportedwith

the same severity level across all databases. A total of 336 pDDIs were classified

as severe (271 pDDIs by one database, 59 by two databases and 6 by three

databases). Stockley’s and Drugs.com revealed 47 and 23 severe pDDIs,

respectively, that were not included in the other databases. At least one

severe pDDI was found for 35.2% of the patients. The most common severe

pDDI was the combination of acetylsalicylic acid with enoxaparin, and

citalopram was the drug most frequently involved in different severe pDDIs.

The strongest predictors of having a severe pDDI were a greater number of

drugs taken, an older age, living alone, a higher number of comorbidities and a

lower educational level.

Conclusions: The information on pDDIs are heterogeneous between the

databases examined. More than one resource should be used in clinical

practice to evaluate pDDIs. Regular medication reviews and exchange of

information between treating physicians can help avoid severe pDDIs.

KEYWORDS

multiple sclerosis, potential drug-drug interactions, drug interaction databases,
medication review, therapy management, patient safety

Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease and

the most common cause of non-traumatic neurologic disability

in young adults (Filippi et al., 2018). A total of 2.8 million people

are estimated to live with MS worldwide (Walton et al., 2020).

Inflammation with demyelination, astroglial proliferation

(reactive gliosis) and neurodegeneration with axonal and

synaptic loss are the pathological hallmarks of the disease

(Filippi et al., 2018). The course of MS is different in each

patient and can be classified into relapsing-remitting MS

(RRMS), primary progressive MS (PPMS) and secondary

progressive MS (SPMS) (Lublin et al., 2014). The spectrum of

MS phenotypes further includes the clinically isolated syndrome

(CIS) (Lublin et al., 2014). The clinical manifestations are very

heterogeneous (Zettl et al., 2012). Common consequences of MS

include impaired mobility, ataxia/tremor, cognitive dysfunction

and pain (Larocca, 2011; Rommer et al., 2019a). The symptoms

of MS are frustrating for many patients as they severely limit the

quality of their daily lives. One therapeutic approach is offered by

the use of disease-modifying drugs (DMDs). DMDs can prevent

the development of new lesions in the brain and spinal cord,

reduce the frequency of relapses and delay the progression of

disability (Rommer et al., 2019b; Hauser and Cree, 2020;

Rommer and Zettl, 2022). Additionally, patients with MS

often take medications to treat specific disease symptoms

(Dargahi et al., 2017), medications for comorbidities as well as

complementary and alternative medicines (CAMs) such as

vitamin and mineral supplements (Apel-Neu and Zettl, 2008;

Kochs et al., 2014; Rommer et al., 2018).

As the world population is getting older on average (Aburto

et al., 2020), multimorbidity and consequently polypharmacy are

increasingly posing health risks (Payne, 2016; Molokhia and

Majeed, 2017). Therefore, interest in potential drug-drug

interactions (pDDIs) is rising among physicians, and an

appropriate management of medications that may interact is

becoming more and more relevant. pDDIs can generally be

divided into two different classes: pharmacokinetic and

pharmacodynamic interactions. Pharmacokinetic pDDIs affect

the liberation, absorption, distribution, metabolism and

elimination of drugs, e.g., through the inhibition or induction

of metabolic enzymes like the cytochrome P450 (CYP) isozymes

or through reduced absorption due to complexation of active

substances (Koziolek et al., 2019; Bechtold and Clarke, 2021).

Pharmacodynamic pDDIs refer to the influence on the mode of

action of drugs, e.g., through additive effect enhancement or

antagonistic effect reduction (Niu et al., 2019). In the case of an

improper therapy management, there is a risk of overdosed or

underdosed therapy, and side effects may occur due to pDDIs.

There are numerous online tools for healthcare professionals

and patients to check for pDDIs (Adam and Vang, 2015; Roblek

et al., 2015; Kheshti et al., 2016; Hammar et al., 2021). By using

these so-called clinical decision support softwares (CDSS) and

drug-drug interaction databases (DDIDs), the risk assessment of

combined pharmacotherapy is facilitated. This holds greater

safety for patients as dangerous pDDIs can be detected and

prevented. However, as several pDDI resources have been

developed, the question arises which one to use. Physicians

and pharmacists should be aware of the differences between

pDDI screening tools and know their advantages and limitations.

Previous studies have shown relatively low agreement on the

classification of pDDIs among different tools, with the overlap

being as low as 5% (Amkreutz et al., 2017; Fung et al., 2017; Prely

et al., 2022). It is thus often recommended to use more than one
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database to increase sensitivity (Smithburger et al., 2010; Wang

et al., 2010; Kheshti et al., 2016; Monteith and Glenn, 2019;

Sancar et al., 2019; Suriyapakorn et al., 2019; Monteith et al.,

2020). It should be also noted that DDIDs often label pDDIs with

a higher severity rating than bedside clinicians (Armahizer et al.,

2013; Roblek et al., 2015).

The occurrence of pDDIs is a highly relevant issue that has

been well studied in certain diseases, such as metabolic syndrome

(Suriyapakorn et al., 2019), bipolar disorder (Monteith et al.,

2020) and acquired immunodeficiency syndrome (Ramos et al.,

2015). However, with respect to MS, the number of studies on

pDDIs is low.We have previously examined pDDIs in female MS

patients of childbearing age, with a special focus on interactions

that might endanger pregnancy (Frahm et al., 2020a). Moreover,

we analyzed the contribution of over-the-counter (OTC) drugs to

pDDIs (Bachmann et al., 2022), and we compared the risk of

pDDIs between MS patients with and without polypharmacy

(Debus et al., 2022). In these studies, either one or two DDIDs

were used. To our knowledge, there are so far no other studies on

pDDIs in unselected patients with MS.

As there might be disease-specific differences in the performance

of pDDI screening tools, we here combined the data from our

previous works (Bachmann et al., 2022; Debus et al., 2022) to

compare the three databases Stockley’s, Drugs.com and MediQ

with regard to the identification of pDDIs in MS patients. We

further examined the concordance in pDDI severity ratings

between the databases. Moreover, we identified the most frequent

severe pDDIs in our patients and determined sociodemographic and

clinical predictors of having a severe pDDI.

Materials and methods

Study population

The patient survey as part of this study was conducted between

March 2017 and May 2020 at the Department of Neurology of the

Rostock University Medical Center (Germany) and at the

Department of Neurology of the Ecumenic Hainich Hospital

Mühlhausen (Germany). The patients had to have a diagnosis of

a CIS or MS according to the revised McDonald criteria (Thompson

et al., 2018). We included data from adult male and female patients,

whereas data fromminors under the age of 18 were not included. At

both centers, the patients were treated as outpatients or inpatients,

depending on the individual disease activity and disease progression.

Further information on the design of this cross-sectional study are

given elsewhere (Bachmann et al., 2022; Debus et al., 2022).

The patients were interviewed while waiting for outpatient

appointments and during inpatient stays due to acute disease

exacerbation or changes in therapy. Written informed consent

was obtained from all patients who agreed to participate in

advance. The ethics committees of the University of Rostock

and of the State Medical Association of Thuringia approved this

study (approval numbers A 2014-0089 and A 2019-0048). We

conducted this study in accordance with the current Declaration

of Helsinki.

Data collection

Sociodemographic data (sex, age, years of schooling, educational

level, employment status, partnership status, place of residence,

number of children and number of siblings), pharmacological

data (medications taken with active ingredient, trade name, route

of administration and dosage) and clinical data [comorbidities,

course of MS, disease duration and disability level according to

Kurtzke’s Expanded Disability Status Scale (EDSS)] were obtained

using patient records, clinical examinations and structured

interviews. The EDSS is the standard instrument for assessing the

impairments that can result from MS through neurological

examination (Kurtzke, 1983; Kappos et al., 2015). Comorbidity

was defined as any additional disease that developed before or

during the course of MS and that is not an obvious complication

of MS (Magyari and Sorensen, 2020).

From the medication schedules, we captured both on-

demand drugs, which are taken irregularly as needed, and

long-term drugs, which are taken periodically. More

specifically, methylprednisolone was documented as “on-

demand drug” when used to treat an acute relapse (Repovic,

2019) and as “long-term drug” when used as repeated pulse

therapy for progressive courses of MS (Winkelmann et al., 2016).

In addition to recording the use of prescription drugs (Rx), we

also explicitly asked the patients about their use of non-

prescription drugs (OTC) as well as CAMs like herbal

medicines or dietary supplements (Evans et al., 2018; Rommer

et al., 2018). Note that some drugs are available as both Rx and

OTC preparations, depending on the dosage (e.g., ibuprofen). All

drugs were recorded independently of the treatment goals and

thus included DMDs for MS, medications to treat disease

symptoms as well as medications for comorbidities.

Assessment of potential drug-drug
interactions

For the comprehensive analysis of pDDIs, every patient’s

medication plan was screened using three different DDIDs:

Stockley’s, Drugs.com and MediQ. Stockley’s Interactions Checker

is an English-language subscription-based online pDDI tool with

over 85,000 deposited interactions. It is published by the Royal

Pharmaceutical Society and updated monthly. The pDDI severity

levels are divided into three categories: mild (minimal clinical

relevance), moderate (moderate clinical relevance) and severe

(high clinical relevance) interactions. Furthermore, Stockley’s

provides information about potential drug-food/beverage/smoking

and drug-herb interactions. This tool is based on “Stockley’s Drug
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Interactions”, the most comprehensive international reference book

on drug interactions (Preston, 2020), and primarily aimed at

healthcare professionals.

Drugs.com Drug Interactions Checker, edited by the Drugsite

Trust, is a free English-language website with information on

~24,000 drugs and herbal medicines. This database classifies

pDDIs into three severity levels: minor (minimally clinically

significant), moderate (moderately clinically significant) and major

(highly clinically significant). The database is aimed at both

consumers and medical professionals as explanations of pDDIs

are available according to prior medical knowledge. Drugs.com

also displays information on potential drug-food/alcohol

interactions. A country-restricted mobile app is available. The free

accessibility and patient orientation of this DDID clearly sets it apart

from other pDDI screening tools.

MediQ is a Swiss web-based tool containing more than

2,000 active substances and more than 50,000 interactions,

including not only pDDIs but also drug-food, drug-beverage, and

drug-polymorphism interactions (Suter et al., 2013). The latter allow

to evaluate the pharmacogenetic effects of patient-specific genetic

factors. MediQ is designed for medical staff and is only accessible

with a subscription. It is only available in the German language. The

pDDI severities are rated as low danger, average danger and high

danger of interaction. Furthermore, MediQ distinguishes whether a

pDDI is currently ruled out (i.e., there is no known interaction) or

whether a drug combination has not yet been assessed by theMediQ

operators (i.e., there is no data in the database). Users can request

combinations of drugs to be included in the database. MediQ is one

of the most commonly used German-language tools for identifying

pDDIs. In a study comparing five German-language tools, MediQ

was the one with the most complete results (Hahn and Roll, 2018).

The screening for pDDIs was conducted from May 2020 to

November 2020 by entering the trade name of each drug in the

search field of each database. If the trade name was not found, we

entered the generic name(s) of the active ingredient(s) contained

in the respective drug. The route of administration (e.g., oral or

dermal) was entered as well if possible. pDDIs that were detected

in the DDIDs were subsequently recorded in Excel spreadsheets

and sorted by severity. To facilitate the interpretation of the

database comparisons, we decided to consistently refer to the

three pDDI severity levels as mild, moderate and severe as they

are called in Stockley’s, instead of using different labels (such as

minor/low) per database. With regard to MediQ, we considered

the category “no data available” as equivalent to the category “no

known interaction” for simplicity.

Data analysis

The data were prepared with IBM SPSS Statistics version 27,

Microsoft Excel 2010 and ONLYOFFICE 7.0. Descriptive

statistics and further data analyses were performed in R

version 3.6.0. We first determined the number of different

pDDIs (i.e., without repetitions if they occurred in more than

one patient) found with Stockley’s, Drugs.com and MediQ. The

relative proportions of mild, moderate and severe pDDIs per

database were then visualized using doughnut plots. The overlap

of pDDIs from the 3 databases was analyzed with the R package

VennDiagram (Chen and Boutros, 2011). Concordance rates

were calculated by dividing the number of identical pDDI

severity ratings by the number of pDDIs that were detected in

each of two databases being compared. Cohen’s kappa

coefficients (κ) were also computed to summarize the

agreement among the databases. The severe pDDIs were

drawn as a network using Cytoscape 3.9.0 (Shannon et al.,

2003) with yFiles layout algorithms. Binary logistic regression

analyses were performed to predict the patients’ risk of having a

severe pDDI. The numerical, ordinal and dichotomous variables

were included either separately (univariable models) or jointly

(multivariable model). The latter was performed by bidirectional

stepwise model selection based on the Akaike information

criterion (AIC) (Akaike and Lovric, 2011) using the R

package MASS. The resulting odds ratios (ORs) were

visualized as forest plots with the R packages sjPlot and

ggplot2 (Wickham, 2016). The corresponding statistical tests

were exploratory in nature, and therefore the significance level

was set at α = 0.05. We checked for collinearities in the data by

calculating the variance inflation factor (VIF) for each

independent variable with the mctest R package. Scatterplots

were used to display the relationship between age and number of

drugs taken with pDDI count. Exponential curves were fitted to

the data, and 95% confidence intervals of the fitted curves were

calculated by performing bootstrap resampling.

Results

Patient cohort

A total of 627 patients were included in this study (Table 1). The

patient cohort was composed of cases with CIS (n = 27), RRMS (n =

388), SPMS (n = 154), and PPMS (n = 58). The proportion of

women was 70.3% (n = 441). The age of the patients ranged from

19 to 86 years (mean ± standard deviation: 48.6 ± 13.3). There were

465 patients (74.2%) who lived in a partnership and 162 patients

(25.8%) who lived alone. A large proportion of the subjects resided

in a rural area (n = 224), whereas the others lived in a provincial

town (n = 108), medium-sized town (n = 112) or city (n = 183).

With regard to the level of education, the patients had either no

training (n = 19), a qualification as a skilled worker (n = 398) or a

degree from a technical college (n = 89) or university (n = 121). The

average EDSS score of the patients was 3.6 ± 2.1 (range: 0–9) at a

median disease duration of 10 years (range: 0–52). Most of the

patients (n = 443, 70.7%) had comorbidities in addition toMS. Only

seven and 52 patients received no or only one drug, respectively,

whereas most patients (n = 568, 90.6%) took at least two drugs and
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thus were at risk of pDDIs. The average number of drugs taken per

patient was 5.3 ± 3.3 (range: 0–19). For further details on the clinical,

demographic and medication data of the patients, the reader is

referred to our previous publications (Bachmann et al., 2022; Debus

et al., 2022).

Comparison of potential drug-drug
interactions information from different
sources

The database-driven screening revealed pDDIs for 280 different

drugs. We found 706 different pDDIs with Stockley’s, 923 different

pDDIs with Drugs.com and 1,161 different pDDIs with MediQ

However, while fewer pDDIs were found using Stockley’s, 264 of the

pDDIs from this database (37.4%) were rated as severe. In

comparison, only 10 of the pDDIs from MediQ (0.9%) were

classified as severe (Figure 1). In total, 1,684 different pDDIs

were identified with the three drug interaction databases. The

consistency in detecting pDDIs was relatively low: Only

318 pDDIs (18.9%) were reported in all databases, and each

database specified pDDIs that were not contained in the other

two databases. The largest overlap was noticed for Drugs.com vs.

MediQ (563 different pDDIs) (Figure 2). With regard to the pDDI

severity ratings, there was a greater agreement for Drugs.com vs.

Stockley’s. For these, the severity ratings concordance rate was

60.0%. The respective rate was lower for Drugs.com vs. MediQ

(23.3%) and MediQ vs. Stockley’s (24.2%) because the pDDIs were

typically reported with a lower severity in MediQ (Figure 3). As

many as 110 different pDDIs that were classified as mild in MediQ

were severe according to Stockley’s. On the other hand, there were

three severe pDDIs from MediQ that were not detected with

Stockley’s (amantadine < = > amitriptyline, cannabidiol < = >
sertraline and citalopram < = > tamoxifen). Only 55 of the

1,684 different pDDIs (3.3%) have been reported with the same

severity level across all databases (i.e., 17.3% of the 318 common

pDDIs).

Severe potential drug-drug interactions in
patients with multiple sclerosis

The number of different severe pDDIs was 264 for Stockley’s,

133 for Drugs.com and 10 for MediQ. Overall, 336 different

pDDIs were severe according to at least one of the databases

(Supplementary Figure S1). A subset of 271 pDDIs were classified

as severe in only one database, 59 pDDIs were classified as severe

in two databases and six pDDIs were consistently classified as

severe in all three databases (citalopram with ciprofloxacin,

doxepin, flecainide, levofloxacin, ondansetron and quetiapine).

Citalopram was involved in 33 different severe pDDIs. Ibuprofen

and methylprednisolone were also frequently involved in pDDIs,

with 23 and 22 severe pDDIs, respectively. Forty-three severe

TABLE 1 Sociodemographic, clinical and medication data of the
patient cohort (N = 627).

Parameter N (%) or range Mean (SD) or median

Sex

Female 441 (70.3%)

Male 186 (29.7%)

Age [in years] 19–86 48.6 (13.3)

School years 6–18 10.5 (1.3)

Educational level

No training 19 (3.0%)

Skilled worker 398 (63.5%)

Technical college 89 (14.2%)

University 121 (19.3%)

Employment status

In training 7 (1.1%)

In studies 6 (1.0%)

Employed 269 (42.9%)

Unemployed 25 (4.0%)

Retired 304 (48.5%)

Others 16 (2.6%)

Partnership

No 162 (25.8%)

Yes 465 (74.2%)

Place of residence

Rural area 224 (35.7%)

Provincial town 108 (17.2%)

Medium-sized town 112 (17.9%)

City 183 (29.2%)

Number of children 0–4 1

0 169 (27.0%)

1 170 (27.1%)

≥2 288 (45.9%)

Number of siblings 0–13 1

0 71 (11.3%)

1 305 (48.6%)

≥ 2 251 (40.0%)

EDSS score [points] 0–9.0 3.5

Disease duration [in years] 0–52 10

Disease course

CIS 27 (4.3%)

RRMS 388 (61.9%)

SPMS 154 (24.6%)

PPMS 58 (9.3%)

Comorbidities 0–9 1

No 184 (29.3%)

Yes 443 (70.7%)

Number of drugs taken 0–19 5

0 7 (1.1%)

1–4 286 (45.6%)

5–9 261 (41.6%)

≥ 10 73 (11.6%)

CIS, clinically isolated syndrome; EDSS, Expanded Disability Status Scale; PPMS,

primary progressive multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis;

SD, standard deviation; SPMS, secondary progressive multiple sclerosis.
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pDDIs occurred in three or more of the 627 patients (Table 2).

The most common severe pDDI was acetylsalicylic acid < = >
enoxaparin, which was recorded for 21 patients. Stockley’s and

Drugs.com yielded 47 and 23 severe pDDIs, respectively, that

were not included in the other databases (Table 3). Among the

drugs that were associated with severe pDDIs, there were also

several DMDs for the therapy of MS: cladribine, fingolimod,

interferon beta, mitoxantrone, natalizumab and teriflunomide.

Factors associated with the risk of having a
severe potential drug-drug interactions

Over all patients, we identified an average of 5.7 ± 9.4 pDDIs

(0.9 ± 2.0 severe pDDIs) that were reported in at least one of the

three drug interaction databases. For 441 of the 627 patients

(70.3%), we found at least one pDDI, and for 221 patients

(35.2%), we found at least one severe pDDI. The latter

number is essentially the result of using Drugs.com and

Stockley’s as only a small subset of 11 patients were found to

have a severe pDDI according to MediQ.

The logistic regression analyses revealed predictors of the risk

of having at least one severe pDDI. In the univariable models,

statistically significant ORs >1 were obtained for age and disease

duration, number of children and siblings, degree of disability

(EDSS score), comorbidities as well as the number of drugs taken.

Conversely, more years in school, a higher educational level and

living in a partnership turned out to be protective factors with

significant ORs < 1 (Figure 4). In the multivariable model, age,

educational level, partnership status, comorbidities and number

of drugs taken remained as significantly associated with the risk

of having a severe pDDI.Multicollinearity was not detected in the

data (VIF< 1.81). The particularly strong relationships between

age and number of drugs taken with pDDI count are shown in

Figure 5. Remarkably, one female SPMS patient taking 19 drugs

had as many as 70 pDDIs, 22 of which were severe pDDIs.

Another woman with SPMS received only four drugs

(citalopram, mitoxantrone, ondansetron and solifenacin) but

nonetheless had six severe pDDIs (all possible pairwise drug

combinations) according to Stockley’s.

Discussion

Patients with MS are typically treated with a broad spectrum

of medications. In addition to DMDs, symptomatic drugs and

CAMs are often used to alleviate the symptoms of MS, while

comorbidities need to be treated with medications as well. This

poses a significant risk of pDDIs, which can lead to adverse health

outcomes. Therefore, as part of the therapy management, it

should be regularly checked whether pDDIs are present, e.g.,

FIGURE 1
Proportions of mild, moderate and severe potential drug-drug interactions by database. Themedication schedules of 627 patients with CIS/MS
were evaluatedwith respect to pDDIs using three databases. The doughnut plots show the proportions across all different pDDIs found. CIS, clinically
isolated syndrome; MS, multiple sclerosis; pDDI, potential drug-drug interaction.

FIGURE 2
Overlap of potential drug-drug interactions among the three
databases. A total of 1,684 different pDDIs were identified for the
patient cohort (N = 627). The Venn diagram shows the
intersections of pDDIs between the databases. The circles
and intersecting sets are drawn approximately to scale. pDDI,
potential drug-drug interaction.
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using pDDI screening tools. To provide insights into their utility,

we here compared the databases Stockley’s, Drugs.com and

MediQ with respect to differences in the detection and rating

of pDDIs in patients with MS. We found that the databases

provide quite heterogeneous information and that each database

reports pDDIs that are not recorded in the other two databases.

Beyond this database comparison, we discuss below the most

frequent severe pDDIs identified in our patients and highlight

sociodemographic and clinical characteristics that were

associated with the occurrence of severe pDDIs.

With an average age of 48.6 years, a sex ratio of

approximately 2.4 (female) to 1 (male) and a proportion of

patients with relapsing-onset MS of ~90%, our study cohort

compares well with large national MS cohorts (Boström et al.,

2013; Weih et al., 2020; Ohle et al., 2021). We thus believe that we

can to some extent generalize the results of our study to a wider

population of patients withMS. After combining the information

from the three databases, the analysis revealed a prevalence of

70.3% and 35.2% of having ≥ 1 pDDI and ≥ 1 severe pDDI,

respectively. However, only 18.9% of all different pDDIs were

detected with all three pDDI screening tools used. It has been

previously shown that there are large variations between CDSS/

DDIDs concerning severity ratings and the documentation of

information related to clinical effects, mechanism and

management of pDDIs (Wang et al., 2010; Monteith and

Glenn, 2019; Shariff et al., 2021). In fact, in studies comparing

different pDDI programs and databases, the overlap of pDDIs

that were detected in all resources ranged between 5% and 44%

(Vonbach et al., 2008; Smithburger et al., 2010; Smithburger et al.,

2012; Amkreutz et al., 2017; Fung et al., 2017; Sancar et al., 2019;

Suriyapakorn et al., 2019; Tecen-Yucel et al., 2020; Prely et al.,

2022). We found the lowest concordance rate for Drugs.com vs.

MediQ (23.3%), and only 3.3% of the different pDDIs were

recorded and classified with the same severity in all three

databases. This finding is similar to earlier studies by

Smithburger et al. (2010) who reported that the interaction

databases Micromedex and Lexi-Interact agreed on the

severity ratings in only ~20% of the pDDIs and that some

major pDDIs occurring in intensive care units were identified

in only one of the two databases (Smithburger et al., 2012). In

another study comparing Micromedex, Medscape and

Drugs.com in the community pharmacy setting, 13.1% of all

different pDDIs were scored with the same severity level in all

three programs (Sancar et al., 2019).

There are multiple reasons for the limited overlap and

concordance between the three databases considered in our

study. First of all, there is no standardized definition of a

pDDI (Hines et al., 2012), which leads to different views on

what might be a pDDI and what not. Different databases may be

based on different sources of information and set different

requirements for the level of evidence to define a pDDI for a

drug combination. Case reports may be sufficient for one

database, while other databases may rather rely on

pharmacokinetic properties (e.g., knowledge of CYP isozymes

involved in the metabolism of the drugs) or studies on

pharmacodynamic responses. Whether a drug interacts with

another often depends on various factors (e.g., drug intake

interval, dose and route of administration), which are not

uniformly taken into account in the databases. With regard to

the severity rating of pDDIs, there is also no consistent definition

of, e.g., a mild pDDI. Another possible explanation for the

diverging results is the different target group of each resource.

MediQ is targeted at medical professionals and is intended for

everyday clinical use, whereas Drugs.com is mainly build for

patients and non-medical people. Drugs.com might therefore be

more restrained in showing pDDIs than MediQ, because medical

laypersons are usually less interested in any mild pDDI that

might occur under certain circumstances and they would be

otherwise confused by the amount of information (Weingart

et al., 2003; Kusch et al., 2018). For patients, it is more important

that they will be informed on possibly severe pDDIs so that they

visit their doctor once more rather than not often enough, even if

the likelihood of a pDDI to be actually life-threatening is low

(Hammar et al., 2021). It also has to be considered that the

databases are not equally complete regarding drugs and pDDIs

recorded. For instance, in Drugs.com, dimetindene or fenoterol

FIGURE 3
Pairwise comparisons of the databases in terms of reported potential drug-drug interactions by degree of severity. The crosstabs show the
overlaps related to different pDDIs. The cells in the tables are color-coded according to pDDI severity from mild (green) to severe (red). — = not
recorded in one of the two databases; ∑ = sum per row/column; pDDI, potential drug-drug interaction.
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TABLE 2 Severe potential drug-drug interactions that were found for at least 3 patients.

Drug-drug interaction Stockley’s Drugs.com MediQ Frequency, n (%)

Acetylsalicylic acid < = > Enoxaparin moderate severe moderate 21 (3.3%)

Enoxaparin < = > Ibuprofen moderate severe moderate 16 (2.6%)

Baclofen < = > Ibuprofen severe — mild 15 (2.4%)

Ibuprofen < = > Methylprednisolone severe moderate — 14 (2.2%)

Enoxaparin < = > Ramipril severe moderate mild 13 (2.1%)

Citalopram < = > Methylprednisolone severe — moderate 10 (1.6%)

Dipyrone/metamizole < = > Methylprednisolone severe — mild 9 (1.4%)

Methylprednisolone < = > Solifenacin severe — — 9 (1.4%)

Acetaminophen/paracetamol < = > Ibuprofen severe — mild 7 (1.1%)

Citalopram < = > Fingolimod severe severe moderate 7 (1.1%)

Interferon beta-1a < = > Ramipril severe moderate — 7 (1.1%)

Mitoxantrone < = > Ondansetron severe — — 7 (1.1%)

Acetylsalicylic acid < = > Ibuprofen severe severe moderate 6 (1.0%)

Amlodipine < = > Simvastatin mild severe moderate 6 (1.0%)

Citalopram < = > Ibuprofen severe moderate mild 6 (1.0%)

Ibuprofen < = > Teriflunomide — severe — 6 (1.0%)

Acetylsalicylic aci < = > Dipyrone/metamizole severe — moderate 5 (0.8%)

Citalopram < = > Solifenacin severe severe moderate 5 (0.8%)

Methylprednisolone < = > Tizanidine severe — — 5 (0.8%)

Acetylsalicylic acid < = > Duloxetine severe moderate mild 4 (0.6%)

Candesartan < = > Enoxaparin severe moderate mild 4 (0.6%)

Citalopram < = > Fampridine severe — — 4 (0.6%)

Diclofenac < = > Enoxaparin moderate severe moderate 4 (0.6%)

Diclofenac < = > Methylprednisolone severe moderate — 4 (0.6%)

Escitalopram < = > Pantoprazole severe — mild 4 (0.6%)

Ramipril < = > Teriflunomide — severe — 4 (0.6%)

Ramipril < = > Tizanidine moderate severe mild 4 (0.6%)

Acetylsalicylic acid < = > Teriflunomide — severe mild 3 (0.5%)

Acetylsalicylic acid < = > Venlafaxine severe moderate mild 3 (0.5%)

Amlodipine < = > Magnesium severe — — 3 (0.5%)

Baclofen < = > Levodopa severe moderate moderate 3 (0.5%)

Bisoprolol < = > Tamsulosin severe — mild 3 (0.5%)

Ciprofloxacin< = > Methylprednisolone severe severe mild 3 (0.5%)

Citalopram < = > Dronabinol severe moderate mild 3 (0.5%)

Citalopram < = > Mitoxantrone severe — — 3 (0.5%)

Duloxetine < = > Ibuprofen severe moderate mild 3 (0.5%)

Enoxaparin < = > Valsartan severe moderate mild 3 (0.5%)

Escitalopram < = > Fingolimod severe severe moderate 3 (0.5%)

Escitalopram < = > Ibuprofen severe moderate mild 3 (0.5%)

Insulin glargine < = > Ramipril severe moderate mild 3 (0.5%)

Methylprednisolone < = > Teriflunomide — severe — 3 (0.5%)

Mitoxantrone < = > Solifenacin severe — — 3 (0.5%)

Solifenacin < = > Torasemide severe — — 3 (0.5%)

The medication schedules of a total of 627 patients with CIS/MS were evaluated using three drug interaction databases. This table lists 43 pDDIs (sorted by frequency) that were classified as

severe in at least one of the databases and that were found for n ≥ 3 patients. Please note that the severity levels from Drugs.com (minor, moderate and major) andMediQ (low, average and

high) were relabeled here according to those from Stockley’s. Disease-modifying drugs for MS are marked in bold.— = not recorded in the database; CIS, clinically isolated syndrome; MS,

multiple sclerosis; pDDI, potential drug-drug interaction.
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TABLE 3 Potential drug-drug interactions detected in only one database and classified as severe.

Severe pDDIs according
to Stockley’s only

Frequency, n (%) Severe pDDIs according
to Drugs.com only

Frequency, n (%)

Methylprednisolone < = >Solifenacin 9 (1.4%) Ibuprofen < = > Teriflunomide 6 (1.0%)

Mitoxantrone < = > Ondansetron 7 (1.1%) Ramipril < = > Teriflunomide 4 (0.6%)

Methylprednisolone < = > Tizanidine 5 (0.8%) Methylprednisolone < = > Teriflunomide 3 (0.5%)

Citalopram < = > Fampridine 4 (0.6%) Candesartan < = > Potassium 2 (0.3%)

Amlodipine < = > Magnesium 3 (0.5%) Cannabidiol < = > Teriflunomide 2 (0.3%)

Citalopram < = > Mitoxantrone 3 (0.5%) Fingolimod < = > Methylprednisolone 2 (0.3%)

Mitoxantrone < = > Solifenacin 3 (0.5%) Acetaminophen/paracetamol < = > Leflunomide 1 (0.2%)

Solifenacin < = > Torasemide 3 (0.5%) Acetaminophen/paracetamol < = > Teriflunomide 1 (0.2%)

Dipyrone/metamizole < = > Prednisolone 2 (0.3%) Acetylsalicylic acid < = > Brinzolamide 1 (0.2%)

Escitalopram < = > Fampridine 2 (0.3%) Acetylsalicylic acid < = > Dorzolamide 1 (0.2%)

Mitoxantrone < = > Tolterodine 2 (0.3%) Budesonide < = > Natalizumab 1 (0.2%)

Mitoxantrone < = > Torasemide 2 (0.3%) Captopril < = > Teriflunomide 1 (0.2%)

Sodium < = > Torasemide 2 (0.3%) Cladribine < = > Fluticasone 1 (0.2%)

Timolol < = > Travoprost 2 (0.3%) Codeine < = > Tizanidine 1 (0.2%)

Beclometasone < = > Escitalopram 1 (0.2%) Diclofenac < = > Teriflunomide 1 (0.2%)

Betamethasone < = > Dipyrone/metamizole 1 (0.2%) Dimenhydrinate < = > Potassium citrate 1 (0.2%)

Betamethasone < = > Fenoterol 1 (0.2%) Fingolimod < = > Tamoxifen 1 (0.2%)

Betamethasone < = > Fluconazole 1 (0.2%) Ibuprofen < = > Immunoglobulin G 1 (0.2%)

Betamethasone < = > Formoterol 1 (0.2%) Irbesartan < = > Potassium 1 (0.2%)

Bicalutamide < = > Goserelin 1 (0.2%) Mirabegron < = > Tamoxifen 1 (0.2%)

Bicalutamide < = > Triptorelin 1 (0.2%) Potassium < = > Solifenacin 1 (0.2%)

Budesonide < = > Venlafaxine 1 (0.2%) Quetiapine < = > Tapentadol 1 (0.2%)

Caffeine < = > Paroxetine 1 (0.2%) Topiramate < = > Trospium chloride 1 (0.2%)

Candesartan < = > Ramipril 1 (0.2%)

Citalopram < = > Fludrocortisone 1 (0.2%)

Citalopram < = > Hydrocortisone 1 (0.2%)

Citalopram < = > Xipamide 1 (0.2%)

Dexamethasone < = > Opipramol 1 (0.2%)

Dydrogesterone < = > Topiramate 1 (0.2%)

Eprosartan < = > Tamsulosin 1 (0.2%)

Escitalopram < = > Methylprednisolone 1 (0.2%)

Etofenamate < = > Fluoxetine 1 (0.2%)

Etoricoxib < = > Methylprednisolone 1 (0.2%)

Fenoterol < = > Fluconazole 1 (0.2%)

Fingolimod < = > Sulpiride 1 (0.2%)

Fingolimod < = > Tolterodine 1 (0.2%)

Fludrocortisone < = > Solifenacin 1 (0.2%)

Furosemide < = > Levofloxacin 1 (0.2%)

Hydrocortisone < = > Solifenacin 1 (0.2%)

Hydrocortisone < = > Tolterodine 1 (0.2%)

Latanoprost < = > Timolol 1 (0.2%)

Lovastatin < = > Niacin 1 (0.2%)

Methylprednisolone < = > Quinine sulfate 1 (0.2%)

Mitoxantrone < = > Tizanidine 1 (0.2%)

Prednisolone < = > Solifenacin 1 (0.2%)

Simvastatin < = > Sitagliptin 1 (0.2%)

Tolterodine < = > Torasemide 1 (0.2%)

In the dataset of 627 patients, we found 47 severe pDDIs in the Stockley’s database that were not listed in the other two databases. Similarly, we found 23 severe pDDIs in the Drugs.com

database that were not listed in the other two databases. Among the 473 pDDIs that were found exclusively in the MediQ database, there was no severe pDDI. Disease-modifying drugs for

multiple sclerosis are marked in bold. pDDI, potential drug-drug interaction.
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were not found and pDDIs could therefore not be determined for

those. The update intervals differ and, therefore, a given pDDI

might be documented differently across the databases. There is

also typically more information on drugs that have been

approved for a longer time (such as interferon beta) than for

newer drugs (such as cladribine). For clinicians, it is thus

currently recommended to use more than one CDSS/DDID

and to consult a clinical pharmacist in order not to miss

relevant pDDIs (Smithburger et al., 2010; Wang et al., 2010;

Kheshti et al., 2016; Sancar et al., 2019; Suriyapakorn et al., 2019).

Severe pDDIs can lead to life-threatening conditions and

require medical intervention to prevent serious consequences

(Sheikh-Taha and Asmar, 2021). In our study, a total of

336 pDDIs were classified as severe in at least one database.

The most common severe pDDI was acetylsalicylic acid with

enoxaparin. This combination may lead to an increased bleeding

tendency (Théroux et al., 1988). Citalopram, a selective serotonin

reuptake inhibitor (SSRI), was most frequently involved in severe

pDDIs. This finding is similar to a study on severe pDDIs in

patients with dementia, according to which citalopram was

involved in half of the top ten severe pDDIs (Bogetti-Salazar

et al., 2016). We found severe pDDIs with citalopram for

33 different drugs, including mitoxantrone, fingolimod,

acetylsalicylic acid, isoniazid and solifenacin. Citalopram is

metabolized by the CYP2C19 enzyme, which is increased in

activity after acetylsalicylic acid intake (Chen et al., 2003) but

inhibited by isoniazid (Desta et al., 2001). Therefore, it may be

appropriate to monitor the levels of citalopram in plasma or

serum in the early phase of treatment. Dose adjustments may

prevent later treatment failure and adverse drug reactions (Ostad

Haji et al., 2013). The therapeutic reference range for citalopram

is between 50 and 110 ng/ml, while concentrations > 220 ng/ml

are considered to be above the “laboratory alert level” (Hiemke

et al., 2018). Apart from pharmacokinetic interactions, SSRI

medications are associated with a modest increase in the risk

of gastrointestinal bleeding, and when used in combination with

non-steroidal anti-inflammatory drugs (e.g., acetylsalicylic acid)

or oral anticoagulants (e.g., phenprocoumon) the risk of bleeding

complications is elevated (Anglin et al., 2014; Nochaiwong et al.,

2022). Therefore, co-prescription should be weighed by a risk-

benefit assessment. Solifenacin is used to relieve symptoms of an

overactive bladder in patients with MS (van Rey and Heesakkers,

2011), but it may in rare cases cause a prolongation of the QT

interval (Bray and Hancox, 2017). Citalopram also causes a dose-

dependent QT interval prolongation (Maljuric et al., 2015).

Hence, concurrent administration of citalopram and

solifenacin can result in a higher risk of cardiac arrhythmias

(Behr and Roden, 2013). Due to the relatively high prevalence of

depressive and anxiety disorders in patients withMS (up to 50%),

antidepressants such as SSRIs are often prescribed (Patten et al.,

2017). To prevent severe pDDIs, individualized therapy with

antidepressants should thus be implemented with critical

FIGURE 4
Factors associated with the occurrence of severe potential drug-drug interactions in patients with multiple sclerosis. A subset of 221 of the
627 patients had at least one severe pDDI according to at least one of the three databases used. Binary logistic regression analyses were performed to
test for 12 variables whether they are associated with the risk of having a severe pDDI. This was done using each variable individually (univariable
models) and the best predictive subset of variables (stepwise selection model). The ORs and 95% CIs from these models are shown as forest
plots. p-values <0.05 are marked in bold. CI, confidence interval; EDSS, Expanded Disability Status Scale; OR, odds ratio; pDDI, potential drug-drug
interaction; ref., reference.
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indication and consideration of alternatives (Stamoula et al.,

2021).

We found several severe pDDIs involving DMDs, e.g.,

teriflunomide, fingolimod, mitoxantrone and interferon beta.

For the corticosteroid methylprednisolone, we found severe

pDDIs with fingolimod and teriflunomide in Drugs.com.

Fingolimod reversibly reduces the number of circulating

lymphocytes, while teriflunomide reduces the proliferation of

activated B and T lymphocytes (Bar-Or and Li, 2021). Studies

found no generally increased risk of infections in patients treated

with fingolimod or teriflunomide (Francis et al., 2014;

Winkelmann et al., 2016; Winkelmann et al., 2022). However,

concurrent use of immunomodulatory or immunosuppressive

therapies can have additive effects on the immune system,

thereby increasing infectious risks. Therefore, corticosteroid

treatment for relapses should be limited (3–5 days) in MS

patients receiving DMDs, and a decision for prolonged or

repeated high-dose corticosteroid use should be made on an

individual basis after careful consideration (Arvin et al., 2015;

Abrantes et al., 2021). The pDDI resulting from the combination

of citalopram with fingolimod was classified as severe due to the

risk of ventricular arrhythmias, but clinical studies revealed no

additional risk of abnormal electrocardiogram findings in

patients who received fingolimod and SSRIs compared with

patients receiving fingolimod therapy alone (Bermel et al.,

2015; Bayas et al., 2016).

Older age and a higher number of comorbidities were strong

risk factors for the occurrence of severe pDDIs according to the

multivariable model. Furthermore, we found severe pDDIs more

frequently in MS patients with a lower educational level and in

patients who were not in a partnership. This is in line with

previous studies by our group and others showing that with older

age and the presence of comorbidities, the number of drugs taken

increases on average (Frahm et al., 2019; Frahm et al., 2020b;

Zanghì et al., 2021; Bachmann et al., 2022) and so does the risk of

pDDIs (Debus et al., 2022). Our analysis also complements the

results of studies not related to MS. An Irish study of elderly

community dwellers found that patients with a higher

educational level were less likely to have severe pDDIs

(Hughes et al., 2021). In patients with dementia, factors that

were associated with severe pDDIs were taking a greater number

of drugs, depression, dementia severity and caregiver burden

(Bogetti-Salazar et al., 2016).

To prevent adverse drug reactions due to (severe) pDDIs, the

treating physicians should regularly review the current

medication plan and educate the patient well about the

correct use of drugs (e.g., dosage and intake interval) and side

effects that may occur (Tannenbaum and Sheehan, 2014). In this

FIGURE 5
Frequency of potential drug-drug interactions in relation to age and number of drugs taken. The patients (N = 627) took 5.3 medications on
average. A subset of 441 patients had at least one pDDI according to at least one of the three databases used. Red dots in the scatterplot represent
patients with multiple severe pDDIs. Fitted exponential curves with 95% bootstrap confidence intervals are shown in gray. pDDI, potential drug-drug
interaction.
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effort, the physicians should not only pay attention to the

medications they prescribed, but should also place these in a

critical context with the medications prescribed by physicians

from other specialties. When checking for pDDIs, the use of OTC

drugs should not be neglected (Scherf-Clavel, 2022) as, according

to our previous study, about one in five pDDIs is related to OTC

medicines in patients with MS (Bachmann et al., 2022). If a

clinically relevant pDDI is identified, there are various options for

dealing with it. Rx and OTC medications that are not necessary

for the patient can be discontinued. Depending on the need, the

use of a drug can also be reduced or just temporarily suspended.

Substitution of a drug with an alternative, less interacting drug

might also be conceivable. If all this is not possible after weighing

the risks, a close therapy monitoring supported by laboratory

tests and a detailed counseling of the patient should be ensured. It

is particularly important that the patient knows the typical first

signs of adverse events associated with an unavoidable pDDI so

that a physician consultation is sought quickly if the need arises.

A close cooperation between different medical disciplines and

between physicians and pharmacists should be understood as the

basis for improving individualized patient care.

Our study has several limitations. First, the data were

collected at medical centers in Germany, but internationally,

there are differences in the therapeutic management of patients

withMS and in the provision and reimbursement of drugs.When

collecting the medication data, it was ensured that the data were

recorded twice (via the patient interview and the patient record).

Nevertheless, there is always a risk of inaccuracies when

analyzing medication schedules. For the evaluation of pDDIs,

we here gathered and compared information from three selected

commonly used databases. The discussed severe pDDIs therefore

do not necessarily represent an exhaustive list of all severe pDDIs

that may occur in MS patients. In the present study, we did not

investigate possible drug-food and drug-gene interactions.

Moreover, we did not examine whether the treating

physicians were already aware of the pDDIs and whether they

considered them as not clinically relevant. Some of the identified

pDDIs are based on theoretical mechanisms involving known

CYP enzyme substrates, inducers or inhibitors, but are currently

without solid evidence to affirm the theoretical interaction (by

clinically relevant case reports). We cannot state to what extent

the differences in the detection of pDDIs between the databases

were due to insufficient data on the pharmacokinetics or

pharmacodynamics of the drugs. The mechanisms of action of

individual pDDIs were reported quite differently in the

databases. In some cases only pharmacokinetic mechanisms

were explained, in others only pharmacodynamic mechanisms.

We also did not record actual adverse drug events in the patients,

which is an issue that would be ideally pursued further in a

longitudinal study. Thus, additional studies are warranted to

examine how pDDI resources can be better integrated in routine

clinical practice to provide a quick overview on unwanted effects

and serious problems related to inappropriate drug use in MS

patients. In the future, patient safety might be improved by

machine learning methods, which can help in predicting relevant

interactions betweenmultiple drugs (Basile et al., 2019; Han et al.,

2022). Further research might also involve the patients and

investigate whether they are aware of the problem and

understand information about pDDIs (Hammar et al., 2021).

In conclusion, our study provides a comprehensive

comparison of the three pDDI screening tools Stockley’s,

Drugs.com and MediQ based on a sample of 627 patients. A

total of 1,684 different pDDIs were identified, with large

differences between the databases in the number of pDDIs

recorded (range: 706–1,161). Due to the heterogeneity in the

classification of pDDI severities, only six of the 336 different

severe pDDIs were rated as such in all three databases. In our

patient cohort, citalopram was the drug most frequently involved

in different severe pDDIs. Overall, 35.2% of the 627 patients had

at least one severe pDDI, the occurrence of which was

significantly associated with older age, lower educational level,

living without a partner, comorbidities and the number of

medications taken. In the context of chronic diseases such as

MS, polypharmacy and the assessment of pDDIs present major

challenges that could be better addressed through improved

digital health solutions. When searching for pDDIs, it is

currently recommended to check more than one database to

increase sensitivity. Periodic medication reviews by the treating

physicians and appropriate reductions or substitutions of

medications can reduce the risk of severe pDDIs and improve

the therapy management.
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SUPPLEMENTAL FIGURE S1
Network visualization of severe potential drug-drug interactions detected in
patients withmultiple sclerosis. A total of 1,684 different pDDIs were recorded
for the 627 patients in this study. This graph shows a subset of 336 pDDIs that
were classified as severe in at least one of the three databases used. The
interactions (edges) connect 164 different active drug ingredients (nodes),
including7DMDs forMS.Thesizeof thenodescorresponds to thenumberof
different pDDIs in which the drug is involved. The thickness of the edges
indicates the frequency of the pDDIs in the patient cohort. The color of the
edges indicates the consistency of the severity rating across the databases.
DMD, disease-modifying drug; MS, multiple sclerosis; pDDI, potential drug-
drug interaction.
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