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ABSTRACT

Objective: We aimed to investigate the distinct transcriptional landscape in poor responders 
to concurrent chemoradiotherapy (CCRT) and to gain mechanistic insights into treatment 
resistance in cervical cancer.
Methods: RNA sequencing was performed in patients with locally advanced cervical cancer 
treated with platinum-based CCRT. Transcriptome data of no durable benefit (NDB; 
progression-free period <3 years) and durable clinical benefit (DCB; progression-free period 
>5 years) patients were compared. The NDB score was estimated for each patient using 
differentially expressed genes between NDB and DCB patients. The potential response to 
programmed death-1 blockade was estimated using the tumor immune dysfunction and 
exclusion (TIDE) score and T-cell-inflamed gene expression profile (GEP).
Results: NDB patients exhibited a distinct transcriptional profile compared to DCB 
patients, such as higher signatures of extracellular matrix organization and epithelial-to-
mesenchymal transition. The fraction of cancer-associated fibroblasts (CAFs) within the 
tumor was significantly higher in NDB patients than in DCB patients. High NDB scores were 
significantly associated with poor survival in the Cancer Genome Atlas cervical cancer cohort 
(n=274; p=0.015) but only in patients who received curative aim radiotherapy (p=0.002). 
Patients with high NDB scores displayed significantly higher TIDE prediction scores and 
lower T-cell-inflamed GEP scores than those with low NDB scores.
Conclusion: Patients with cervical cancer having poor CCRT or RT outcomes exhibited a 
distinct gene signature that could predict treatment outcomes. For poor responders, immune 
checkpoint inhibitors may be less effective whereas CAF-targeting treatments may be a 
promising approach.
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Synopsis
• �A subgroup of patients with locally advanced cervical cancer exhibit no durable benefit 

(NDB) after chemoradiotherapy.
• NDB patients exhibited a distinct transcriptional profile
• NDB signature score predicted poor outcome in independent cohorts.
• NDB patients may have poor response to immune checkpoint blockade.
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INTRODUCTION

Cervical cancer is the fourth most commonly diagnosed cancer and the fourth leading cause 
of cancer-related deaths among women worldwide [1]. Despite the decreasing proportion 
of cervical cancer due to effective screening and vaccination programs, the incidence and 
mortality rates of cervical cancer are still considerably higher in transitioning countries 
[1]. Most early-stage cervical cancers are cured by surgical resection. For locally advanced 
diseases, concurrent chemoradiotherapy (CCRT) is the treatment of choice [2-4]. However, 
even with modern radiation techniques, 30% of patients with locally advanced cervical cancer 
experience treatment failure after curative aim CCRT [5,6].

To overcome the limitations of current standard treatment, adjuvant or neoadjuvant 
chemotherapy, immune checkpoint inhibitors (ICIs), and other target agents are under 
investigation [7]. Although the results of OUTBACK (NCT01414608) and INTERLACE 
(NCT01566240) are awaited, additional chemotherapy with standard CCRT has shown 
conflicting results [8-10]. The results of the combination of ICIs with CCRT have only 
been reported in early clinical trials [11], and several phase III trials are currently under 
investigation [12]. Most of these trials focused on treatment intensification in patients with 
locally advanced cervical cancer without applying relevant biomarkers for patient selection. 
To better define optimal candidates for treatment intensification, biomarkers that identify 
patients more likely to fail after CCRT are needed. Moreover, biomarker-driven targets for 
novel treatment combinations are required.

Gene sets, comprising multiple genes, have been utilized to predict outcomes and guide 
further treatment. The most popular gene panel used in clinical practice is Oncotype Dx in 
patients with breast cancer. It is used to select the patient subpopulation that may best fit 
adjuvant chemotherapy [13]. For radiotherapy (RT), gene-expression-based scoring systems 
have been proposed but have not been integrated into routine clinical practice [14,15]. 
These gene sets are either derived from cancer cell lines [14], which do not consider tumor 
microenvironment factors, or developed in postoperative settings [15]. Moreover, no specific 
gene set has been suggested to predict the response to CCRT in patients with cervical cancer. 
In the present study, we aimed to identify a distinct gene expression signature associated 
with poor treatment outcomes and to gain mechanistic insights into treatment resistance in a 
subpopulation of patients with early treatment failure.

MATERIALS AND METHODS

1. Patients and treatment
Patients with pathologically confirmed locally advanced uterine cervical cancer who 
received definitive CCRT or RT were included in the study. Among 679 patients that received 
definitive CCRT or RT between January 1995 and August 2012, 528 patients were available for 
formalin-fixed paraffin-embedded (FFPE) tissues. Among the 528 patients, 26 patients had 
recurrence within 36 months (no durable benefit [NDB)) and 403 patients had no recurrence 
or recurrence after 60 months (durable clinical benefit [DCB]; Fig. 1). From our previous 
reports, recurrences were mostly evident before 36 months and rare after 60 months [6,16]. 
Propensity score matching was performed to adjust the imbalance of baseline characteristics 
between NDB and DCB patients (Table S1). In total, four patients with NDB and five 
patients with DCB were included for RNA sequencing. The details of RT and chemotherapy 
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have been described previously [16]. In brief, RT consisted of external beam radiotherapy 
(EBRT) at 45 Gy in 25 fractions covering the whole pelvis and high-dose-rate intracavitary 
brachytherapy (HDR-ICBT) at 30 Gy in 6 fractions. The chemotherapy regimen used was a 
combination of cisplatin or carboplatin with 5-fluorouracil administered every 3 weeks or a 
weekly administration of cisplatin or carboplatin. Follow-up examinations, which included 
physical examinations, computed tomography, and magnetic resonance imaging, were 
performed every 3 months for the first 2 years, every 6 months for the next 3 years, and once 
per year thereafter. The study was conducted according to the guidelines of the Declaration of 
Helsinki and was approved by the Institutional Review Board of Severance Hospital (4-2015-
0454), which also waived the need to obtain informed consent due to the retrospective nature 
of this study.

2. Tumor tissue preparation
RNA was extracted from FFPE tissue sections with an RNeasy FFPE Kit (Qiagen, Hilden, 
Germany), and only samples that passed the quality control tests were further processed for 
RNA sequencing. RNA quality was assessed using an Agilent 2100 Bioanalyzer and an RNA 
6000 Nano Chip (Agilent Technologies, Palo Alto, CA, USA), and RNA quantification was 
performed using an ND-2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 
USA). In total, four NDB patients and five DCB patients who had sufficient amounts of RNA 
and had passed quality assessments underwent RNA sequencing.

3. RNA sequencing and analysis
An oligo-dT primer containing an Illumina-compatible sequence at its 5' end was hybridized 
to the RNA for reverse transcription. After degradation of the RNA template, second-strand 
synthesis was initiated with a random primer containing an Illumina-compatible linker 
sequence at its 5' end. The double-stranded library was purified using magnetic beads. The 
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(n=99)
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(n=403)
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(n=26)

RAN seq QC passed
DCB (n=5)

Fig. 1. CONSORT diagram of the patients analyzed in the present study. 
CCRT, concurrent chemoradiotherapy; FFPE, formalin-fixed paraffin-embedded; NDB, no durable benefit; RT, 
radiotherapy; QC, quality control.



library was amplified to add the adapter sequences required for cluster generation. Purified 
libraries were sequenced using HiSeq 2500 (Illumina) at an average of 58 million paired-end 
100-bp reads. Reads were aligned to the human genome (hg19) using TopHat v2.1.1. The 
number of mapped reads for each gene was quantified using the StringTie. Gene counts 
were normalized by library size, and the differential expression of genes was analyzed using 
DESeq2 (v.1.24.0). Differentially expressed genes (DEGs) were determined as those with an 
adjusted p<0.05 and a log2 fold-change >1. Heatmaps were generated using the pheatmap 
package (v1.0.12). Enriched biological processes and pathways of genes upregulated in 
NDB and DCB patients were annotated by gene ontology and Kyoto Encyclopedia of Genes 
and Genomes pathway terms using DAVID [17]. Gene set enrichment analysis (GSEA) was 
performed using Broad Institute software (http://software.broadinstitute.org/gsea/index.jsp). 
The curated gene sets of transforming growth factor (TGF)-β response [18], wound healing, 
epithelial-mesenchymal transition (EMT) [19], and radioresistance [20] were obtained 
from previous studies. CIBERSORTX was used to analyze the cellular composition of the 
tumor microenvironment [21]. Due to the lack of data on cervical cancer in this model, we 
applied the head and neck squamous cell carcinoma tumor-trained model. Gene signatures 
of cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and 
myeloid-derived suppressor cells (MDSCs) were obtained from previous studies [22-24]. RNA 
sequencing data are available from the NCBI GEO (GSE168009).

4. NDB score and survival analysis
An “NDB score” was calculated for each individual using gene set variation analysis (GSVA) 
with the GSVA R package (v.1.32.0) and was defined as the enrichment score for the gene set 
derived from the DEGs between NDB and DCB tumors. In detail, the GSVA score for significantly 
downregulated genes in the NDB tumor was subtracted from the GSVA score of significantly 
upregulated genes in NDB tumors. Patients were dichotomized according to the NDB score as 
“high” (NDB score >0) and “low” (NDB score <0). We analyzed survival outcomes according 
to the NDB score in the Cancer Genome Atlas Cervical Squamous Cell and Endocervical 
Adenocarcinoma (TCGA-CESC) cohort. RNA-sequencing data and patient clinical information 
from the TCGA database were obtained using FireBrowse (Broad Institute). Furthermore, the 
predictive value of the NDB score was analyzed according to the receipt of curative aim RT, which 
was defined as receiving RT but not surgery. In addition, we further validated the predictive value 
of the NDB score with regard to overall survival in two independent cohorts (GSE39001 and 
GSE52904) [25,26]. Only patients who received curative aim RT were included in the analysis. 
Two patients were absent of gene expression data in the GSE39001 data set. NDB and DCB 
patients in the TCGA data base were divided according to the provided progression-free interval. 
NDB and DCB patients in the two other cohorts, GSE39001 and GSE52904, were divided 
according to overall survival since they only provided overall survival data.

5. Predicting the response to anti-programmed death-1 (PD-1) therapy
The T cell-inflamed gene expression profile (GEP) [27], which is known to predict tumor 
response to anti-PD-1 therapy, was utilized to predict the response to anti-PD-1 therapy. 
In addition, the recently developed tumor immune dysfunction and exclusion (TIDE) 
algorithm was used to predict the response to ICIs [28]. In brief, this algorithm estimates 
a TIDE prediction score for each individual based on gene expression data; a higher TIDE 
score is associated with a poorer response to ICIs. The neoantigen load for each patient 
from the TCGA-CESC cohort was obtained from a previous study [18]; it was determined 
from single-nucleotide variants and indel mutations that were predicted to result in major 
histocompatibility complex binding peptides.
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6. Statistical analysis
The Student's t-test was performed to compare continuous variables between two groups. 
Survival curves were generated using Kaplan-Meier curves and compared using a log-rank 
test. Propensity score matching was performed by 1:1 nearest neighbor analysis, with a 
caliper width of 0.2 standard deviations of the logit distance measured using the R-package, 
“MatchIt.” The covariates used for matching included age, FIGO stage, tumor size, histology, 
pelvic lymph node involvement, and chemotherapy. Statistical significance was set at p<0.05. 
All statistical analyses were performed using R v3.6.2 (http://www.r-project.org) or GraphPad 
Prism v6.0 (GraphPad Software Inc., San Diego, CA, USA).

RESULTS

1. Patient characteristics
The characteristics of the four NDB patients and five DCB patients who underwent RNA 
sequencing are summarized in Table 1. Most patients had squamous cell histology, and one 
patient was diagnosed with adenocarcinoma. All patients received EBRT followed by HDR-
ICBT with concurrent chemotherapy. At 3 months post CCRT, eight patients exhibited a 
clinically complete response, whereas one patient exhibited a partial response and underwent 
salvage hysterectomy. The median time to progression was 12.6 months in NDB patients, and 
no recurrences were observed in DCB patients. Among the NDB patients, the first location of 
recurrence was locoregional in two patients and distant in two patients. The median overall 
survival was 44 months (95% confidence interval [CI], 5.3–82.7 months) in NDB patients and 
not reached in DCB patients (p=0.022).

2. The distinct transcriptional profiles in NDB patients
The principal component analysis revealed distinct transcriptional landscapes in NDB 
and DCB patients (Fig. 2A). A total of 185 DEGs were identified, of which 100 genes were 
significantly upregulated in NDB and 85 genes were significantly upregulated in DCB patients 
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Table 1. Characteristics of patients with NDB (n=4) and DCB (n=5) that underwent RNA sequencing
Patients Age Histology FIGO 

Stage*
LN 

metastasis
Radiotherapy Chemotherapy 3-mo tumor 

response
Recur Time to 

progression (m)
Survival 

(m)
Last f/u 
status

NDB1 28 SCC IIA2 (IIA2) None EBRT 45 Gy + ICBT 
24Gy

5-FU + 
Carboplatin

CR Lung, 
mediastinal LNs

7.5 16.5 Dead

NDB2 35 SCC IIB (IIIC1) Pelvic LN EBRT 45 Gy + ICBT 
30Gy

Cisplatin CR Lung 7.8 69.9 Alive

NDB3 62 SCC IIB (IIB) None EBRT 45 Gy + ICBT 
30Gy

5-FU + Cisplatin CR Local 17.3 56.0 Dead

NDB4 50 ADC IIB (IIIC1) Pelvic LN EBRT 45 Gy + ICBT 
30Gy

Cisplatin PR Pelvic LN 26.9 44.0 Dead

DCB1 76 SCC IIA1 (IIA1) None EBRT 45 Gy + ICBT 
30Gy

Carboplatin CR None - 72.1 Alive

DCB2 75 SCC IIB (IIIC1) Pelvic LN EBRT 45 Gy + ICBT 
30Gy

Carboplatin CR None - 60.8 Alive

DCB3 45 SCC IB2 (IB3) None EBRT 41.4 Gy + ICBT 
30Gy

Carboplatin CR None - 72.3 Alive

DCB4 43 SCC IIB (IIIC1) Pelvic LN EBRT 45 Gy + ICBT 
30Gy

Cisplatin CR None - 136.2 Alive

DCB5 44 SCC IIA2 (IIA2) None EBRT 45 Gy + ICBT 
30Gy

Cisplatin CR None - 169.0 Alive

ADC, adenocarcinoma; CCRT, concurrent chemoradiotherapy; CR, complete response; DCB, durable clinical benefit (PFS >60 months); EBRT; external beam 
radiotherapy; FIGO, International Federation of Gynecology and Obstetrics; ICBT, intracavitary brachytherapy; LN, lymph node; NDB, no durable benefit (PFS <36 
months); OS, overall survival; PFS, progression-free survival; PR, partial response; SCC, squamous cell carcinoma.
*FIGO stage 2009 (FIGO stage 2018).

http://www.r-project.org


(Fig. 2B; Table S2). Unsupervised hierarchical clustering confirmed that the gene signatures 
of NDB and DCB patients were distinct (Fig. 2B). Genes upregulated in NDB patients were 
associated with extracellular matrix (ECM) organization, cell migration, and EMT (Fig. 2C). 
In contrast, genes upregulated in patients with DCB were associated with epidermal cell 
differentiation and interferon-related pathways (Fig. 2C). GSEA also demonstrated significant 
enrichment of the EMT gene signature in NDB patients (Fig. 2D). Other gene signatures 
related to EMT, such as the wound healing signature and TGF-β response signature, were 

6/14https://ejgo.org https://doi.org/10.3802/jgo.2022.33.e7

Gene signature predicting treatment response

C

0
−log10P

5 10 15

Extracellular matrix organization
Collagen fibril organization

Regulation of cell migration
Positive regulation of EMT

PI3K-Akt signaling pathway

Upregulated in NDB

0
−log10P

5 10 15

Regulation of epidermal cell differentiation
NOD-like receptor signaling pathway

Cellular response to IFN-γ
Type I interferon signaling pathway

Cytokine-mediated signaling pathway

Upregulated in DCB

20

10

0

−10

−20

−40

PC
2

PC1

−20 0 20

DCB
NDB

A B
DCB
NDB

Z-score

−2 −1 0 1 2

D

0

0.2

0.4

0.6

NDB DCB

En
ric

hm
en

t s
co

re

NES=2.17
p<0.001

EMT signature

0
0.1

0.3
0.4

0.2

NDB DCB

En
ric

hm
en

t s
co

re

NES=1.52
p<0.001

Wound healing signature

F

0

0.2

0.6

0.4

NDB DCB

En
ric

hm
en

t s
co

re

NES=1.50
p=0.024

Radioresistance signature

0
0.1
0.2

0.4
0.3

NDB DCB

En
ric

hm
en

t s
co

re

NES=1.30
p=0.037

TGF-β response signature

E

NDB DCB
0

0.2

0.4

0.1

0.3

CA
F 

fr
eq

ue
nc

y

*

Fig. 2. Transcriptome analysis of DCB (n=5) and NDB (n=4) patients. (A) Principal component analysis of DCB and NDB patients. (B) Hierarchical clustering 
analysis of differentially expressed genes (log2 fold change >1, adjusted p<0.05) in DCB and NDB patients. (C) Enriched biological processes and pathways of 
genes upregulated in NDB and DCB patients. (D) Gene set enrichment analysis regarding EMT signature, wound healing signature, and TGF-β response signature. 
(E) Frequency of CAFs estimated by CIBERSORTx. (F) Gene set enrichment analysis of a radioresistant gene signature. 
CAF, cancer-associated fibroblast; DCB, durable clinical benefit; EMT, epithelial-mesenchymal transition; NDB, no durable benefit; TGF, transforming growth factor. 
*p<0.05.



also significantly enriched in NDB patients (Fig. 2D). Next, we enumerated the frequency of 
CAFs by deconvolution of bulk RNA-sequencing data using CIBERSORTx. The frequency of 
CAFs was significantly higher in NDB patients than in DCB patients (Fig. 2E). Indeed, NDB 
patients exhibited a significant enrichment of a radioresistant gene signature (Fig. 2F).

3. Predictive role of the NDB score in independent cohorts
Next, we evaluated whether the distinct gene signature of NDB patients could predict 
treatment outcomes following CCRT in patients with cervical cancer. Using the DEGs 
between NDB and DCB patients, we could derive an “NDB score” for each patient. First, 
we utilized the TCGA-CESC cohort (n=273) to test the predictive power of the NDB score. 
NDB score was significantly higher in NDB patients compared to DCB patients (Fig. 3A). In 
addition, patients with high NDB scores had a significantly lower survival even after adjusting 
for age, tumor histology, and tumor stage (adjusted hazard ratio 2.02; 95% CI, 1.25–3.26; 
Fig. 3A). Considering that the NDB score is derived from a cohort of patients who received 
curative aim CCRT, we evaluated the predictive role of the NDB score in subgroups of patients 
who did or did not receive curative aim RT. The NDB score predicted poor outcomes only in 
the subgroup of patients who received curative aim RT (Fig. 3B) and not in patients who did 
not receive curative aim RT (Fig. 3C). We further tested the prognostic value of the NDB score 
in two independent cohorts of patients with cervical cancer who had gene expression data, 
clinical outcomes, and information on treatment received [25,26]. Although the number of 
patients was small, NDB score was higher in NDB patients than in DCB patients (Fig. 3D and 
E). Furthermore, we observed a significantly lower survival in patients with high NDB scores 
than in those with low NDB scores in one cohort and a borderline significance of the NDB 
score in another cohort (Fig. 3D and E).

4. Enriched immune-suppressive cells in NDB patients
We next investigated the tumor immune microenvironment in the TCGA-CESC cohort 
according to the NDB score. The wound healing process that is related to EMT is also an 
immunologic process involving immune-suppressive cells, such as CAFs, TAMs, and MDSCs 
[29,30]. Considering the enrichment of the wound healing signature in NDB patients, we 
evaluated TGF-β response, CAF, TAM, and MDSC signature scores. Indeed, patients with 
high NDB scores had significantly higher TGF-β response, CAF, TAM, and MDSC signature 
scores (Fig. 4A). Moreover, deconvolution of cell subsets revealed a significant enrichment 
of CAFs in patients with high NDB scores (Fig. 4B). Additionally, a significantly higher 
proportion of endothelial cells was observed in patients with high NDB scores than in those 
with low NDB scores (Fig. 4B).

5. �High NDB scores may associate with poor response to immune checkpoint 
blockade

Considering the role of immune-suppressive cells in abrogating the effectiveness of ICIs 
[31], we next investigated the potential of NDB and DCB patients to respond to ICIs. T 
cell-inflamed GEP [27], which has been shown to predict responses to anti-PD-1 therapy in 
multiple types of cancer, was found to be significantly enriched in DCB patients (Fig. 5A). In 
the TCGA-CESC cohort, the T cell-inflamed GEP score was higher in patients with low NDB 
scores than in those with high NDB scores (p<0.0001; Fig. 5B). However, the neoantigen 
number, which is also known to be a predictive marker for anti-PD-1 therapy [32], was similar 
between patients with high and low NDB scores (Fig. 5C). Next, we estimated the TIDE score 
for each patient to predict the probability of responding to ICIs [28]. A lower TIDE score 
indicated a higher probability of responding to ICIs. The TIDE score was significantly lower 
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in patients with a low NDB score than in those with a high NDB score (Fig. 5D). Furthermore, 
significantly more patients with low NDB scores had a TIDE score <0 than those with high 
NDB scores (59.7% vs. 21.6%; p<0.001; Fig. 5E).

DISCUSSION

In the present study, we found that NDB patients exhibited a distinct gene signature that 
could predict treatment outcomes following CCRT in patients with locally advanced cervical 
cancer. Using the DEGs between NDB and DCB patients, we estimated the NDB scores for 
each patient. The NDB score specifically predicted treatment outcome in patients treated 
with RT but not in those treated with surgery, thus implying that this gene signature is 
predictive of CCRT responses rather than prognosis. In addition, we discovered key pathways 
related to the responsiveness to CCRT. Poor responders tended to have upregulated EMT, 
wound healing, and TGF-β response signatures. Moreover, immune-suppressive cells such as 
CAFs were enriched in tumors that responded poorly to CCRT. Patients anticipated to have 
a poor response to CCRT were also less likely to respond to ICIs. These results suggest novel 
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combinatorial targets, other than ICIs, in patients with cervical cancer that are less likely to 
be cured by CCRT.

Currently, no predictive biomarker is available to predict outcomes following CCRT for 
locally advanced cervical cancer. Previously, a gene-expression-based radiosensitivity 
prediction model was developed from microarray-based gene expression data and surviving 
fractions at 2 Gy in 48 cancer cell lines [33]. This model successfully predicted outcomes 
in patients with breast cancer, lung cancer, glioblastoma, and pancreatic cancer [14]. 
Since this model has been derived from cancer cell lines, it only predicts the intrinsic 
radiosensitivity of cancer cells. However, the response to RT is not only determined by the 
radiosensitivity of cancer cells but also by the surrounding tumor microenvironment [34]. In 
our study, we utilized tumor tissue from patients treated with CCRT that also included the 
tumor microenvironment. Therefore, the gene signature derived from our study may have 
better clinical implications for predicting the response to CCRT than the previous model. 
Moreover, we took advantage of in silico analysis to assess the components of the tumor 
microenvironment from bulk RNA sequencing data and compared the distribution of the cell 
subtypes according to treatment response.
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We found that the genes upregulated in NDB patients were associated with ECM organization 
and EMT, whereas genes upregulated in DCB patients were associated with interferon 
signaling pathways. Moreover, we found enrichment of the TGF-β response signature 
in patients with NDB, which led us to focus on CAFs. In our study, we also found that 
the frequency of CAFs in the tumor microenvironment was significantly higher in NDB 
patients than in DCB patients. Indeed, the proportion of CAFs was also significantly 
high in patients with high NDB scores in the large TCGA-CESC cohort. CAFs are one of 
the central components of the ECM organization and EMT. CAFs reprogram the tumor 
immune microenvironment through the secretion of ECM proteins and multiple types of 
cytokines such as TGF-β [35]. They also produce ECM-degrading proteases, such as matrix 
metalloproteinases, and promote EMT and invasiveness of cancer cells. Cancer cells that have 
undergone EMT acquire properties that enable them to move and reach distant organs [35]. 
Clinically, half of the patients with recurrent cervical cancer after CCRT present with distant 
metastasis [5]. To reduce such recurrences, adjuvant chemotherapy following CCRT has been 
tested in several trials, including the OUTBACK trial (NCT01414608). However, CAFs are also 
involved in the resistance to chemotherapy; hence, poor responders to CCRT may not benefit 
much from this strategy. Previous studies have demonstrated conflicting results regarding 
the efficacy of adjuvant chemotherapy following standard CCRT [8-10]. To further improve 
outcomes, CAF-directed therapies may be an appealing strategy for poor responders to 
CCRT. Many clinical trials are investigating diverse approaches for targeting CAFs, including 
TGF-β inhibitors, fibroblast growth factor receptor inhibitors, and fibroblast activation 
protein-directed therapies [36].

In addition to CAFs, various gene signatures of other suppressive immune cells, such as TAM 
and MDSCs, were enriched in patients with high NDB scores. Considering the suppressive 
tumor immune microenvironment in NDB patients, we further evaluated whether the 
response to CCRT may be associated with the response to ICIs. We applied established gene 
expression-based prediction scores for anti-PD-1 therapy [27,28]. DCB patients were enriched 
for T-cell inflamed gene signatures and had a low TIDE prediction score, which implies that 
these patients are more likely to respond to anti-PD-1 than NDB patients. Currently, ICIs 
are actively being tested for locally advanced cervical cancer in conjunction with CCRT. The 
CALLA (NCT03830866) and KEYNOTE-A18 (NCT04221945) trials are investigating the role of 
adding durvalumab and pembrolizumab, respectively, during CCRT and after completion of 
CCRT. In our study, NDB patients exhibited signatures of poor response to anti-PD-1 therapy. 
However, T cell-inflamed GEP and TIDE prediction score did not include patients with 
cervical cancer when they were developed and therefore, the predicted poor responses to ICIs 
in NDB patients should be interpreted carefully. The results from clinical trials are awaited to 
confirm the benefit of adding anti-PD-1 to standard CCRT.

The present study has several limitations, including the small number and quite 
heterogeneous baseline characteristics of patients who underwent RNA sequencing. The 
small number of patients can lead to inappropriate interpretation and limit the conclusions. 
However, we attempted to externally validate our gene signature in a large cohort and in other 
independent cohorts. Another limitation is that the histological type is mostly squamous 
cell carcinoma with a single case of adenocarcinoma. The NDB patient with adenocarcinoma 
was clustered with the other NDB patients with squamous cell carcinoma. Further studies 
with a larger number of patients are required to investigate whether poor responders with 
adenocarcinoma may have a different transcriptome landscape than those with squamous 
cell carcinoma.
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In conclusion, we found that poor responders to CCRT or RT have a distinct GEF; we also 
describe a novel gene signature that predicts the response to CCRT or RT in locally advanced 
cervical cancer. Moreover, we demonstrated differences in the tumor microenvironment of 
poor responders compared to that of favorable responders, such as a high proportion of CAFs 
and an upregulated EMT signature. Our data also suggest that current treatment strategies 
may not be efficient in improving treatment outcomes of poor responders to CCRT or RT and 
that novel treatment combinations should be further investigated.
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