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ABSTRACT

Mu opioid receptor (MOR) expression is under
temporal and spatial controls, but expression
levels of the MOR gene are relatively low in vivo.
In addition to transcriptional regulations, upstream
AUGs (uAUGs) and open reading frames (uORFs)
profoundly affect the translation of the primary ORF
and thus the protein levels in several genes.
The 50-untranslated region (UTR) of mouse MOR
mRNA contains three uORFs preceding the
MOR main initiation codon. In MOR-fused EGFP
or MOR promoter/luciferase reporter constructs,
mutating each uAUG individually or in combinations
increased MOR transient heterologous expression
in neuroblastoma NMB and HEK293 cells signifi-
cantly. Translation of such constructs increased up
to 3-fold without altering the mRNA levels if either
the third uAUG or both the second and third AUGs
were mutated. Additionally, these uAUG-mediated
translational inhibitions were independent of their
peptide as confirmed by internal mutation analyses
in each uORF. Translational studies indicated that
protein syntheses were initiated at these uAUG
initiation sites, with the third uAUG initiating the
highest translation level. These results support the
hypothesis that uORFs in mouse MOR mRNA act as
negative regulators through a ribosome leaky
scanning mechanism. Such leaky scanning resulted
in the suppression of mouse MOR under normal
conditions.

INTRODUCTION

Opioid receptors (m, d and k) mediate the diverse
functions of endogenous opioid peptides and the opioid
alkaloids such as morphine, including analgesia, reward,
autonomic reflexes, and endocrine/immune regulation
(1–3). The mu opioid receptor (MOR) is considered to
be the main site of action for morphine (4). Many studies,

including those with receptor knockout mice, have
indicated that the responses to opiate agonists are
dependent on the receptor level (5). MOR is first detected
in rat brain at embryonic day 14 (E14) (6) followed by a
slight decline during the first week of postnatal develop-
ment, then increasing to peak levels 2 weeks later (7). The
overall mechanisms involved in such spatial and temporal
regulations of MOR have not yet been elucidated.
Generally, transcriptional control is mediated by

transcription factors, RNA polymerase and a series of
cis-acting elements located in the gene sequences. Such
promoters, enhancers, silencers and locus-control ele-
ments are organized in a modular structure and regulate
the production of pre-mRNA molecules (8). Opioid
receptor expression can be regulated by multiple mechan-
isms, including transcriptional and post-transcriptional
events (9,10). Our laboratory and others have demon-
strated that MOR promoter activity is regulated by many
enhancer elements and their related transcriptional
factors such as SOX, SP1, AP2, NF-kB, PU.1, and
NRSE (11). Post-transcriptional regulation occurs at the
level of mRNA or protein. Such regulation could be due
to mRNA stability, differences in translation efficiency or
mRNA transport, and covalent modification of receptor
molecules (10,12–14). Our recent studies indicated that
the 30-untranslated region (UTR) of MOR mRNA
could affect the overall transcript’s activity (15). Thus,
posttranscriptional regulation of the MOR gene could
have an important role in the spatial and temporal
expression of the receptor proteins.
Recently, it has become increasingly clear that the

50-UTR of eukaryotic mRNA is a key site of multiple
forms of post-transcriptional regulation of gene expres-
sion, especially those containing at least one AUG codon
(uAUG) upstream of the main open reading frame
(ORF) (16–19). It is postulated that, in eukaryotic cells,
most translation proceeds according to the ribosome
scanning model (20–22), and initiates predominantly by
a cap-binding/scanning mechanism (23). The scanning
model predicts that an uAUG codon will interfere with
translation of a downstream main ORF. However,
the scanning complex may bypass such uAUG codons
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by ‘leaky scanning’ if the surrounding nucleotide context
is suboptimal or very close to the 50 cap region of the
mRNA (24). The 43S pre-initiation complex binds to the
50-cap region and then migrates progressively 50 to 30 until
it recognizes an AUG start codon. The resulting complex
is joined by the large subunit to form a complete
ribosome, and polypeptide synthesis begins (20).
Ribosomes reaching the main AUG of these mRNAs do
so mainly via context-dependent leaky scanning and/or
reinitiation mechanisms, although it is widely believed
that these are inefficient mechanisms (24,25). The context-
dependent leaky scanning mechanism accounts for the
observation that some 40S subunits will fail to initiate at
AUG codons with a less than optimal context and
continue scanning along the 50-UTR. The most efficient
context for initiation of protein translation is known as
the Kozak sequence (GCCRCCAUGG), which was
identified initially as a consensus sequence in vertebrate
mRNA (26). The reinitiation mechanism describes the
ability of 40S subunits to continue to scan and initiate at a
downstream main AUG codon after translating a small
independent uORF. Reinitiation is considered to be a rare
event. Although the incidence of this mechanism may be
much greater, only a few mRNAs with uORFs have been
examined (24). These uAUGs or uORFs are features of at
least a few percent of the mRNAs in yeast, plants and
mammals (26), and can be important players in negative
translational control. However, in some cases, the
upstream regulatory sequences stimulated translation of
the major ORF (16,27).
Within the 50-UTR region of the mouse MOR gene,

between the basal proximal promoter at nucleotides �445
to �240 and the AUG of the main ORF, three uORFs
with variable lengths are identified. Whether these uORFs
can regulate the translation of the MOR transcripts was
examined in this study. The uAUG-directed initiation and
uORF-peptide-dependent regulations of the MOR tran-
script’s translation were examined by mutational analyses
of the uAUGs and internal sequences. We demonstrate
that the translation of the MOR transcript is negatively
regulated by these uORFs, and that such down-regulation
is mediated via ribosome leaky scanning mechanism.
The initiation of peptide syntheses at these uAUGs of the
MOR transcript provides a novel mechanism for the
regulation of expression of the mouse MOR gene product.

MATERIALS AND METHODS

Plasmid construction

All constructs were generated by PCR using Turbo Pfu
polymerase (Stratagene), with forward and reverse pri-
mers containing appropriate restriction sites at their 50 and
30 ends or appropriate mutations at desired sequence sites.
Amplified fragments were cloned into the pGL3-promoter
reporter construct (Promega), using the corresponding
restriction sites as described below. The wild-type
uAUG(þ) construct was generated by inserting the �301
to þ1 PCR fragment of the 50-UTR of mouse MOR
(generated by using HindIII-ended forward primer and
NcoI-ended reverse primer) in between the HindIII and

NcoI restriction sites of pGL3-promoter reporter con-
struct. Individual uORF in the mouse MOR 50-UTR
(�301 to þ1) were inactivated by introducing point
mutations into the start codons using an oligonucleo-
tide-directed mutagenesis system (Stratagene) according
to the manufacturer’s recommendation. The following
oligonucleotides were used for oligonucleotide-directed
mutagenesis: uAUG #1 construct: 50-CCTCACAGCCC
ACGCTCCCTCCCTT-30 (forward) and 50-AAGGGAG
GGAGCGTGGGCTGTGAGG-30 (reverse); uAUG #2
construct: 50-TTTGGGGACGCTAAGGATGCGCCTC-
30 (forward) and 50-GAGGCGCATCCTTAGCGTCCC
CAAA-30 (reverse); uAUG #3 construct: 50-TTTGGGGA
TGCTAAGGACGCGCCTC-30 (forward) and 50-GAGG
CGCGTCCTTAGCATCCCCAAA-30 (reverse); and the
2nd/3rd uAUGs (#2, 3 construct): 50-TTTGGGGACGC
TAAGGACGCGCCTC-30 (forward) and 50-GAGGCG
CGTCCTTAGCGTCCCCAAA-30 (reverse). For the con-
struct in which all three uAUGs in between the HindIII
and NcoI sites were mutated [uAUG(�)], the U within
each AUG sequence was substituted by C in the forward
primer and with G in the reverse primer.

The uORF/luciferase (LUC) in-frame fusion constructs
were generated by inserting a PCR fragment amplified
from the uAUG(þ) construct using the HindIII-ended
forward and NcoI-ended reverse primers, 50-
CCAAGCTTGGATCCCTCACAGCCCATGCTCCC-30

(forward) and 50-AACCATGGAGTGGAACCAGAG
AAGAGCGGCAG-30 (reverse), where the stop codon
of the 50-UTR is replaced by the NcoI site. This cloning
leads to a fusion between the stop codon of the mouse
MOR uORF and the ATG codon of the LUC coding
sequence. This uORF/LUC in-frame fusion construct
(uORF IFR) was inactivated by introducing point
mutations into the uAUG using an oligonucleotide-
directed mutagenesis system (Stratagene) using primers
mentioned above: #1 (uAUG#1 IFR), #2 (uAUG#2 IFR),
#3 (uAUG#3 IFR), #2, 3 (uAUG#2, 3 IFR), all
[uAUG(�) IFR)].

SP6 promoter-controlled uORF/LUC fused constructs
were generated by cloning the luciferase gene to the SP6
promoter (SP6-LUC) construct. SP6-uORF/LUC fused
constructs were generated from each uORF/LUC in-
frame fusion constructs [uAUG#1 IFR, uAUG#2 IFR,
uAUG#3 IFR, uAUG(�) IFR and uAUG(þ) IFR]
digested between HindIII and XbaI and cloned to SP6-
LUC constructs [SP6-#1 IFR, SP6-#2 IFR, SP6-#3 IFR,
SP6-uAUG(�) IFR and SP6-uAUG(þ) IFR].

The STOP mutant constructs were generated by
introducing point mutations into the start codons and/or
introducing the stop codons after the start codons using
the following oligonucleotides. These oligonucleotides
were used for single amino acid change mutagenesis for
adding the stop codons (þSTOP; þS) or for mutating
uAUG and adding stop codons (Mutationþ STOP;
Mþ S). uAUG#1 þS: 50-CCTCACAGCCCATGTAG
CCTCCCTT-30 (forward) and 50-AAGGGAGGCTA
CATGGGCTGTGAGG-30 (reverse); uAUG#1 MþS:
50-CCTCACAGCCCACGTAGCCTCCCTT-30 (forward)
and 50-AAGGGAGGCTACGTGGGCTGTGAGG-30

(reverse); uAUG#2 þS: 50-TTTGGGGATGTGAAGGA

1502 Nucleic Acids Research, 2007, Vol. 35, No. 5



TGCGCCTC-30 (forward) and 50-GAGGCGCATCC
TTCACATCCCCAAA-30 (reverse); uAUG#2 Mþ S: 50-
TTTGGGGACGTGAAGGATGCGCCTC-30 (forward)
and 50-GAGGCGCATCCTTCACGTCCCCAAA-30

(reverse); uAUG#3 þS: 50-TTTGGGGATGCTAAGGA
TGTGACTC-30 (forward) and 50-GAGTCACATCCTT
AGCATCCCCAAA-30 (reverse); uAUG#3 Mþ S: 50-
TTTGGGGATGCTAAGGACGTGACTC-30 (forward)
and 50-GAGTCACGTCCTTAGCATCCCCAAA-30

(reverse); uAUG#2, 3 þS: 50-TTTGGGGATGTGAAG
GATGTGACTC-30 (forward) and 50-GAGTCACATCC
TTCACATCCCCAAA-30 (reverse); and uAUG#2,
3 Mþ S: 50-TTTGGGGACGTGAAGGACGTGAC
TC-30 (forward) and 50-GAGTCACGTCCTTCACGTC
CCCAAA-30 (reverse). The uAUG(�) þS and uAUG(�)
Mþ S have STOP codons after each of the three uAUGs
within the uAUG(þ) or uAUG(�) Mþ S constructs. The
context-improved (IMP) constructs, IMP and #2, 3_IMP,
contained the sequence (ACCAUGG) and were generated
by introducing point mutations around the #1 uAUG site
using oligonucleotide-directed mutagenesis.

pmMUEG-fused constructs were cloned to the pEGFP-
N1 vector with the mouse MOR UTR (�301 to þ1).
MOR coding regions (exon 1 to exon 4) and green
fluorescent protein (GFP) were fused in-frame. First,
mouse exon regions were produced by PCR using the
following primers: 50-CAGCAAGCATTCAGAACCA
TGGACAGCAGCGCCGGCCCAGGGA-30 (forward)
and 50-TAGGCGCCAGGTACCGAGGGCAATGGA
GCAGTTTCT-30 (reverse), corresponding to �18 to
þ1218 bp of the mouse MOR. This PCR product was
cloned to the Topo-TA vector. The mouse MOR UTR
region (�301 to þ1) was subsequently fused to the
mouse MOR exon regions by ligation (50-HindIII,
30-PstI). Finally, these fused constructs were cloned
into the pEGFP-N1 vector by ligation (50-HindIII,
30-KpnI). All constructs were confirmed by sequencing
analysis.

Cell Culture, DNA transfection and reporter gene assay

Human neuroblastoma NMB cells were cultured in RPMI
1640 supplemented with 10% heat-inactivated fetal bovine
serum. HEK293 cells were cultured in minimal essential
medium supplemented with 10% fetal bovine serum,
100 mg/ml streptomycin, and 100 IU/ml penicillin at 378C
in a humidified atmosphere of 5% CO2. Transfection and
reporter gene assays were carried out as described
previously (28). Briefly, cells were plated in 6-well dishes
at a concentration of 1� 106 cells/well and cultured
overnight before transfection. For luciferase reporter
analysis of each promoter construct, 1 mg of the reporter
plasmid was mixed with the Effectene transfection reagent
(Qiagen) for 10min before being added to the well. Forty-
eight hours posttransfection, cells were washed once with
1� phosphate-buffered saline and lysed with lysis buffer
(Promega). To correct for the differences in transfection
efficiency, a one-fifth molar ratio of a pCH110 plasmid
(Amersham) containing the b-galactosidase gene under
the SV40 promoter was included in each transfection for
normalization. The luciferase and galactosidase activities

of each lysate were determined as according to the
manufacturer’s instructions (Promega and Tropix,
respectively).

Quantification of LUC and LacZ transcripts by real-time
PCR and reverse transcription (RT)-PCR

Total RNA was isolated according to the supplier’s
protocol (TRI Reagent, Molecular Research Center,
Inc.). After quantification of total RNA by measuring
OD at 260 nm, 1 mg of RNA was treated with 1U of
DNase I (Invitrogen). Reverse transcription using oligo-
dT primer was performed with the Transcription First
strand cDNA synthesis kit (Roche) according to the
manufacturer’s protocol. The first strand obtained was
quantified using a real-time quantitative PCR system: a
SYBR Green assay on the iCycler Optical System (Bio-
rad). The following oligonucleotides were used for the
amplification of 288 bp and 105 bp fragments of cDNAs,
corresponding to LUC or LacZ, respectively: LUC
primers, 50-CTCAGAGAGTGGCGCTTTGGGGATG-
30 (forward) and 50-CTTTATGTTTTTGGCGTCTTCC-
30 (reverse); LacZ primers, 50-GCTGCATAAACCGACT
ACACAAA-30 (forward) and 50-GCCGCACATCTGAA
CTTCAG-30 (reverse). After first strand cDNA synthesis
as described above, the samples were amplified at 958C for
30 sec, 608C for 30 sec, 708C for 30 sec for real-time PCR.
For RT-PCR, the Qiagene one-step RT-PCR kit was
used with the above primers. The relative LUC mRNA
level was reported as the ratio of LUC mRNA/LacZ
mRNA.

In vitro transcription/translation and autoradiography

Capped and uncapped mRNAs were synthesized in vitro
with the MAXIscript In vitro Transcription Kit (Ambion)
according to the manufacturer’s instructions. Briefly, after
linearization by XbaI digestion, DNA was gel purified
(Qiagen). The resulting DNA was transcribed in vitro by
SP6 RNA polymerase in the presence (capped) or absence
(uncapped) of the methylated cap analog m7GpppG
(1mM; Ambion). After 1 h incubation at 378C, DNase
(2U) was treated for 15min at 378C. After ethanol
precipitation and a 70% ethanol wash, RNA was
resuspended in DEPC-treated water. RNA integrity was
confirmed by gel electrophoresis. The amounts of RNA
were analyzed by spectrophotometry and ethidium bro-
mide visualization.
Equal amounts (0.1 mg) of RNA were added to the TnT

Quick Coupled Transcription/Translation System
(Promega) for translation under conditions recommended
by the manufacturer. In-vitro-translated proteins were
labeled with L-[35S]-methionine (Amersham). Reactions
were incubated at 308C for 60min and analyzed on 10%
SDS-PAGE. The gels were dried and exposed to a
Phosphorimager screen overnight at room temperature.
The translated peptides were detected using a Molecular
Dynamic Storm 860 Phosphorimager system.

Fluorescence-activated cell-sorting analysis (FACS)

After transfection with each reporter construct containing
the GFP coding region, HEK293 cells were fixed with
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3.7% formaldehyde prior to FACS analysis. Receptor
fluorescence was quantitated by FACScan (Becton
Dickinson, Palo Alto, CA). The fluorescence intensity of
10, 000 cells was collected for each sample. Cell Quest
software (Becton Dickinson) was used to calculate the
mean fluorescence intensity of the cell population. All
experiments were conducted at least three times with
triplicate samples.

Radioligand binding

Binding activity assays were carried out as described
previously (29). Briefly, after transient transfection with
the indicated constructs, confirmation of MOR expression
was determined by a whole-cell binding assay using
[3H]diprenorphine in 25mM HEPES buffer, 5mM
MgCl2 (pH 7.6). Specific binding was defined as the
difference between the radioactivity bound to the cells in
the presence and absence of 100 mM CTOP.

Primer extension inhibition (toeprinting) assay

The toeprinting assay was performed as described
previously (30), except for the ribosome binding reaction.
Briefly, the deoxyoligonucleotides mToe (50-
TCAGTTTCTTACAAGGACAAG-30) and mToe 2 (50-
CTTATGCAGTTGCTCTCCAG-30) were labeled at the
50-end by T4 polynucleotide kinase and [g-32P]ATP
(3000Ci/mmol; Amersham). In the toeprinting reaction,
the 32P-labeled primers were pre-annealed to the mRNA
by heating for 2min at 608C, followed by incubation at
378C for 10min in 40mM Tris-HCl (pH 7.5) and 0.2mM
EDTA. The primer–mRNA complexes were then incu-
bated on ice for 15min while the reticulocyte reaction
mixtures were assembled.
The ribosome binding reaction used micrococcal-

nuclease-treated rabbit reticulocytes (Promega). The reac-
tion mixtures containing 45% reticulocyte lysate were
supplemented with 900 mg/ml cycloheximide. In the
standard assay, the mixtures were pre-incubated at
25–308C for 2min. After pre-incubation, 25 ml aliquots
of this mixture containing 2 ml of mRNA/primer
(0.1–0.2 mg of mRNA) from the toeprinting reaction
were incubated at 25–308C for 15min and then diluted
with 20 volumes of ice-cold buffer [50mM Tris-HCl
(pH 7.5), 40mM KCl, 6mM MgCl2, 500mM of each of
the four dNTPs].
Primer extension was initiated by adding 2U/ml

Superscript II reverse transcriptase (Invitrogen) and
incubated at 25–308C for 10min. Reactions were termi-
nated by extracting with phenol. Primer extension
products were mixed with formamide (98%) and EDTA
(10mM) and heated at 908C for 5min before layering
onto 4–6% polyacrylamide sequencing gels. Sequencing
ladders were generated by an fmol DNA cycle sequencing
system (Promega) according to the manufacturer’s
protocol. Autoradiograms of the dried gels were obtained
using a Molecular Dynamic Storm 860 Phosphorimager
system.

RESULTS

The mouseMOR 50-UTR contains three uORFs preceding
theMOR initiation codon

The 301-bp fragment of the mouse MOR 50-UTR was
chosen to clone into reporter constructs for the current
uORF study. This 50-UTR was within the longest major
MOR transcripts observed in vivo (designated start codon
to þ1) (31). Computational sequence analysis of the
mouse MOR 50-region revealed the presence of three
uAUGs (uAUG#1, uAUG#2 and uAUG#3) that were in
the same open reading frame and shared the same stop
codon (Figure 1A). Translation of the first, second and
third uAUGs may give rise to uORFs containing 50, 37
and 34 amino acids, respectively, all of which terminate at
�128 bp upstream of the mouse MOR initiation codon
(Figure 1B). In vertebrate mRNAs, initiation sites usually
conform to all or part of the sequence GCCRCCAUGG,
known as the Kozak sequence rule (32). The most
conserved nucleotides were the R (A or G) at �3 and
the G at þ4 (the A of the AUG codon was designated as
þ1). Strong consensus sequences contain both of these
important nucleotides, whereas an adequate sequence
contains only one of them, and weak sequences contain
none of them. The AUG codons initiating the main ORF
of a transcript have strong or adequate sequence contexts
in 95–97% of the cases. This percentage was lower for the
uAUGs (43–63%) (33). In the case of the mouse MOR
transcript, uAUG#1 is weak (no match compared the
Kozak sequence in �3 and þ4), while uAUG#2
(�3 position matched) and uAUG#3 (�3 position
matched) have adequate sequences. The mouse MOR
main ORF has a strong consensus sequence similar to that
of the luciferase main ORF (Figure 1C). To evaluate
whether the translation mediated by the mouse MOR
50-UTR was cap-dependent or -independent, we translated
capped and uncapped transcripts in rabbit reticulocyte
lysates (RRL) in the presence of 35S-methionine. The
presence of the m7G cap increased mouse MOR transla-
tion 2- to 3-fold (Figures 1E and F), indicating that under
these conditions translation initiation mainly occurred
through a cap-dependent mechanism. Furthermore, a
significant increase in protein synthesis was observed after
elimination of the initiation codon, independent of
whether capped or uncapped transcripts were used
(Figure 1F). Therefore, the uORF can inhibit MOR
translation in vitro.

Repression of mouseMOR translation by the uORF in the
MOR 50-UTR

As technical difficulties prevent visualization of the
translational products of these uORFs in vivo, we instead
examined the initiation of peptide synthesis at individual
uAUGs by in vitro translation studies. Several constructs
under the control of the SP6 promoter were generated
(Figure 2A). In this experiment, LUC synthesis should
occur if ribosomes initiate translation at the uAUG
codons of the uORF and/or the LUC main initiation
site with the TnT Quick Coupled Transcription/
Translation System (Promega). The autoradiography

1504 Nucleic Acids Research, 2007, Vol. 35, No. 5



results (Figure 2B) show that both the uORF-LUC fusion
and LUC proteins were expressed at different levels. As
expected, the uORF-LUC fusion protein had a molecular
weight slightly higher than the control LUC protein.
These data demonstrate that the uORF is efficiently
translated. The most effective initiation site was uAUG#3,

and the least effective initiation site was uAUG#1. The
above results revealed that each of the uORFs were
successfully initiated and translated, but these effects were
not reflected in any differences in the transcription levels
(Figure 2B). These in vitro translation results were similar
to those observed with LUC activities in NMB cells
transfected with similar constructs. To understand how
the translation of the first initiation codon can affect
subsequent initiation events, we characterized the relative
efficiency of all the initiation codons. Figure 2C shows the
relative strength of each initiation context represented in
arbitrary units relative to the LUC ATG context (i.e., a
Strong Kozak sequence, designated 1.00), which has one
of the closest matches to the strong context. The results
show that translation is most effectively initiated at
uAUG#3 and most weakly at uAUG#1.
FACS is a type of flow cytometry, a method for sorting

a suspension of biological cells based on specific light
scattering and fluorescent characteristics of each cell. We
prepared GFP-fused mouse MOR constructs (Figure 3A)
and confirmed that uORFs mediated mouse MOR
expression. As shown in Figure 3B, removal of all three
uAUGs in cells transfected with pmMUEG #3 resulted in
increased fluorescence levels up to 3.5-fold compared to
pmMUEG #1 (wild-type). In cells transfected with
pmMUEG #2 (only mutated at uAUG#3), the fluo-
rescence level increased up to 1.7-fold compared to
pmMUEG #1. These data suggest that uORFs of the
mouse MOR can be repressed downstream of MOR
expression with the most effective repression activity
containing uAUG#3. Additionally, these three uAUGs
could synergistically repress the downstream of MOR
gene expression.
Because mouse uORFs could repress downstream

MOR gene expression, we performed opioid radioligand
binding assays (Figure 3C). The binding activity of MOR
was monitored by measuring [3H]diprenorphine-specific
binding with or without CTOP, a selective antagonist for
MOR. After transfection of the constructs (Figure 3A)
into NMB cells, pmMUEG #3-transfected cells showed
binding activity up to three times higher than that
observed in cells transfected with the other uAUG-
mutated constructs. The repression effect exhibited in the
cells transfected with the uAUG#3-mutated construct
confirmed the results found in the flow cytometry studies.
These results suggest that uORFs can negatively regulate
MOR expression.

Regulation ofMOR translation by uORF initiation

To determine whether these uORFs affect the expression
of the downstream main ORF, we constructed a series of
plasmids [derived from uAUG(þ); see Figure 4A] contain-
ing corresponding point mutations for each uAUG
(i.e. ATG changed to ACG). These wild-type and
mutant constructs were transiently transfected in NMB
cells that expressed MOR endogenously. After transfec-
tion, cellular extracts were prepared and assayed for
translational (luciferase assay, LUC/ß-gal relative activity)
and transcriptional (real-time RT-PCR, LUC/LacZ
mRNA) levels (Figure 4B). The levels of transcripts were
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Figure 1. Mouse MOR 50-UTR contains uORFs. Efficient translation
of mouse MOR mRNA in vitro is inhibited by the uORF.
(A) Schematic representation of the three uORFs in the mouse MOR
50-UTR. All three uORFs are in the same open reading frame and
share a termination codon. The mouse MOR translation initiation site
is indicated by þ1. (B) Sequence of the mouse MOR 50-UTR. uAUG
codons are underlined, the termination codon of the uORFs is in italics
and the main AUG is in bold. The mouse MOR uORF encodes the
putative peptide sequence represented under the sequence triplet. Bold
peptide sequences represent the uAUG codons and the stop codon.
Each uORF consists of 50, 37 and 34 putative amino acids,
respectively. mToe and mToe2 indicate radiolabeled oligonucleotide
primers for Toeprinting. (C) Each box represents an uAUG sequence
compared to the Kozak sequence. The �3 and þ4 positions relative to
the start codon (underlined) are represented in bold. (D) Diagram of
template DNAs used in vitro to generated capped and uncapped
transcripts. Point mutations in uAUG(þ) eliminate each of the three
uAUGs [uAUG(�)]. Dotted lines indicate mutated uAUG sites.
(E) Autoradiogram of capped (þ) and uncapped (�) transcripts
(100 ng) were translated in rabbit reticulocyte lysates (RRL) in the
presence of 35S-methionine. Translation products of RRL were
analyzed by 10% SDS-PAGE and autoradiography. (F) Relative
luciferase expression level of capped and uncapped transcripts.
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Figure 2. The expression levels from each respective initiation codon within the mouse MOR uORF region. (A) A schematic summary of various
in-frame constructs. Mouse MOR uORF regions were fused in-frame to the luciferase gene. Initiation codons with vertical dotted lines indicate point
mutations of ATG to ACG. (B) Autoradiogram of the proteins translated by a coupled transcription/translation system in the presence of
[35S]-methionine from representative in vitro translations. Proteins were separated by 10% SDS-PAGE (LUC, Fused Protein). Quantification of
mRNA levels from the cell-free transcription/translation system was performed by RT-PCR (þ/� RT). Expression levels from each initiation codon
were normalized against those of SP6-LUC. Normalized mRNA levels (lower panel). M: 100 bp molecular weight markers. (C) Relative strength of
each initiation context within the mouse MOR UTR as determined by in vitro translation. The LUC ATG context is designated 1.00.
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very similar among all constructs, indicating that the point
mutations did not alter transcription levels. In contrast,
LUC activity was differentially affected by the mutations
of these uAUGs. Particularly, mutations within the third
uAUG or second/third uAUG (uAUG#3 or uAUG#2, 3)
caused a 1.6- and 2.9-fold increase in LUC activity,
respectively. Mutations of the uAUG#1 or uAUG#2 had
no significant effect. When all the uAUGs were mutated
[uAUG(�)], the luciferase activity was not significantly
different from that observed with the uAUG#2, 3 mutated
constructs. These results suggest that the repression of the
LUC activity is due to the presence of the MOR 50-UTR
occurring at a translational level, and that the second/
third uAUGs are involved in this repressive effect
synergistically.

Repression by uORFs in some eukaryotic genes is
dependent on the peptide-coding sequence of their uORF

(34,35). To assess the importance of these uORF peptides
in the translation of the downstream ORF, the uORF
sequences were mutated by introducing a stop codon
within the sequence (Figure 5A). Introducing the stop
codon after uAUG#3 either alone (uAUG#3 þS) or in
combination with a stop codon inserted after uAUG#2
(uAUG#2, 3 þS) increased LUC activity by about 1.5-
and 1.7-fold, respectively (Figure 5B). Again, these
increases in LUC activity were not caused by alterations
in transcriptional activity. In order to examine the full
repression activity of individual uORFs, constructs with
uAUG mutations combined with a stop codon mutation
within each uORF were generated (MþS) (Figure 5C).
The third uAUG plus stop construct mutation (uAUG#3
Mþ S) increased LUC activity more than the uAUG#3
þS construct but did not affect the mRNA content. The
uAUG#2, 3 MþS and uAUG(�) Mþ S constructs also
increased LUC activity to a greater degree than that
observed with the uAUG#3 Mþ S construct (Figure 5D).
It is therefore possible that the MOR uORFs negatively
regulate expression independent of their peptide-coding
sequences.
To confirm our hypothesis of context-dependent leaky

scanning, we designed 50-UTR constructs fused with
luciferase as a reporter (Figure 6A). These constructs
contain the original context, or an improved uAUG
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(B) Flow cytometry analysis of mouse MOR fusion constructs
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context based on the Kozak sequence rule. The
strengths of the AUG context sequences ranged
from ‘strong’ to ‘weak’ and in descending order
were A�3

þGþ44G�3
þGþ44A�3

þAþ44G�3
þAþ44

U�3
þGþ44U�3

þAþ4 (19). We modified the context of
the first uAUG (weak) to an improved (IMP) sequence
(ACCAUGG; strong). After transfection of these con-
structs into NMB cells, expression was analyzed by
luciferase assays. The IMP construct decreased reporter
activity about five-fold relative to that of the wild-type
construct [uAUG (þ)] (Figure 6B). Furthermore, intro-
duction of the stronger uAUG context around the first
uAUG, combined with mutation within the second/third
uAUG (#2, 3_IMP) decreased reporter activity 24-fold,
relative to the activity of uAUG#2, 3 constructs. The
levels of transcripts were very similar among all con-
structs, indicating that these mutations did not alter
transcription levels (Figure 6B, lower panel). These data
suggest that a stronger AUG context at the first uAUG
position could recruit ribosome complexes more efficiently
to initiate translation, and represses the main AUG
initiation site via a context-dependent leaky scanning
mechanism. Taken together, these data suggest that the

original weak context of the first uAUG (#1 uAUG) has a
lower potential for initiation of translation and inhibition
of the main AUG initiation site compared to those of the
second and third uAUG (#2 and #3 uAUG).

Ribosome leaky scanning regulates mouseMOR
gene expression

Toeprinting assays have been known to reveal the effects
of initiation context and regulated-ribosome stalling on
the association of ribosomes with mRNA (36). We
therefore examined two mRNAs: the uAUG(þ) construct
contains the uORFs in their wild-type initiation context,
while the uAUG(�) construct was mutated in all three
uAUG sites. Toeprints corresponding to ribosomes at
each of the MOR uORF start codons were observed,
except for uAUG#1 (Figure 7). Toeprints corresponding
to ribosomes at the start codon of uAUG#2 and uAUG#3
were also observed in rabbit reticulocyte lysates by
radiolabeled mToe primer. The uAUG#2 and uAUG#3
initiation-codon toeprint maps showed 16 nucleotides
downstream of the AUG codons, indicating ribosomes
with the initiation codon in their P-site (37,38). As shown
in the preceding experiments, both the uAUG#2 and
uAUG#3 sequences were sufficient by the Kozak sequence
rule, but stronger inhibition was observed in uAUG#3.
Figure 7 shows similar results: the uAUG#3 toeprint was
stronger than the uAUG#2, while the uAUG#1 toeprint
was not detected in uAUG(þ) transcripts. However, in
transcripts where all three uAUGs were mutated
[uAUG(�)], no toeprints were detected. These data
indicate that ribosomes scanned linearly from the 50-end
of the mRNA to initiate translation at each of these start
codons rather than being loaded internally. Minor bands
were also seen; these minor products might represent
either authentic truncated mRNAs or false priming (36).
By adding the translational elongation inhibitor cyclo-

heximide to rabbit reticulocyte lysates under steady-state
conditions, toeprints corresponding to ribosomes at each
of the uORF start codons were observed (Figure 8). As
controls, toeprinting was performed on reaction mixtures
lacking either RNA or extract. Without added RNA,
negligible cDNA synthesis from the radiolabeled primer
was observed (Figure 8, lane 8). When RNA is added
without extract, the major cDNA product is the full-
length cDNA (Figure 8, lane 7). Additional common
premature termination products occurred in all of the
lanes. Many of these were also observed in primer
extension analyses of RNA in the absence of extract but
not in primer extension analyses of extract in the absence
of exogenously added mRNA. We compared toeprints
when cycloheximide was added to extract prior to adding
RNA template (T0) to those obtained when cycloheximide
was added after translation of the RNA was underway
(T5). Cycloheximide at T0 should show where ribosomes
first initiate translation, since the cycloheximide interferes
with elongation, not initiation. When cycloheximide was
added to rabbit reticulocyte lysates programmed with
mouse MOR-LUC mRNA, ribosomes were observed at
both the uORF and LUC initiation codons (Figure 8,
lanes 3 and 4). Thus, when cycloheximide was added early
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Figure 6. uAUG sequence contexts of different strengths can regulate
the ribosome initiation activity of the main AUG. (A) Schematic of
constructs containing three mouse MOR uAUGs with contexts of
various strengths at the #1 uAUG site. One set of constructs (IMP)
contains an improved uAUG context (‘strong’) at the first uAUG
position. For another set of constructs, after removal of the #2 and #3
uAUG (uAUG#2, 3), the improved contexts were also added to the
first uAUG position (#2, 3_IMP). The context improvements at the
first uAUG (ACCATGG) in each construct differ from each other at
positions �3 and þ4, as indicated in bold. (B) Graphic representation
of relative luciferase activity determined by luciferase assay (Promega)
of the constructs shown in (A). Relative LUC activity and mRNA
levels were determined as the ratio LUC/ß-gal and LUC/LacZ, as
described in Materials and Methods. The error bars indicate the
standard errors of triplicate LUC assays.
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(T0), significant leaky scanning past the MOR uORF
initiation codon was observed. Samples containing the
uAUG#2 and uAUG#3 codons (Figure 8, lane 3) exhibit
toeprints for those sequences as well as for the LUC start
codon. In contrast, samples deleted of all the uAUGs
(Figure 8, lane 4) exhibited only the LUC start codon, and
at higher levels than in the wild-type construct. When
cycloheximide was added later (T5), toeprints were
observed for both the uAUGs and LUC start codons
(Figure 8, lanes 5 and 6). If the uORF mechanism
functions by reinitiation, scanning ribosomes would load
only at the uORF start codon at T0 state while later (T5)
ribosomes would load at both uORF and LUC start
codon. However, if the uORF mechanism functions by
leaky scanning, ribosomes at both the uORF and LUC
start codons would load at both T0 and T5 (36).
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three uORFs [i.e. wild-type; uAUG(þ)] or mutated at all three uAUGs
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The results obtained here support the notion that
ribosomes reach the downstream start codon in the
MOR mRNA by the leaky scanning mechanism, rather
than by reinitiation.

DISCUSSION

The distribution of opioid receptors and the expression
patterns of their mRNAs have been extensively examined
(39,40). Opioid receptor proteins are also regulated by
variations in the mRNA sequences (10). These mRNA
variants differ mainly in the 50- or 30-UTR regions. As
such, regulation of opioid receptor expression involves not
only transcriptional control at the DNA level, but also
posttranscriptional control at the RNA level (11). We
have characterized a novel regulatory mechanism of
mouse MOR expression mediated by uAUG/uORF
in this study. The 301-bp extension of the mouse MOR
50-UTR region includes the major MOR mRNA tran-
scription sequence (derived from the proximal MOR
promoter), and contains three uORFs. These uORFs
use the same termination codon (Figure 1). In most well-
characterized examples of regulatory uORFs, mutation of
the uAUG codon alters protein expression without
affecting mRNA abundance. However, uORFs do not
always inhibit translation; cases have been described in
which uORFs stimulated expression of downstream ORFs
(41,42). If removal of uAUGs alters mRNA levels, then
the AUG nucleotides may alter transcription or RNA
stability, independent of translation of the uORF (16). We
found that the presence of the uORF region suppressed
translation without changing MOR transcription levels.
This was due to three uAUGs present in the region from
nucleotides �301 to þ1 bp in the MOR 50-UTR. As uORF
mechanisms usually function in a cap-dependent manner
(23), we investigated this well-characterized regulatory
mechanism by using capped and uncapped transcripts for
in vitro translation (Figure 1E and F). We determined that
mouse MOR containing uORFs do indeed function in a
cap-dependent manner.

The initiation efficiencies of each uAUG are important
features of the codons in MOR 50-UTR leaky scanning
models (43,44). The relative strengths of the initiation
codons were tested by in vitro translation (Figure 2).
The uAUG#1 had a very weak initiation context, while
uAUG#2 had a slightly stronger initiation context.
The uAUG#3 had the strongest initiation context. This
likely facilitates higher levels of leaky scanning, enabling
peptide synthesis from the uAUG#3 initiation codon on
the MOR 50-UTR. When the sequence was mutated at all
three uAUGs [uAUG(�)], only peptide products initiated
from the main uAUG were produced. These results
indicate that all three uAUGs can effectively be initiated
and produce peptides, and that uORFs can negatively
regulate downstream MOR ORF initiation.

We also performed FACS analyses and receptor
binding assays to examine cell surface expression of the
receptor (45,46). The results confirmed that these uORFs
mediated down-regulation of MOR expression.
Indeed, the presence of the uORFs decreased expression

by up to 3.5-fold relative to samples lacking the uORFs
(Figure 3).
We further confirmed the context-dependent initiation

activity of each uAUG by mutation. Translation initiation
strength was most efficient in the third uAUG (Figure 4B).
If the uAUGs reside in a non-optimal context, the
scanning ribosomal complex may bypass possible starting
AUGs by leaky scanning. Transient transfection results
suggest that the inhibition of the main AUG imposed by
one of the uORF (uAUG#3) was greater than that
produced by the other uORFs (uAUG#1 or uAUG#2).
Moreover, some peptides produced by translation of

uORFs have been reported to interact with the ribosome,
further diminishing the efficiency of protein translation
(47,48). In contrast, regulation of yeast GCN4 translation
by nutrient levels was independent of the peptide
sequences encoded by its uORFs (49,50). Our current
study showed that introduction of stop codon constructs
(þS), thereby changing the sequence of peptide encoded
by the uORF, exhibited changes similar to those seen in
the translation of the downstream cistron (Figure 5B).
Furthermore, mutating the uAUGs while also introducing
the stop codon (Mþ S) caused a marked increase in the
translation of the downstream cistron (Figure 5D). These
data show that regulation of the MOR uORF is
independent of the peptide sequence of the uORF. Thus,
the inhibitory effect of the uORF during MOR translation
is a protein-independent mechanism. Although the
mechanisms involved in explaining the inhibitory effects
of the uORF peptide on translation are not understood,
several models could be proposed. For example, the
peptide of the uORF could be synthesized and have the
ability to inhibit translation only at high concentrations in
the local microenvironment (51).
As shown in Figure 6, differences in LUC levels were

detected between constructs with different uAUG con-
texts. This indicates that ribosomes initiating at the main
AUG must have scanned the uAUGs, especially when
these uAUGs contain strong or adequate contexts. Leaky
scanning is an extension of the scanning model and
suggests that an AUG might be bypassed by scanning
ribosomes if it resides in a suboptimal context. This
mechanism could only occur by context-dependent leaky
scanning.
It is known that uAUGs can inhibit translation in

several ways. When they are recognized by translational
machinery, a futile cycle can occur, such that only the
ribosomes skipping the uAUG (leaky scanning) can reach
the main ORF. Accordingly, the level of inhibition is
directly related to the context for translation initiation: the
better an uAUG is recognized, the greater the resulting
inhibition (23). Even in conditions of optimal uAUG
recognition, a small percentage of ribosomes, after
translation of the uORF, can continue scanning for start
sites (reinitiation), eventually reaching the AUG of the
main ORF (44,52).
Despite efficient translation of the uORF, the main

cistron remains translated. Several mechanisms can
explain the translation of the downstream cistron by
internal ribosome entry, ribosome reinitiation and leaky
scanning. The stronger suppression of uAUGs with
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respect to uORFs can be partially explained by the fact
that initiation at the main ORF may occur only by leaky
scanning in uAUG-containing transcripts, whereas both
leaky scanning and ribosome reinitiation may allow
initiation at the AUG of main uORF-containing tran-
scripts (53). Figure 7 shows that the uAUG toeprint binds
exactly to each AUG site, confirming the prior experi-
ments. These toeprints show the same Kozak sequence
rule. In the case of reinitiation, they must first initiate
translation at an uAUG codon. Therefore, when cyclo-
heximide is added to arrest translation elongation before
ribosomes can initiate translation, ribosomes should
collect at the uAUG codon but not at the downstream
AUG. However, in the case of leaky scanning, they will
load at the downstream start codon without prior
translation of an uORF (50). Therefore, whether Cyh is
added to the translation reaction prior to initiation or
under steady-state conditions, ribosomes will stall at both
the uAUG and main AUG codons.
In conclusion, we provide evidence that mouse MOR

expression is inhibited at the translational level by the
presence of uORFs. Mainly, the uAUG#3 in the 50-UTR
of the MOR mRNA functions efficiently as a translation
initiation site. However, all three uAUGs synergistically
regulate translation of the main AUG. The MOR uORF
uses a mechanism independent of peptide sequence, and
translational repression of MOR uORF is not dependent
on the intercistronic region. Furthermore, leaky scanning
is involved in inhibition of physiological AUG-initiated
MOR translation, resulting in weak expression of MOR
under normal conditions. These uORFs have the potential
to exert a major impact on MOR gene expression, and
some, but not all, serve as important regulatory elements
under normal conditions.
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