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Recently, the need for more secure identity verification systems has driven researchers 
to explore other sources of biometrics. This includes iris patterns, palm print, hand 
geo metry, facial recognition, and movement patterns (hand motion, gait, and eye move-
ments). Identity verification systems may benefit from the complexity of human move-
ment that integrates multiple levels of control (neural, muscular, and kinematic). Using 
principal component analysis, we extracted spatiotemporal hand synergies (movement 
synergies) from an object grasping dataset to explore their use as a potential biometric. 
These movement synergies are in the form of joint angular velocity profiles of 10 joints. 
We explored the effect of joint type, digit, number of objects, and grasp type. In its 
best configuration, movement synergies achieved an equal error rate of 8.19%. While 
movement synergies can be integrated into an identity verification system with motion 
capture ability, we also explored a camera-ready version of hand synergies—postural 
synergies. In this proof of concept system, postural synergies performed well, but only 
when specific postures were chosen. Based on these results, hand synergies show 
promise as a potential biometric that can be combined with other hand-based biomet-
rics for improved security.

Keywords: biometrics, human hand, grasping, synergies, principal component analysis

inTrODUcTiOn

Identity theft has become a common crime that affects about 7% of the population each year 
(Harrell, 2015). Passwords and social security numbers are the most common forms of identity 
verification. Biometrics, or recordable biological measurements, have also been integrated into 
identity verification systems (Jain et al., 2007). Although there is still much progress to be made 
in the field (Jain et al., 2006), biometrics eliminates the need for password memorization and offer 
heightened security. Researched biometrics include palm prints/fingerprints (Jain et al., 2007), iris 
or retina scans (Hill, 2002), face images (Heo and Savvides, 2012), and electroencephalography 
signals (Ruiz-Blondet et al., 2016). Recently, researchers have explored the potential of other hand 
biometrics, including vein patterns (Wang et al., 2008), hand geometry (de-Santos-Sierra et al., 
2011), and palm prints (Kumar et  al., 2003). The common factor of these identity verification 
methods is their basis on statically recorded information, usually in the form of a feature matrix, 
which is then encrypted on a server. While the complexity of feature matrix derivation, encryption 
methods, and server safety sets the level of security, the fact remains that information can be stolen 
and used. Recently, Experian, a company commonly used for credit checks and even identity 
theft protection, was the target of a hack, resulting in the theft of records for approximately 15 
million people (Nasr, 2015). This included encrypted social security numbers, passport numbers, 
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and driver’s license numbers. Soon after, a data breach of The 
United States Office of Personnel Management led to the loss 
of social security numbers, fingerprints, and other identifi-
able information, of 21.5 million people (Nakashina, 2015). 
Moreover, certain biometrics, such as iris scans, can potentially 
be forged in order to gain entry into biometric-based systems 
(Ruiz-Albacete et al., 2008). These reports reveal the need for 
identity verifications systems that do not only rely on static 
images, scans, or numbers.

Human movement may seem as simple as multiple joints 
working in parallel to accomplish a task. However, the complete 
architecture of motor control is still not understood (Scott, 2012). 
Based on an individual’s anatomy, different neural commands are 
required to complete the same task across individuals. Furthermore, 
each individual has advanced his/her motor skills over years of 
learning. This includes acquisition of basic grasps as an infant to 
more dexterous motor control such as piano playing and typing. 
Importantly, these characteristics cannot be forgotten or volun-
tarily reproduced by another individual. Recently, researchers 
have taken advantage of the complexity in human movement for 
use in identity verification systems. Keystroke dynamics involves 
characterizing keyboard inputs, such as keystroke latencies and 
durations, finger placement, and finger pressure, to determine a 
user’s unique typing characteristics (Monrose and Rubin, 2000). 
Optimized string inputs (i.e., alphanumeric, unstructured vs 
structured) and classification algorithms have propelled this 
field of biometrics to commercial use. However, factors, such 
as emotional state (Epp et  al., 2011), keyboard type, and user 
position, may affect performance (Banerjee and Woodard, 2012). 
In an attempt to reduce the lengthy time needed to register and 
identify a user when using keystroke dynamics, Roth et al. (2014) 
introduced a typing posture biometric that characterizes the 
shape and position of hands during typing and later introduced 
keystroke sound (Roth et al., 2015). As a relatively new biometric, 
these typing characteristics still need to be optimized in order to 
reduce equal error rate (EER). Arm movement biometrics may 
be a more appropriate option for individuals without basic typing 
skills. In-air signatures captured either by camera (Mendels et al., 
2014) and smartphones (Casanova et al., 2010; Blanco-Gonzalo 
et  al., 2014) have shown promising results. In an attempt to 
leverage the complexity of hand movements, in-air signatures 
of a person’s name (Kamel et  al., 2008) or a unique password 
expressed through American Sign Language (Fong et al., 2013) 
and touchscreen dynamic (Sae-Bae et al., 2012; Frank et al., 2013) 
have also been introduced.

Synergy-based movement theory hypothesizes that some 
commonly used movement patterns are encoded in the central 
nervous system (CNS). These movement patterns, or synergies, 
reduce the degrees of freedom that the CNS must control and 
can be combined to perform more complicated movements. 
The human hand is one of the most mechanically complex 
end effectors in the human body and has been researched in 
relation to synergy-based movement theory for many years. 
Object grasping is one hand-related activity that is commonly 
performed throughout the day. It requires coordinated control 
of four fingers and the thumb to produce postures and force vec-
tors required to grasp and lift objects. It also requires integrating 

various sensory information (visual, proprioceptive) and planned 
velocity control (distance and forced dependent) that begins 
premovement (MacKenzie and Iberall, 1994). It has been found 
that certain grasping traits maintain high intra-subject similarity 
and high intersubject variability (Reilmann et al., 2001; Wong and 
Whishaw, 2004), potentially stemming from different neural and 
mechanical mechanisms. We and others have previously explored 
hand synergies and have applied it to motor control models 
and prosthetics (Santello et al., 2002; Weiss and Flanders, 2004; 
Vinjamuri et al., 2010; Bicchi et al., 2011). Here, we explore hand 
synergies’ potential role as biometrics. Often, it is found that the 
first synergy is characterized by flexion in hand joints, mimick-
ing a power grasp (Santello et al., 2002; Vinjamuri et al., 2010). 
However, as previously mentioned, motor control is affected 
by an individual’s unique experience and anatomy. For these 
reasons, synergy-based biometrics may offer unique advantages 
compared to static and hand geometry-based biometrics.

In this study, we explore 10 synergies extracted from grasping 
data for their potential use as biometrics. Each is tested for speci-
ficity and sensitivity. We hypothesize that hand synergies contain 
identifiable information that is robust enough to be incorporated 
into identity verification systems. As a proof of concept, we also 
develop a system that can easily be integrated into a camera 
phone. Subjects pose the end posture of each movement synergy. 
These 10 “postural synergies” are photographed and tested as 
potential biometrics.

MaTerials anD MeThODs

Overview
For this study, 10 individuals (5 females, 5 males; 9 right handed, 
1 left handed; mean age 21.7  ±  1.95) were recruited under 
Stevens Institute of Technology Institutional Review Board 
approval. Subjects performed grasping tasks while wearing a data 
glove that records hand kinematics. Using principal component 
analysis (PCA), spatiotemporal synergies were then immediately 
derived from these data. These spatiotemporal synergies provided 
us with two forms of synergies that could be used as biometrics: 
movement synergies and postural synergies. Movement synergies 
for biometrics were tested using recorded data. Postural syner-
gies were displayed to the subject, who practiced and performed 
each posture. Postural synergies for biometrics were tested using 
photographed hand images of these postures. In addition to their 
own postural synergies, five subjects practiced and performed 
another subject’s postural synergies to be tested as false entries.

Five of the 10 subjects returned 4–8 months later for a follow-
up session of the motion-recording portion of the experiment. 
This additional dataset was used as additional entry tests for 
movement synergies.

Data capture
Subjects wore a right or left CyberGlove (CyberGlove Systems 
LLC, San Jose, CA, USA) that records joint angles. For this study, 
we used 10/18 sensors. These sensors measure the interphalangeal 
and metacarpophalangeal (MCP) joints of the thumb and MCP 
and proximal interphalangeal (PIP) joints of the four fingers. 
Abduction sensors were not used in order to keep replications 
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FigUre 1 | Procedure overview for movement synergies and postural synergies as biometrics. (a) Twenty-five objects were grasped with three repetitions 
each. (B) Movement synergies (S1, …, S10) were extracted from glove data for 10 joints (J1, …, J10) from repetition 1. Movement synergies extracted from 
repetitions 2 and 3 were used as entry attempts. (c) Immediately after grasp data collection, end position of the movement synergies (derived from repetitions 1–3) 
were determined and displayed on a virtual hand model. Subjects mimicked these postures and images were taken. Repetition 1 of images was used as a template, 
and repetitions 2 and 3 of images were used as entry attempts. (D) In order to gain access to the system, the correlation between entry and template movement 
synergies has to be greater than Tm. For postural synergies, the error between entry and template postural synergy images has to be less than Tp.
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of a synergy posture simpler. Wrist sensors were not used 
because they do not pertain to the hand. Data were captured at 
125  Hz using a custom-built LabVIEW (National Instruments 
Corporation, Austin, TX, USA) system. The glove was cali-
brated for each subject using custom goniometers ranging from  
−10° to 90°.

An overview of the data capture and synergy testing programs 
is presented in Figure 1. For each subject, the grasping dataset 
consisted of rapidly grasping 25 objects (3 repetitions) that span 
6 types of grasps (power, precision, hook, tripod, lateral key, and 
spherical). The selected objects were those found in activities of 
daily living. Each grasp type had four objects associated with it, 
with the exception of “hook,” which had five objects. The object 
was placed 40 cm away from the midline of the body, and the 
hand was placed in an initial resting position 20 cm to the right 
or left (depending on self-reported hand dominancy) of the body 
midline (Figure 1A). The subject was asked to rapidly grasp the 
object after an audio “go” signal and to hold the grasp until an 
audio “stop” signal was heard. This concluded the grasping por-
tion of the experiment. After data processing, a subject’s postural 
synergies were shown, after which the subject performed each 
posture. Images of postural synergies were taken against a green 
background (for chroma keying) using an 8 megapixel mobile 
phone camera positioned approximately 38 cm above the hand. 
During image capture, subjects wore a wrist band to prevent wrist 
extension/flexion and deviation.

synergy Derivation
Synergy-based movement can be generated using a convolutive 
mixture model (Vinjamuri et al., 2010; Patel et al., 2015). In this 
model, an impulse originating in higher levels of the CNS passes 
through a set of linear filters that relate neural and biomechanical 
structures (possibly cerebellum, basal ganglia, spinal cord, and 
muscles). Spatiotemporal synergies, represented by joint angular 

velocity profiles that relate the activity of multiple joints over time, 
are one form of response from these filters. Here, we consider the 
rapid grasp condition to inherently contain feedforward direct 
command signals because they result from minimum or negli-
gible sensory input. Based on previous work, we have found that 
synergies derived from PCA are able to better capture inherent 
joint patterns that can reconstruct movements (Patel et al., 2016). 
Thus, PCA is used to extract the principle components (PCs) of 
the dataset. Each PC is considered a synergy because it captures a 
common spatiotemporal pattern that exists across all hand joints.

For each grasp trial, data from movement onset (first time 
a joint reaches 5% of peak velocity) to grasp completion were 
extracted (last time 5% of peak velocity is reached). Across all 
subjects, the maximum time required to complete a grasp was 
1.208 s, or 151 samples. Angular velocity profiles were derived 
from these data to create an angular velocity matrix, V [25 × 1,510 
(10 joints  ×  151 samples)]. Singular value decomposition was 
performed on V:

 svd( )V U R= ∑  

such that U'U is a 25 × 25 identity matrix, R is a 1,510 × 1,510 
matrix such that RR' is a 25 × 25 identity matrix. Σ is 25 × 25 
diagonal matrix: diag{λ1, λ2, …, λ25} with λ1 ≥ λ2 ≥ Λ ≥ λ25 ≥ 0. 
We then reduce matrix V to Ṽ  by replacing Σ with ΣS, which 
contains only the n largest singular values, λ1, …, λn. All the other 
singular values are replaced by 0s. The approximation matrix Ṽ 
can be written as

 � …V U RS n S= diag{ , , } ,λ λ1  

where US is a 25 × n matrix containing the first n columns of U 
and RS is a 25 × 1,510 matrix containing the first n columns of R. 
Each column of RS is called a PC. For the purpose of dimensional-
ity reduction, we perform our analysis on the first 10 principal 
components, or synergies, only (n = 10).
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Movement Synergies
Spatiotemporal synergies derived using PCA represent movement  
patterns over time. In order to test movement synergies for biom-
etrics, we derived three sets of synergies, one from each grasping 
repetition. Each synergy set contains 10 synergies. The first set 
was used as the “template” that is stored for user registration 
(Figure 1B). The remaining two sets (entry synergy sets) were 
used to test the authentication process. The five subjects that were 
later retested had an additional four entry synergy sets. We used 
summed correlation across all joints (maximum correlation is 
equal to 10) to determine the similarity between a template syn-
ergy set and entry synergy set. A minimum correlation, Tm, level 
is required to enter the system (Figure 1D). EER determined by 
the intersection of false positive rate (false positive/total number 
of false entries) and false negative rate (false negative/total num-
ber of true entries) was used to determine optimum thresholds.

When comparing a template synergy to entry synergy, the fol-
lowing preprocessing steps were performed. Each dataset results 
in 10 synergies ranked according to the variance they account 
for. However, this ranking may vary across datasets. Thus, each 
template synergy was iteratively compared to all synergies from 
an entry synergy set and then paired with the synergy with high-
est correlation. After a potential entry synergy is paired with a 
template synergy, it is removed from the synergy set, so remain-
ing synergies can be paired. Additionally, up to a ±20 sample 
(160 ms) time shift (zero-padding before or after) was used to 
account for intersubject time variation. To test correlation by 
chance, we randomly reshuffled the velocity profile of each joint 
in a synergy using eight time bins. Each time bin was 20 samples 
long, with the exception of the last time bin that was 11 samples 
long. Then, the same comparison approach described above was 
used to determine correlation by chance.

Each subject’s synergies were also used as false entries for 
all other subjects. Thus, across all subjects, the performance of 
each synergy was tested under 40 true conditions (5 subjects × 2 
attempts  +  5 subjects  ×  6 attempts) and 180 false conditions  
(9 false synergies × 2 repetitions × 10 subjects). Note that sub-
jects with four attempts are those who attended the follow-up 
session. To optimize correlation measurements, we explored 
the effect of different configurations of the synergy template  
(i.e., using only certain joints). We tested the effect of joint 
type (MCP vs PIP) and finger (thumb, index, middle, ring, and 
pinky). For each “configuration,” correlation values between the 
adjusted entry synergy and the adjusted template synergy was 
measured and averaged across subjects. A one-way analysis of 
variance test, with Tukey–Kramer post  hoc was used to deter-
mine if any configurations significantly increased (p  <  0.05) 
correlation. Although this study explores the use of synergies 
for biometrics, it is important to consider an appropriate time 
limit for user registration and entry. Thus, we examined the effect 
of object type and number of objects for potential reduction in 
data acquisition. When analyzing number of objects, each grasp 
was first ranked according to the following procedure. First, 25 
new synergy sets were extracted, each set omitting a single grasp. 
For each new set, we determined the average correlation between 
false synergy sets and the test synergy. Objects that decreased 
correlation the most were prioritized (ranked highest). After 

each of the 25 objects were ranked, new synergies were derived 
by iteratively omitting grasps.

Postural Synergies
Postural synergies represent the final position of each movement 
synergy (velocity profiles are integrated over time to determine 
final position of each joint). After grasp data were collected, 
synergies were immediately extracted from all three repetitions 
(Figure 1C). Each synergy was multiplied by a maximum pos-
sible gain under the following criteria: (1) final posture fell within 
normal range of movement and (2) the majority of a finger did 
not cross the palm. A virtual hand, built using Simulink 3D 
Animation toolbox (MathWorks, LLC) was used to display front 
and side views of the resulting hand posture. Here, we checked 
whether criterion 2 (from above) was met. Based on preliminary 
testing, we found that too much flexion in a finger would cause 
the image analysis procedure to incorrectly omit a finger. Thus, 
if any of the distal interphalangeal (DIP) joints on the virtual 
hand cross the upper palm edge, then the weight of the synergy 
was reduced in 0.01 increments until the DIP joint no longer 
crossed the palm. Once the synergy postures were finalized 
by the experimenter, they were shown to the subject. Because 
subjects were asked to perform these postures for the first time, 
we allowed an initial practice time for each posture to ensure 
correct movements (approximately 10 min total). Each synergy 
was performed and photographed (10 template postures). These 
were used as template images for each synergy. Then, two more 
repetitions were taken of each postural synergy (20 entry images). 
Subjects were encouraged to maintain similarity and “approach” 
when performing each synergy. “Approach” refers to the order 
each finger was flexed to achieve the target posture. Additionally, 
preliminary work showed the thumb to cause excessive variation 
in images. Thus, subjects were asked to keep the thumb in a natu-
ral straight position. In this experimental setting, the hand model 
in a specific synergy posture was displayed as users attempted to 
perform each posture. However, in realistic settings, we would 
expect users to only choose up to three postural synergies to 
memorize and use for entry.

Image analysis of template and entry postural synergies was 
performed using the Image Analysis Toolbox in MATLAB. In 
this preliminary work, we controlled lighting to prevent shad-
ows around the hand. Because the focus of this study is to use 
synergy-based differences across individuals, the effects of other 
commonly used hand biometrics (skin color, palm/finger size, 
and vein/texture attributes) were eliminated with the following 
steps. Preprocessing image analysis steps include: background 
removal, conversion to binary image (removes skin color and 
vein/text attributes), wrist cropping, and image centroid calcula-
tion. An example of the resulting image is shown in Figure 2A 
(green dot indicates centroid). Then, the edge of the hand figure 
that includes only digits portions was taken. Importantly, this 
outline is a result of MCP and PIP extension/flexion movements, 
but also reflects natural abduction/adduction movements that 
occur between fingers. The distance between the palm centroid 
and each point of the outline is measured and normalized to 
remove the effect of different hand sizes (Figure  2B). This 
involves finding the shortest distance from the centroid and 
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FigUre 2 | image analysis procedure. (a) Preprocessing of the raw image results in a binary figure with the wrist cutoff. The portion being analyzed includes only 
edges pertaining to digit edges (highlighted in red). The distance between the figure centroid (green) and digit edges is calculated and normalized (B). (c) Each 
finger is separated using peaks and valleys. Here, the ring finger has been separated out. The Euclidian errors between template and entry distances are determined 
for each finger.
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FigUre 3 | Bars show the mean fraction of variance accounted by each 
principle component (Pc) across subjects. Error bars indicate SD. The line 
plot shows how these variances accumulate from the first PC to the last PC.
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dividing all other points from this distance. The resulting values 
describe a relative hand posture. If an imposter was able to 
reproduce the exact same ratio of flexion across the fingers as 
another use, abduction tendencies and enslaving magnitudes, 
which are unique to an individual, would still cause subtle 
differences. Each finger is then separated from the outline; this 
finger profile is used as a basis for comparison (Figure 2C). It 
should be noted that while the distances are normalized, the 
number of data points dedicated to a finger is not set. Thus, an 
individual with a narrower finger or the same individual with a 
lesser degree of flexion may decrease the number of data points 
detected for a finger (and vice versa). This can be seen 2 C where 
the blue line represents the outline of the ring finger from the 
template posture. In entry Attempts 1 and 2, there are fewer data 
points, possibly resulting from less abduction or less flexion. 
The Euclidian error between a template finger outline and an 
entry finger outline is summed across fingers. A maximum error 
threshold, Tp, is used to determine if the entry postural synergy 
matches the template postural synergy.

Across all subjects, each of the 10 synergies was tested under 
20 true conditions (10 subjects × 2 attempts). Five of the subjects 
practiced and reproduced postural synergies of another subject; 
thus, each of the 10 synergies was tested under 10 false conditions 
(5 subjects × 2 attempts). Because certain fingers of the hand have 
more dexterity (i.e., index) or enslavement (i.e., ring) than others, 
we examined which fingers are sources of greater error in true 
(authentic) and false (imposter) condition. One-way ANOVA 
was used to compare Euclidian errors between the five fingers. 
For each individual finger, we then examined whether imposter 
attempts average equal errors as authentic attempts using a 
Student’s t-test; significance was set at p < 0.05.

resUlTs

hand synergies
Ten synergies were extracted from grasping data. A movement 
synergy is defined by velocity profiles for each of the 10 joints. The 
cumulating fraction of variance accounted for by these synergies 
is presented in Figure  3. Across all subjects, the first synergy 
accounted for an average of 54% of the variance. An example of 
synergy 1 from a representative subject is provided in Figure 4, 

blue. For comparison, the averaged velocity profile across all 25 
grasps is provided with the red trace, with SD depicted by the 
red shaded regions. Both, the averaged profile and the synergy 
profile capture the overall pattern. Please note that for visual 
purpose only, the synergy profile in Figure  4 was multiplied 
by a gain, such that both the averaged profile and the synergy 
profile would be on the same scale. As depicted in the figure, 
there also exists a pattern across and between MCP (left) and 
PIP (right) joints. The postural synergy representation of this  
particular movement synergy is shown by the hand image at 
the bottom right of Figure 4. For movement synergies, each of 
the 10 velocity profiles needs to adequately match. For postural 
synergies, images of a hand in these hand configurations need to 
adequately match.

Biometric system Based on Movement 
synergies
To explore the use of movement synergies for biometrics, we 
first assessed the ability of an individual to reproduce the same 
synergy profile across repetitions. A maximum of correlation of 
100% represents a perfect match. Percent of maximum correla-
tion for different finger configurations (all joints, MCP joints 
only, PIP joints only, and MCP and PIP joints of each finger 
removed) across all synergies is shown in Figure 5. All synergies 
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FigUre 4 | The red line shows the averaged joint movement across all 25 grasps in one repetition. SD is provided by the red shaded region. 
Metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the thumb (T), index (I), middle (M), ring (R), and pinky (P) are shown on the left and right, 
respectively. To show how the first synergy compares to the average movement, synergy 1 of this particular subject is overlaid by the blue line. Note that this 
synergy has been multiplied by a gain so that both the red and blue traces match for visual purposes only. The end posture of this synergy is shown on the bottom 
right. This is considered a postural synergy.

FigUre 5 | across subjects, the mean (bars) and sD (error bars) of correlation values between template and entry movement synergies are shown. 
Values are shown for different joint configurations: all joints are used, only metacarpophalangeal (MCP) joints are used, only proximal interphalangeal (PIP) joints are 
used, thumb joints are removed, index joints are removed, middle joints are removed, ring joints are removed, and pinky joints are removed. Black bars show 
correlation by chance. Green dots show the calculated equal error rate (EER) for each synergy and configuration. Synergy 1 has the highest correlation and lowest 
EER values. All synergies had correlations above chance level (black bars).
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fell above correlation by chance levels (Figure  5, black bars). 
Results show that the first synergy had the highest correlation, 
indicating that it was most reproducible across repetitions. 
Within synergies 1 and 2, no significant difference was found 

between the different finger configurations; however, removing 
the thumb resulted in slightly higher correlations. For synergies 
that did show significant differences across different configura-
tions, p-values are provided in Table 1. Namely, higher order 
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TaBle 1 | significant differences between different synergy 
configurations.

synergy # 3 6 7 8 9 10

All joints vs MCP 0.3460 0.1483 0.3306 0.0018 0.0012 0.0015
All joints vs PIP 0.6046 0.0006 0.0035 0.1312 0.0238 0.0019
MCP vs index 0.5828 0.3727 0.9727 0.0048 0.0114 0.0089
MCP vs middle 0.0816 0.2572 0.8591 0.0136 0.0045 0.0652
MCP vs ring 0.0383 0.4140 0.4518 0.0171 0.0011 0.0562
MCP vs pinky 0.6412 0.5607 0.3242 0.0381 0.0045 0.0492
PIP vs index 0.8285 0.0034 0.1226 0.2390 0.1375 0.0113
PIP vs middle 0.2021 0.0017 0.0470 0.4219 0.0682 0.0788
PIP vs ring 0.1071 0.0043 0.0066 0.4709 0.0213 0.0682
PIP vs pinky 0.8694 0.0088 0.0033 0.6575 0.0690 0.0599

MCP, metacarpophalangeal; PIP, proximal interphalangeal.
p Values from one-way ANOVA of correlations presented in Figure 5 are given. 
Only synergies that expressed a significant difference in at least one comparison are 
provided. Bolded values indicate a p-value < 0.05.

FigUre 6 | False rejection rate (Frr) and false acceptance rate (Far) 
of synergy 1, when using all 10 joints. Equal error rate (EER) is calculated 
at the intersection of these plots. EER is 10% at a threshold of 70% 
correlation.

A

B

FigUre 7 | (a) Equal error rate (EER) when increasing number of objects are 
used. Using the first six highest ranked objects produces an EER of 10% 
when pinky is removed. (B) Using only five lateral key grasps produces an 
EER of 9.17% when the pinky is removed.
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synergies (synergies 6–10) had significantly lower correlation 
scores when more joints were used compared to MCP and PIP 
configurations that only used five joints each. Green dots in 
Figure 5 show EER for each synergy and finger configuration. 
Only synergy 1 fell in an acceptable EER range for biometrics, 
performing best when pinky MCP and PIP joints were removed 
(EER  =  8.19%) and when all joints were used (EER  =  10%). 
False acceptance rate (FAR) and false rejection rates (FRR) for 
synergy 1, using all joints is shown in Figure 6. The threshold at 
the EER point is 70%. Using both synergies 1 and 2 as part of the 
biometric key did not significantly improve results.

In this experimental setup, 25 objects were used to elicit varying 
grasping patterns. However, in an actual biometrics application, 
an individual would not be expected to grasp 25 objects. Using 
EER, we determined the minimum number of objects required 
to extract and match the first synergy. The overall trend seen in 
Figure 7A shows increasing the number of objects does not sig-
nificantly decrease EER. We found that removing the pinky MCP 
and PIP joints (red) further reduced EER compared to when all 
joints are used (blue). Synergies extracted from only six of the 
highest ranking objects produced an EER of 10%. These objects 
were: screwdriver, water bottle, CD, petri dish, bag handle, and 
bracelet.

In an attempt to determine if certain grasp types elicit unique 
hand patterns more robustly, we then extracted synergies from 
tasks that used certain grasp types. Using these synergies, EER 
of cylindrical, precision, hook, lateral key, spherical, and tripod 
grasps is shown in Figure 7B. Synergies extracted from lateral key 
grasps and tripod grasps showed the lowest EER of 9.17 and 10%, 
respectively, when the pinky was removed.

Proof of concept: Biometric system 
Based on Postural synergies
For each subject, 10 postural synergies were determined by the 
end posture of each movement synergy. Figure 8 shows front and 
side views of these synergies for subjects 2, 6, and 10. Similar to 
previous research in kinematic hand synergies, the first synergy 
in all subjects was characterized by flexion in MCP and PIP joints, 
analogous to a power grasp. Synergy 2 was also characterized by 

flexion in MCP and PIP joints, but the magnitude at each finger 
was less consistent across subjects. Synergies 3–9 did not show 
consistent patterns across fingers and subjects. However, synergy 
10 consisted of MCP extension and PIP flexion in all subjects.
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FigUre 8 | Front and side views of the 10 postural synergies for 
subjects 2, 6, and 10 are shown. Subjects were first trained on performing 
each of these postures. Then, images of the hand imitating these postures 
were taken.

FigUre 9 | For each finger, the mean euclidian error between 
template and entry postural synergies is shown. Blue bars represent 
mean taken across all authentic attempts, and red bars represent mean 
taken across all imposter attempts. Error bars represent 1 SD. For authentic 
attempts, no significant differences are seen across fingers. For imposter 
attempts, the pinky showed significantly less error (indicated by the red star, 
p < 0.05) than all other fingers. In every finger, imposter attempts averaged 
significantly greater (indicated by the black star, p < 0.01) error than authentic 
attempts.

TaBle 2 | equal error rate (eer) for each postural synergy.

Posture eer (%) Posture eer (%)

Synergy 1 20 Synergy 8 12.5
Synergy 2 2.5 Synergy 9 20
Synergy 3 22.5 Synergy 10 10
Synergy 4 20 Best posture 0
Synergy 5 30 Two best postures 2.5
Synergy 6 20 Three best postures 10
Synergy 7 12.5 Four best postures 10

EER when each of the 10 postural synergies are used alone as a biometric. Synergy 
2 has the best performance with an EER of 2.5%. When the best postural synergy 
(subject had least error reproducing the posture) was chosen as the biometric key, the 
system had an EER of 0%.
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Although each posture is characterized by MCP and PIP 
angles for each finger, the imaged posture is evaluated by finger 
endpoint (i.e., distance of finger peak to palm center). We evalu-
ated the error of each finger across all synergy postures for both 
authentic (user replicates his/her own posture) and imposter 
(imposter replicates another user’s posture) cases. Individual 
finger results are provided in Figure 9. For authentic attempts, 
no significant differences were found across fingers (one-way 
ANOVA, p > 0.05). For imposter attempts, the pinky (indicated 
by red star) showed significant differences (one-way ANOVA 
followed by multiple comparisons using Tukey–Kramer test) 
compared to the thumb (p = 0.0459), index (p = 0.0009), middle 
(p = 0.0001), and ring (p = 0.0401) fingers. In all fingers (black 
star), imposter attempts averaged significantly greater errors than 
authentic attempts: thumb (p = 2e−5), index (p = 4e−5), middle 
(p = 1.5e−4), ring (p = 0.0017), and pinky (p = 0.0018).

The performance of using each postural synergy as a biometric 
key is presented in Table 2. The best performance was achieved by 
synergy 2 with an EER of 2.5%. We further tested the system by 
using the first, second, and third best postures (least replication 
error) from each subject. This resulted in EER of 0, 2.5, 10, and 
10% for one, two, three, and four postures, respectively.

DiscUssiOn

Movement synergies as Biometrics
All 10 movement synergies were tested as a potential biometric. 
Results indicate that only synergy 1 is similar enough across 
repetitions to qualify as a biometric. Synergy 1, accounting for 
a mean variance of ~54%, characterizes the most general pattern 
from the grasping dataset. Although it describes a hand-closing 
pattern for all subjects, results show that each fingers’ flexion rate 
differs across subjects. Thus, it holds characteristic unique to an 

individual that can only be determined by grasping everyday 
objects. Synergy 2 showed some consistency across repetitions 
but did not perform well enough to be used as a biometric itself. 
When combining synergies 1 and 2, EER dropped to 9.72%. 
Further, testing should be done to determine the benefits of 
including two synergies. Synergies 3–10 were not reproducible 
enough to be considered for biometrics.

Five of the 10 subjects from this dataset were tested 4–8 months 
after initial evaluation. The present analysis incorporated all 
attempts when calculating EER, but it is important to consider 
the effects of short-term stability (or instability) on these values. 
We used correlation values to measure short-term stability 
of the five subjects who participated in the follow-up session. 
Figure 10 shows that subjects 4 and 9 were not able to perform 
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with enough similarity in the follow-up session, while subjects 1, 
3, and 7 have consistent performance. Further analysis of these 
subject’s synergy profiles will help us determine which movement 
parameters were not reproducible (i.e., peak velocity amplitudes 
or time domain features).

We expected that eliminating highly individuated digits, 
such as the thumb or index (Ingram et  al., 2008), would 
decrease EER. However, results showed an increase in EER for 
synergy 1 (red points in Figure 5) when these digits were not 
included. Further analysis showed that eliminating the thumb 
decreased FRR and increased FAR. This indicates that the 
thumb’s movement is difficult to reproduce within a subject 
but contributes to the synergy’s uniqueness. Eliminating the 
index finger slightly increased FRR but did not change FAR. 
This indicates the index finger is more easily reproducible 
within a subject. Surprisingly, removing the pinky decreased 
EER by decreasing FAR. This indicates that imposter attempts 
were able to reproduce the pinky movement. It has been shown 
that order of digit contact is often radial to ulnar (Schettino 
et al., 2013) unless all digits are required for successful grasp 
(i.e., in cylindrical grasp). In the majority of tasks, the pinky 
may have followed as a supportive digit, resulting in less 
complex control.

In terms of choosing optimal objects to decrease system access 
time, we found that using the six highest ranked objects achieved 
an EER of 10% (when pinky is removed). As seen in Figure 7, the 
ranking procedure does not show a clear trend when using one 
to six objects. The ranking order used in this analysis may not 
been optimal for a low number of objects because PCA depends 
on multiple objects. We also found that using the five lateral key 
grasp objects achieved an EER of 9.17%. Compared to all other 
grasp types, using lateral key grasps decreased FRR, but increased 
FAR. This indicates that lateral key grasps were more reproducible 

within subjects as well as across subjects when compared to the 
other grasp types.

Our results indicate movement synergies hold unique proper-
ties that cannot be reproduced by imposter attempts. In most of 
the above mentioned scenarios, FAR values were minimal, while 
FRR values were high; this indicates the sensitivity of the system 
needs to improve. We believe including additional features that 
are often maintained in an individual (reaction time, movement 
time) as well as individualized threshold values will increase 
performance of the system. Other movement-based biometric 
systems have used dynamic time warping (DTW) to compare 
two time profiles. In these studies, testing a pre-determined set 
of gestures resulted in EER of l.89% (Wu et al., 2013) and 2.58% 
(Scott, 2012). DTW is currently being evaluated as a potential 
synergy comparator.

Postural synergies as Biometrics
In the postural synergies biometric system, subjects would be 
required to perform up to three memorized postures in order to 
gain access to the system. From the 10 postural synergies analyzed, 
no obvious optimal postural synergy(s) could be determined. 
EER rates as low as 2.5% show postural synergies have potential 
as a biometric.

Postural synergies have two layers of uniqueness. First, the 
movement synergies derived from the grasp data extracts motion 
patterns that exemplify joint relationship during grasping. 
Although synergies 3–10 were not reproducible within subjects, 
they greatly varied across subjects. Second, the ability to conform 
the hand to the resulting posture, or postural synergy, further 
exposes patterns in the hand (i.e., unintentional abduction angles 
resulting from joint flexion). Other posture-based biometric 
systems employ commonly used postures, such as ASL postures, 
to spell out a password. In one such study, Fong et  al. (2013) 

Initial evaluation Follow-up session

FigUre 10 | short-term stability, from initial evaluation to follow-up session (4–8 months), is seen in subjects 1, 3, and 7, but not subjects 4 and 9.
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concluded that recognizing behavioral patterns is more difficult 
than recognizing the actual hand shape. If these behavioral patterns 
are already extracted by the synergies, then further improving the 
hand shape recognition methods may greatly improve the system. 
Hand geometry-based studies have used finger width values, vari-
ance corrections (de-Santos-Sierra et al., 2011), and hand rotation 
corrections (Yoruk et al., 2006) to optimize feature extraction and 
matching performance. Combining traditional geometry-based 
and intensity-based (hand color) hand biometric methods, we can 
further improve the postural synergy biometric system.

hand synergies as Biometrics
This study aimed to test the use of movement and postural 
synergies for use in biometrics. Results are comparable to other 
movement-based biometric systems that do not use subject-
specific passwords (Matsuo et al., 2007; Liu et al., 2009; Bailador 
et al., 2011) but still below keystroke dynamic performance values 
(review in Banerjee and Woodard, 2012). Movement synergies 
reached its best performance at an EER of 8.19%. Postural 
synergies reached its best performance at an EER of 0 and 2.5%. 
However, FAR of the system still needs to improve in order to 
meet adequate performance for biometric use.

Using movement synergies as a biometric requires the use of a 
hand data glove that would need to be calibrated for all hand sizes. 
In our procedure, we performed an exhaustive calibration, which 
would not be ideal for real-world use. We are currently develop-
ing a low cost, easy-to-deploy hand data glove that may be more 
suitable. It is important to keep in mind that this type of biometric 
cannot be used for rapid user verification. Instead, the user must 
perform an action in order to gain access in an environment 
equipped with a computer, data glove, specific grasp objects, etc. 
Thus, it may only be warranted for higher-security applications 
that combine multiple biometrics. Like keystroke dynamics and 
typing posture biometrics, movement synergies do not require 
the user to memorize a password that has the potential to be 
forgotten or stolen. However, all three systems require a rather 
structured setup (i.e., computer to capture data, same keyboard, 
and similar user positions). Finally, as with all movement related 
biometrics, template passwords need to be updated due to the 
effects of aging on motor skills. The postural synergy proof of 

concept showed that performing postures in front of camera 
may offer a quicker and more mobile platform. This type of hand 
biometric can potentially be applied to computers/phones with 
a camera. Similar to performing in-air signatures, the postures 
would have to be memorized; however, because of the complex-
ity of synergy hand postures, it may not be necessary to have a 
private area in order to perform the postures.

Future work includes exhaustively testing both systems with 
a greater sample size and testing short-term stability and incor-
porating other commonly used biometric methods such as using 
averaged time velocity profiles as a synergy, DTW for synergy 
comparisons, and hand geometry measurements for postural 
synergies. Finally, we will test whether using the source of hand 
synergies, i.e., neural signals collected from electroencephalogra-
phy, can improve performance.
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