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Abstract: The advancements in nanotechnology and nanomedicine are projected to solve many
glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the
top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate
these problems with accurate diagnosis and therapies. Among many developed therapeutic models,
near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent
tumors and bacterial infections with less inflammation compared with traditional therapeutic models
such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date
research on graphene phototheranostics for a better understanding of this field of research. We
discuss the preparation and functionalization of graphene nanomaterials with various biocompatible
components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent
and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with
confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron
emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological
system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal
and photodynamic therapies against different cancers and bacterial infections are carefully conferred
herein along with challenges and future perspectives.

Keywords: graphene; nanocomposites; multimodal imaging; phototherapy; theranostics; cancer;
bacterial infection

1. Introduction

Humankind have faced many threats, especially from cancer and infectious diseases,
in the past and in the current times. These problems have remained persistent for many
decades. Science has provided remedies alongside many religious beliefs, especially during
the pandemic times. This scenario increased the need for non-invasive, economic, therapeu-
tic models to fight cancer, Alzheimer’s disease, cardiovascular disease, influenza, COVID-19,
and other microbial infections, and existing diseases [1–4]. Scientific advancements are
required to find solutions to these problems. Innovations in science have provided many
therapeutic models, such as chemotherapy and surgeries, after traditional treatment meth-
ods such as Chinese medicine and Indian. Innovations in nanotechnology and nanomedicine
aim to provide better solutions in medicine [5–8]. Nanotechnology offers small size delivery
systems inside cellular and subcellular levels owing to high surface area to carry many
therapeutic drugs with biocompatibility and inherent theranostic properties [9].

Theranostics is an emerging field in nanomedicine which may provide simple, eco-
nomic diagnoses and therapy solutions to many cancers and infectious diseases. Rather
than rely on single diagnosis and therapy models, multiple practices are important to
provide accurate results of disease confirmation and cure. Nanomaterials with multiple
diagnosis and therapeutic characteristics are highly desired in nanomedicine [10,11]. The
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current diagnosis techniques for cancer and infectious diseases in research are Confo-
cal Laser Scanning Microscopy (CLSM), Magnetic Resonance imaging (MRI), Computed
Tomography (CT), Positron Emission Tomography (PET), Raman, and Time-of-Flight Sec-
ondary Ion Mass Spectrometry (ToF-SIMS). However, each model has its own advantages
and disadvantage [12,13]. Other than multiple imaging guided techniques, multiple thera-
peutic models are also important, and chemotherapy, immunotherapy, gene therapy, and
surgeries which can provide good results [14–17]. However, these treatments may prone to
some kind of tissue damage and inevitable side effects [18–21].

In recent years, phototherapy has become emerging research topic in nanomedicine to
treat cancer and bacterial infections [22]. Phototherapy is a non-invasive technique due to
its usage of low laser powers and short time interactions to the patent [23]. This is due to the
utilization of low energy NIR light which has better tissue penetration in biological systems
than visible and UV light, which may burn the skin and harm the patient [24]. Any system
which can absorb NIR light and create a local heat to burn tumors and bacterial cells would
be beneficial to nanomedicine [25]. Many nanomaterials with different size, shape, and
biofunctionality have been demonstrated to target cancer and bacterial invasion [26–28].
The most successful photo and chemotherapeutic nanomaterials, such as Au, Ag, Fe, carbon,
and polymeric nanomaterials, are well studied [29]. Due to its very good biocompatibility,
low toxicity, tunable size, and high surface areas, we selected 2D graphene and reviewed
the status quo of this nanomaterial in nanomedicine and theranostics [30].

Graphene is an allotropic form of carbon where the carbons are arranged in a 2D
hexagonal chicken-net-like network which can offer high surface area, better electrical
and thermal conductivity with optical transparency, and tuneable surface functionality
with the olefin carbon network [31,32]. The intriguing properties of size, shape, and
toxicity of graphene and graphene-related nanomaterials, such as graphene oxide (GO),
reduced graphene oxide (RGO), and functionalized graphene nanocomposites (GNCs),
are investigated in this review for multimodal imaging guided targeted phototherapy.
Herein, we discuss the preparation of GNCs functionalization with many metals, metal
oxides, polymers, photsensitizers, as well as other therapeutic drugs by covalent and non-
covalent approaches to treat malignant tumors and antibiotic resistant bacterial infections
by NIR triggered photothermal therapy (PTT) and photodynamic therapy (PDT) as well as
synergistic effects of other combination therapies (Scheme 1).
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Scheme 1. Graphene nanocomposites for multimodal imaging guided therapy. Scheme 1. Graphene nanocomposites for multimodal imaging guided therapy.

2. Preparation of Graphene Nanocomposites
2.1. Graphene Oxide

GO belongs to the graphene family which is a densely packed honeycomb-like struc-
ture made from a sheet of sp2 and sp3 bonded carbon atoms. Graphene nanomaterials have
benefits such as high mechanical strength, Young’s modulus, surface area, conductivity,
and carrier mobility, making them a perfect nanomaterial for various applications [33].
Graphene and its derivatives are widely used due to their excellent inherent properties and



Molecules 2022, 27, 5588 3 of 33

extraordinary composition in drug delivery, cancer treatment, biosensing, and bioimag-
ing. Apart from these advantages of GO, the study has also focused on its toxicity and
demonstrates GNCs are less toxic than carbon nanotubes. This outcome supports the use
of GNCs for cancer and hyperthermia treatment [34]. Scheme 2 presents the various types
of graphene and their composites, preparation, and biological applications. Types, prepa-
ration, properties, functionalization, and focused therapeutic applications of graphene
nanomaterials are also shown in Scheme 2. Researchers are currently giving particular
attention to the preparation of single-layered GO from graphite, by using strong oxidizing
agents and concentrated acids, because of its extensive applications in the biomedical
field [35]. GO contains epoxy, carboxyl, carbonyl, and hydroxyl functional groups that
make it hydrophilic and biocompatible [33].
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The graphene was synthesized by various methods in which the top–down and
bottom–up approaches are generally used. In the top–down method, discrete graphene
sheets are synthesized by breaking a stacked layer of graphite. The top–down approach
includes micromechanical cleavage, thermal reduction, and electrochemical exfoliation
whereas, chemical vapor deposition is included in the bottom–up approach [35]. Among
the several preparation methods of graphene, the reduction of GO has gained significant
attention because of its low-cost, ease of implementation, as well as variety of reducing
agents and synthesis procedures [36]. Moreover, for the preparation of GO the Stauden-
maier method, Brodie method, Hummers’ method and their modified versions are well
known and widely used [37]. However, the Hummers’ method showed the degree of
oxidation to be more compared with the other methods [38]. In brief, in the Hummers’
method the graphite flakes were mixed with H2SO4 and NaNO3 solution under an ice bath.
Then, KMnO4 was added to the above mixture with constant stirring. Due to the addition
of KMnO4, the solution became brown. Next, that solution was diluted with water and then
treated with hydrogen peroxide. Lastly, the product was washed with distilled water and
10% HCl solution to remove impurities. An improved form of the Hummers’ method for
the preparation of GO was reported, by improving the oxidation with the addition of extra
KMnO4 without NaNO3 addition, and a reaction was carried out in H2SO4/H3PO4 with a
9:1 ratio. This improved form of the Hummers’ method showed an even carbon network,
more oxidized hydrophilic carbon, and no toxic gas production during preparation [39].
The phase purity and functional groups were initially confirmed by X-ray diffraction
(XRD) and Fourier transform infrared spectroscopy (FT-IR). The surface morphology and
microstructure of GO were confirmed by scanning electron microscopy (SEM) and trans-
mission electron microscopy (TEM). By using Raman spectroscopy various graphene-based



Molecules 2022, 27, 5588 4 of 33

nanomaterials were characterized. Moreover, X-ray photoelectron spectroscopy (XPS),
thermo-gravimetric analysis (TGA), differential scanning calorimeter (DSG), and atomic
force microscopy (AFM) were used to evaluate graphene-based nanomaterials [40].

Graphene and GO have more surface area and strong light absorption properties,
hence being considered ideal applicants in cancer therapy. Moreover, graphene has been
confirmed to possess better photothermal anticancer efficiency than carbon nanotubes. The
authors also concluded easy preparation, low cost, and low toxicity made graphene-based
nanomaterials an ideal candidate for cancer treatment [34]. A later work evaluating the
cytotoxicity of GO and GO loaded with doxorubicin (DOX) on human multiple myeloma
cells suggested low-cytotoxicity GO as a suitable nanocarrier for anticancer drug [41].
Moreover, further work to improve GO biocompatibility was carried out by its initial
conjugation with NH2-PEG3500-maleimide. Then, functionalization was performed using
peptide (integrin αvβ6-specific HK) through maleimide-thiol coupling, and finally, HPPH
was loaded on GO-PEG-HK via π−π stacking (Figure 1A). GO(HPPH)-PEG-HK was
capable of killing the tumor cells and lung metastasis [42].
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Figure 1. Schematic. (A) Structure of GO(HPPH)-PEG-HK [42]. (B) Diagram of the synthesis and
functionalization to prepare GO-HA hybrid [43]. (C) The synthesis and functionalization to prepare
PAH/FA/PEG/GO siRNA complex [44]. Reprinted/adapted with permission from Refs. [43,44].
Copy right 2011, copyright Wiley-VCH. Copy right 2017, copyright Ivyspring.

A novel mechanochemical method was developed to synthesize GO-Fe3O4 nanocom-
posites [45]. An efficient, nontoxic PEGylated GO/epirubicin was designed to destruct
tumor cells [46]. In addition, hypocrellin A (HA) was loaded onto GO for anticancer
treatment. The carboxyl, hydroxyl, and epoxide groups present on GO were linked with
the quinone portion of HA via hydrogen bonding, as shown in Figure 1B [43]. Moreover,
a PAH/FA/PEG/GO siRNA complex for gene delivery consistin of a GO monolayer de-
livering HDAC1 and K-Ras siRNAs to target pancreatic cancer cells was reported. The
detailed synthesis procedure for PAH/FA/PEG/GO siRNA is shown in Figure 1C [44]. The
combined use of PEG and grafted GO (pGO) enhanced its aqueous stability followed by
loading of pGO with chlorin e6 (Ce6) photosensitizer and doxorubicin (DOX). Higher pho-
todynamic anticancer effects as compared with Ce6/pGO or DOX/pGO were found [47].
Additionally, a covalently bonded biocompatible GO-PEG showed toxicity for lung cancer
A549 and human breast cancer MCF-7 cells. Further, paclitaxel (PTX) was conjugated
with GO-PEG via π-π stacking and hydrophobic interactions, and the results showed high
toxicity to A549 and MCF-7 cells [48]. For the cancer cell apoptosis, a multifunctional
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FePt-DMSA/GO-PEG-FA (iron platinum-dimercaptosuccinnic acid/PEGylated GO-folic
acid) composite was reported [49]. For the breast cancer cells, a PEGylated nGO loaded
with PS and two-photon (TP) compound was prepared. The results showed that GO-PEG
(TP) has the capability to kill breast cancer cells (4T1) at a 980 nm laser irradiation [50].

For bacterial infection phototherapy, a variety of metals and metal oxides were loaded
onto graphene as antibacterial agents. Briefly, the TiO2-Ag/graphene as a ternary nanocom-
posite was synthesized and its photodynamic effect was carried on E. coli bacteria and A375
(melanoma), HaCaT (keratinocyte) cells. The results suggested the ternary composite could
be applied for bacterial keratosis or skin tumors [51]. Additionally, different metals such as
Zn, Ni, Sn, and steel were coated with GO (Figure 2A). The different metals have different
capacities to fight against bacteria: GO-Zn acts as a better antibacterial agent than GO-Ni,
followed by GO-Sn and GO-steel [52]. Moreover, a ZnO/GO nanocomposite prepared by
loading green-synthesized ZnO NPs to GO nanosheets (Hummers’ method) (Figure 2B)
has the capacity to kill the bacteria and also serves as an anticancer drug [53].
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Figure 2. (A) Schematic diagram showing synthesis of GO directly on various substrates from natural
biopolymer shellac. GO film is shown in ball and stick model; red: oxygen atom, gray: carbon atom,
white: hydrogen atom. The shellac-coated substrates were heated at 600 ◦C under nitrogen atmosphere
for 30 min to synthesize GO directly on different substrates [52]. (B) The possible mechanism of the
transformation of graphite to GO and then to ZnO/GO NC [53]. Reprinted/adapted with permission
from Refs. [52,53]. Copy right 2018, copyright Willey-VCH. Copy right 2020, copyright RSC.

Additional advantages of graphene include (1) cross-linked capability with poly-
mers, (2) admirable biocompatibility in in vitro and in vivo, and (3) more surface area,
specifically graphene sheets. Hence it makes more contact with the bacteria and leads to
more pronounced antibacterial effect. Considering all these advantages, a boronic acid-
functionalized graphene and combined with quaternary ammonium salt (B-CG-QAS) acted
as a multidrug-resistant to bacterial infection [54]. In addition, GO-PEI-GQDs via layer-by-
layer deposition [55] and polyvinyl-N-carbazole-GO (PVK-GO) nanocomposite [56] were
also reported. The variation in antibacterial effect due to variation in the combination of
the substrate with GO was noticed. The GO fixed titanium with enhanced photoacous-
tic performance (GO-EPD) showed enhanced antibacterial, activity followed by GO-APS
(GO-electrostatic interaction) and GO-D (GO-gravitational effect) [57].
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2.2. Reduced Graphene Oxide

The RGO has been used in drug delivery, bioimaging, and anticancer applications
due to its high electrical and thermal conductivity. However, GO has less NIR absorption
capacity than RGO. Moreover, RGO is superior for high photothermal conversion and
optical properties. The hydrophilic nature of RGO is essential in medical applications;
hence, several efforts have been researched to enhance its hydrophilicity [58]. Further-
more, RGO was synthesized by chemical or thermal reduction of GO or graphite oxide.
The hydrazine, hydrazine hydrate, sodium borohydride, and L-ascorbic acid are used
as reducing agents during RGO synthesis [59]. Moreover, the plant extract is also used
for the synthesis of RGO due to its non-toxicity, cost-effectiveness, biocompatibility, and
environment-friendly nature over chemical and physical approaches (see Scheme 2). As
per the report, these biomolecules, such as amino acids, bovine serum albumin, humanin,
glucose, melatonin, and ascorbic acid, interact with functional groups present in RGO [60].
Furthermore, humanin has been used for the green synthesis of RGO [61]. Chitosan was
used to combine with RGO to reduce and stabilize the GO as well as entrap DOX and IR820
dye. The in vitro and in vivo results confirmed the chit-RGO-DOX-IR820 was applicable
for cancer theranostics [62].

Various studies have reported the increased effectiveness of cancer treatment on
combination therapies. For instance, GO (from graphene flakes) was partially reduced
with NaOH and chloroacetic acid followed by surface modification to form FP-PrGO-Ce6-
AuNR by depositing gold nanorods (AuNR) onto FP-PrGO-Ce6. The FP-PrGO-Ce6-AuNR
nanocarrier acted as a targeting agent for anticancer theranostics [63]. Moreover, RGO-
coated polydopamine doped mesoporous silica was used for anticancer treatment. The
RGO/MSN/PDA-loaded DOX helps photothermal activity and shows an antitumor ef-
fect [64]. A green approach used an environmentally friendly, non-toxic, natural phenolic
resveratrol compound instead of hydrazine and hydrogen sulfide for the formation of
RGO [65]. Recently, an HSA/RGO/Cladophora glomerata bio-nano composite was pre-
pared as a PS for study using L929, HeLa cancer cell line, Pseudomonas aeruginosa, and
Staphylococcus aureus bacteria. The results showed that the synthesized composite has the
capacity to kill bacteria with demonstrated photothermal activity [66].

For bacterial infection problems, silver is a well-known antibacterial agent. Moreover,
combination therapies showed increased antibacterial properties. In addition, RGO induces
photothermal effect for bacterial treatment. For instance, RGO/Ag composite was prepared
as an antibacterial agent [67]. Moreover, the RGO-Cu2O nanocomposite was synthesized to
fight against bacteria [68]. The GO/nitrogen-doped carbon dots/hydroxyapatite/titanium
film (GO/NCD/Hap/Ti) showed a PTT/PDT approach to bacterial infection [69].

2.3. Functionalization

The synthesis of stable and functional GNCs is the most crucial aspect of the biomed-
ical field. Though GO and RGO are reported as good PTT agents, its NIR absorption
capability has to be improved further for more efficient phototherapy results. Moreover,
RGO is hydrophobic, which limits its application during cancer treatment [37]. Hence, to
fulfil these drawbacks, surface functionalization is the best option in the medical field to
treat cancerous cells. Generally, the surface functionalization was carried out by covalent
and non-covalent interactions. Non-covalent bonding includes electrostatic interactions,
hydrogen bonding, π-π stacking, and van der Waals interactions. For example, a MFG
(magnetic and fluorescent graphene)-SiNc4 (silicon napthalocyanine bis(trihexylsilyloxide)
via covalent and non-covalent π-π stacking was prepared. MFG showed flat NIR absorption
and was reported to have a remarkable PTT/PDT in HeLa cancer cells [70]. GO quantum
dots (GOQDs) using hypocretin A (HA) for loading via π-π interaction were applied to de-
tect cancer cells [71]. In addition, nucleophilic substitution, condensation, and electrophilic
addition offer alternative paths for the covalent functionalization of GO.

Alternative approaches, such as GO with polyamidoamine dendrimer (GO-PAMAM)
loaded with DOX and MMP-9 shRNA plasmid (Figure 3A), were applied for the treatment
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of breast cancer cells [72]. Moreover, the NGO-COOH prepared using Hummers’ method
was functionalized with a Gd-DTPA dendrimer and finally loaded with the anticancer drugs
epirubicin (EPI) and Let-7g miRNA (Figure 3B) to treat cancer cells [73]. Moreover, the GO-
PLL(poly-L-lysine)/DOX/ZnPc acts as an admirable anticancer carrier to transport DOX
and ZnPc to detect cancer cells. The synthesized nanocomplex shows not only anticancer
activity but also photodynamic and chemotherapeutic effects against cancer cells [74].
Moreover, the GO firstly composited with carboxymethyl chitosan (CMC) followed by
conjugation with hyaluronic acid (HA) and fluorescein isothiocyanate (FI) to prepare GO-
CMC-FI-HA/DOX. The results proved that the nanocomplex can be used as an anticancer
drug with controlled release [75].
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Figure 3. (A) Synthetic route of PAMAM 3.0G and GO-PAMAM [72]. (B) Schematic of the procedure
for preparation of Gd-NGO/Let-7g/EPI [73]. Reprinted/adapted with permission from Refs. [72,73].
Copy right 2017, copyright Elsevier. Copy right 2014, copyright Elsevier.

The increase in bacterial infections is a serious problem for human health. Hence,
the synthesis of multifunctional materials would be beneficial for surgical operations.
Concerning this situation, GO functionalized (noncovalent) PEGylated phthalocyanines
were synthesized for antibacterial phototherapy (ZnPc-TEGMME@GO) (Figure 4A) [76].
Moreover, RGO was functionalized with polycationic poly-L-lysine (PLL) to increase its
drug loading capability with colloidal stability, as shown in Figure 4B. Further, RGO-
PLL was labelled with anti-HER2 to form a bond with HER2 receptors to detect breast
cancer cells [77]. The GO/AuNRs was synthesized and functionalized with polystyrene
sulfonate (PSS) which showed tumor-killing capacity [78]. Furthermore, functionalization
of RGO with hyaluronic acid increases the stability and cytocompatibility, as well as induce
cancer cell ablation [79]. Moreover, the ZnO QDs-GO nanocomposite was prepared as an
antibacterial agent. The author has combined chitosan with ZnOQDs@GO to enhance drug
delivery capacity, biodegradability, and biocompatibility [80].
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Figure 4. (A) Schematic Illustration of the Preparation of ZnPc-TEGMME@GO [76]. (B) Synthesis
of anti-HER2-rGO-PLL is performed in two steps: (I) GO is functionalized with PLL under alkaline
conditions followed by NaBH4 reduction to form rGO-PLL and (II) rGO-PLL is subsequently conju-
gated with anti-HER2 antibodies via glutaldehyde bifunctional linkers [77]. Reprinted/adapted with
permission from Refs. [76,77]. Copy right 2017, copyright ACS. Copy right 2016, copyright Elsevier.

3. Graphene Nanocomposite Theranostics for Multimodal Imaging
Guided Phototherapy

Nanomaterials-based theranostics are the future of personalized medicine as a single
nanoplatform can provide multiple imaging and therapies in a short time by simplifying the
cost and the amount of the drug required for multiple diseases [81]. Multimodal imaging-
based diagnosis is the most reliable technique to identify the problems in cancer- and bacteria-
infected patients, and it will be helpful to surgeons and clinicians to make better predictions
and conclusions about the problem, thus will improve treatment confidence. Several imaging
techniques have been adopted in the research, such as CLSM, MRI, CT, PET, PAI, Raman,
ToF-SIMS, and other imaging techniques for early diagnosis (Scheme 3) [82–85].

Phototherapy (PT) involves light interaction (Vis-NIR) with nanomaterials to gen-
erate heat or reactive oxygen to destruct cancer and bacterial infection. If the therapy
process involves generation of heat from nanomaterials which can suppress or burn the
tumor/bacteria is called PTT. If the PT involves reactive oxygen species (ROS) and singlet
oxygen (1O2) generation to destruct the cellular components, it is called PDT. If the nanoma-
terial inherently cannot generate ROS and 1O2, it has to functionalize with PS [70]. The NIR
light has high tissue penetration and low absorption by the biological medium. Hence, we
usually adopt the NIR lasers for PT. Apart from PT, combination therapies with chemo and
gene therapies could also enhance the treatment results [86]. Various PT agents have been
explored by researchers including inorganic, organic, and composite nanomaterials [24].
The extensive publication record of functionalized nanographene composites on imaging
guide therapy shows they are a focus in this field of theranostics due to their effectiveness
in disease eradication. To overcome the individual drawbacks of diagnosis and therapy,
integration of independent techniques has become a major challenge in nanomedicine.
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3.1. CLSM for Imaging Guided Therapy

Typically, scientists rely on CLSM to identify cell morphology and drug internaliza-
tions as they are economic and the most available handy preliminary techniques in the lab.
When the nanodrug is added to the cells before going to the CLSM, optical microscopes-
based imaging is highly important to check the cell structure and morphology. After that,
CLSM is helpful to identify the fluorescent drug molecule’s internalization, its location
in the cells, and whether it was entered into the cytoplasm and thereby nucleolus or was
hindered at the cell wall.

Quantum dots (QDs)-based imaging has drawn the attention of nanomedicine scien-
tists due to its tunable size and variable colors with stable fluorescence emissions [87]. On
the other hand, its toxicity issues lead to a focus on alternate materials. In this perspective,
Au nanomaterials are said to be a hallmark for imaging guided therapy due to their tunable
size and stable emissions with good biocompatibility [88,89]. However, carbon-based
nanomaterials, such as graphene and CQDs, are emerging and attractive nanomaterials
due to their high surface area and versatile surface chemistry to functionalize inorganic
and organic imaging and drug molecules for multimodal imaging-guided therapy for
cancer and bacterial infection. They are also reported to be highly biocompatible and
antibacterial [90]. In order to be an imaging probe, graphene must be functionalized with
luminescent inorganic or organic materials. In pioneering works by Dai et al. on the
preparation of nanoGO-based imaging probes for imaging and therapy of cancer, GO was
functionalized with PEG- and B-cell-specific Rituxan antibody for targeted cell imaging and
cancer therapy [91,92]. Later, GO was functionalized with PEG and fluorescein to make
the GO as highly biocompatible and fluorescent to monitor its internalization into the cells.
Few more GO-based fluorescence imaging probes have been successfully reported [93,94].

We prepared a multifunctional graphene (MFG) by functionalization with polyacrylic
acid, FeNPs, and fluorescein ortho-methacrylate to impart both magnetic and fluorescence
properties for CLSM imaging in HeLa cells and in zebrafish whole-body imaging (Figure 5).
The MFG showed good biodispersability, biocompatability, and stable green fluorescence
emission inside the biological system. These results confirmed that the MFG could be a
good candidate for imaging guided PTT of cancer and bacterial infection as it also possessed
flat absorption in the entire VU-Vis-NIR region [95,96]. In order to make it a PDT drug, we
functionalized a PS (SiNc4) to offer MFG-SiNC4 and the synergistic effects of PTT/PDT and
PTT, as shown in Figure 5C,D, with 98% efficacy in light [70]. Very recently, mesoporous
silica (MS) coated RGO was synthesized and functionalized with indocyanine green (ICG),
PEG (MS-RGO-ICG-PEG), and folic acid (MS-RGO-ICG-PEG-FA) for targeted imaging
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and phototherapy of cancer. Figure 5G shows the increase in the temperature with laser
irradiation at the tumor site of mice injected with MS-RGO-ICG-PEG-FA. Hence, it could
be a good candidate for phototherapy, which was evident after the experiments. Figure 5H
marks that there is a decrease in the tumor volume of the mice treated with MS-RGO-
ICG-PEG-FA compared to MS-RGO-FA alone, without PS ICG. The effectiveness of tumor
suppression can be explained by the synergistic effects of PTT from rGO and PDT from
ICG. The experiments are performed using an 808 nm laser with 1 W/cm2 for 10 min [97].
Irrespective of this progress, fluorescence-based techniques are still limited to the laboratory
stage presumably due to the limitations of poor resolution, and because the drug molecules
should be fluorescent.
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Figure 5. CLSM images of functionalized graphene composites. (A) In vitro images of MFG-SiNC4

in HeLa cells where the images reveal very good biodistribution throughout the cell ((a) control
stained with DAPI, (b) green, and (c) red emissions from the MFG-SiNC4 and, (d,e) are the combined
images of ab andac. (f) The combined images of abc with DIC). (B) In vivo whole-body zebrafish
images with MFG, where the green fluorescence is observed throughout the body due to its very good
bio-distribution [70,95]. (C,D) The combined PTT/PDT and PTT of MFG-SiNc4 and MFG [70,95].
(E,F) Time dependent in vivo mice non-targeting and targeting images of MS-RGO-ICG-PEG and



Molecules 2022, 27, 5588 11 of 33

MS-RGO-ICG-PEG-FA. The image taken at 24 h reveals that the FA functionalized GO, (E) has shown
bright luminescence and very good tumor specificity whereas it is not observed in non FA targeted
GO (F). (G) Time vs. temperature at tumor bearing mice. (H) Tumor volume after irradiation with
laser up to 10 days [97]. Reprinted/adapted with permission from Refs. [70,95]. Copy right 2012
and 2014, copyright Elsevier. Reprinted/adapted with permission from Ref. [97]. Copy right 2022,
copyright MDPI.

3.2. MRI for Imaging Guided Therapy

Among all imaging techniques, MRI and CT scans are clinically versatile and best
used so far for imaging-based diagnosis purpose. These techniques do not rely on any
fictionalization of fluorophores and QDs. MRI works based on the radio waves and
magnetic field to identify damaged (cancer) tissue from the healthy tissues based on
activating the local proton environment. It has the great advantage of ease of use for X-ray
imaging techniques. However, it has the limitations of poor sensitivity and lengthy signal
recording times. The proton magnetic moment of tissue is environment-dependent and
the T1 and T2 times may not produce a better image, hence some external contrast agents
are frequently used. The well-known Gd3+ for bright contrast and superparamagnetic iron
oxide NPs for dark contrast are used [98].

Graphene-related nanomaterial magnetic composites have a great advantage in help-
ing these imaging guided therapy processes to improve the signals or contrasts to provide
enhanced resolution in the final images during disease identification [99]. GO has been
a scaffold for many imaging probes and drug loadings, and there are several works that
have discussed magnetic nanoparticles-loaded GO, creating a better contrast agent due to
its high loading capacity [100]. Recently, the oxidation of ball-milled graphite producing
a nanoGO was reported. The extent of oxidation along with the presence of Mn2+ ions
from KMnO4 are responsible for better proton relaxivity and displayed very good T1-
and T2-weighted MRI contrast images [101]. Moreover, the RGO and created structural
defects and oxygen functionalities are reported too. The destruction of symmetry in RGOs
sublattices created a paramagnetic property, and it was demonstrated to be a good MRI
contrast agent. The authors have suggested that the amount of the defects and the oxy-
gen functionality determines the paramagnetism [102]. A nonmagnetic particles-based
GO by the fuctionalization of GO with fluorine for MRI with NIR absorption capability
for photo therapy of cancer was reported [103]. Apart from this, metal-free, magnetic
graphene QDs doped with boron provided very good MR imaging results in both in vitro
and in vivo [104]. Moreover, a GO-DTP-Gd magnetic complex for T1 MRI was prepared
and demonstrated to be a better contrast agent than commercially used Magnevist. The
complex has further functionalized with doxorubicin through physorption and shows very
good toxicity towards cancer [105]. In addition, graphene encapsulated cupper probes were
prepared and used as neural electrodes to image neural-cell activities in the brain [106].
Further, 99mTcI and Gd-based pegylated ultrasmall nano GO (99mTc− and Gd-usNGO-PEG)
were prepared for the multimodal MRI and SPECT/CT imaging of lymph nodes. The
preparation approach is claimed to be chelator free, and the final product has been utilized
for multimodal purposes [107].

In brief, many authors have reported that GO- and RGO-based iron oxide nanocom-
posites are excellent for MR imaging and guided therapy of cancer [100]. As discussed
earlier, we also prepared an MFG-SiNC4 with excellent superperamagnetic properties,
fluorescence, biocompatibility, and water dispersability for in vitro MRI to serve as a good
contrast agent, as shown in Figure 6A,B. Later, we demonstrated this material for guided PT
of cancer (Figure 5C,D) [70,95]. Further, polyethylene glycol and super paramagnetic iron
oxide nanoparticles functionalized rGO (rGO-IONPs-PEG) was prepared for multimodal
imaging, such as the MRI-, CLSM-, and PAI-guided PTT of breast cancer in both in vitro and
in vivo. The prepared GNC had excellent magnetic properties for MRI imaging, with good
fluorescence and PAI imaging capabilities and good drug loading capability. Figure 6C,D
show the PT efficiency of RGO-IONPs-PEG-Laser and greater tumor reduction was ob-
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served after the laser ablation compared to controls. Figure 6E shows the guided MRI
images of mice before and after injection, and during therapy, with and without lasers. The
day 7 laser-treated MRI reveals the complete tumor absence compared to untreated mice at
the same duration of time. The study [108] is among the papers which have demonstrated
imaging-guided therapy with reliable MR imaging in a systematic manner for theranostics,
as shown in Figure 6.
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Figure 6. MR images of GNCs in vitro and in vivo imaging guided phototherapy. (A) In vitro MRI of
MFG and in HeLa cells. The contrast of the images increases with the concentration of MFG and MFG-
SiNc4 than clinically accepted resovist. (B) The corresponding 1/T2 intensities with concentration [70].
(C) Relative tumor volume with respective to the graphene photodrug and duration of therapy up
to 14 days. (D) The pictorial representation of mice bearing tumor before and after PT, where the
tumor has vanished within a few days of therapy than compared to the control experiments with
out RGO-IONPs-PEG and laser. (E). Upper row is the MR images of tumor (indicates with white
arrow) before and after PT and its suppression monitoring with time (0–7 days). The lower row
is for without laser irradiation after injection of RGO-IONPs-PEG [108]. Reprinted/adapted with
permission from Ref. [70]. Copy right 2014, copyright Elsevier. Reprinted/adapted with permission
from Ref. [108]. Copy right 2012, copyright Wiley-VCH.
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Apart from these, many researchers have synthesized GO/RGO based magnetic
nanocomposite for MR imaging [109–111]. In addition to GO and rGO based IONPs, Gd
doped graphene QDs also has been prepared and demonstrated for MR imaging [112,113],
which could also offer good loading of imaging and drugs molecules and less toxicity to
serve as a theranostic material. According to the literature the contrast agents improve
the image quality and here the IONPs produce better contrast than Gd or other magnetic
nanomateial composites.

3.3. CT for Imaging Guided Therapy

CT scan is an alternative 3D imaging technique whch works based on the X-ray
attenuation of molecular tissues to identify tumors at lower cost than an MRI. It can also
provide good spatial–temporal resolution of cancer tissues, and the image recording time
is shorter than MRI. Usually, barium sulphate and iodine-based contrast agents are used
when CT lacks the necessary sensitivity to image some soft, low-density tissues. The
literature on various nanomaterials for CT scan is available. Carbon-based nanomaterials
have a unique role due to their biocompatibility and high contrast agent’s immobilization
capability. Among the few nanomaterials reported for CT scanning, Bi nanomaterial is
exclusively studied, though CuS and some of its composites are also explored for CT and
MR imaging together [98].

However, the available literature is limited regarding GNCs for CT scanning along
with MR imaging. GNCs are synthesized from the oxidation of graphite with KMnO4
and reduced with HCl before being further functionalized with iodine, and have shown
good CT and MR imaging contrast [114]. It has been reported that Bi NPs functionalized
graphene QDs was prepared with good dispersibility and low toxicity for improved CT
imaging followed by PT of cancer [115]. GO functionalized with FePt NPs composite was
made and successfully demonstrated for both MR and CT imaging followed by in situ
pH responsive targeted cancer inactivation [116]. A nanocomposite of BaHoF5 decorated
GO-PEG was prepared with good biocompatibility, and was well demonstrated as a CT and
MR imaging agent followed by PTT therapy [117]. GO decorated with ultra-small ZnFe2O4
and upconversion luminescence nanoparticles (UCNPs) have been well demonstrated for
CT scanning along with MRI, PAI, and fluorescence imaging guided phototherapy as a
unique multi diagnosis platform [118].

Recently, GO decorated with AuNPs, SPIONPs, along with DOX-loaded 1-tetradecanol
(TD) was prepared (called smart nanocomposite, NC) and successfully demonstrated for
CT- and MRI-guided controlled chemo-phototherapy of cancer in vitro and in vivo. The
advantage of this material is that the Au NPs on GO can act as a CT contrast agent and
provide better emission of X-rays due to its high atomic number (Figure 7A) with good
house-filed values (Figure 7B). The FeNPs can act as dual CT and MRI contrast agents
(Figure 7C,D). Hence, the combination of these two materials on top of GO has provided a
great advantage of dual modal imaging and revealed increased contrast in concentration,
after 24 h, at the post-intratumoral site (i.t) compared to the post intraperitonial site in the
images of Figure 7C,D. Figure 7E shows a reduction in tumor volume within a few days
after PT with DOX-NCs+NIR. Figure 7F shows the corresponding morphology of tumor
and total mice view from pre injection to 90 days of PT [119].
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Figure 7. In vivo CT and MR imaging of NCs containing AuNPs and SPIOs. (A) CT images of
CNs with increasing concentration of AuNPs from 0–3 mg/mL. (B) The corresponding graph of
Hounsfield values with AuNPs concentration. In vivo (C) CT scan and (D) MR images of CT26 tumor
bearing mice, pre and post injections at post i.p and post i.t. The upper, middle, and lower images
are for original, intensity mapping, and merged images of all. (E) Corresponding results after PT
where the graph shows reduction in tumor volume within few days of time with DOX-NCs+NIR. (F)
The morphology of tumor and total mice view from pre injection to 90 days of therapy. The stars
(*) represents the statistical significance of the data (* for 0.05, ** for 0.01). Reprinted/adapted with
permission from Ref. [119]. Copy right 2022, copyright Ivyspring.

Apart from these three (CLSM, MRI, and CT) well used techniques PET, PAI, and
ToF-SIMS, and combined MRI/CT, CT/PEI, MRI/CT/PL/PAI, and MRI/CT/EPR, could
also be important tools to the earlier diagnosis. These are currently of great interest to
nanomedicine researchers.

3.4. PET for Imaging Guided Therapy

Radio labelling techniques such as PET and CT have great sensitivity due to the
low background, requirement of low signal amplification, and good penetration depth
in vivo. As said earlier, nanographene-based scaffolds have a greater importance in radio
imaging technology with the functionalization of radioactive elements such as 198,199Au,
64Cu, 66Ga, 111In, and 121I. In this regard of PET imaging, for the first time GO-based
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targeting and non-targeting imaging agents such as 64Cu-NOTA functionalized GO-PEG
(64Cu-NOTA-GO) and 64Cu-NOTA-GO conjugated with TRC105 (64Cu-NOTA-GO-TRC105)
for targeting a CD105 (endogline) has been synthesized. 64Cu was linked with GO-PEG via
1,4,7-triazacyclo nonane-1,4,7 triacetic acid (NOTA, a chelating agent of 64Cu). As shown
in Figure 8A–D, the 64Cu-NOTA-GO-TRC105 has very good biodistribution and targeting
ability towards 4T1 tumor-bearing mice compared to non-targeting 64Cu-NOTA-GO, pre
injected TRC105 blocking dosed mice, and CD105-negative MCF7 human breast cancer
cells. The combined CT and PET images also can be seen in the images [120].
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indicate the tumor. (B) 64Cu-NOTA-GO alone TRC105, and (C) Preinjected blocking dose of
TRC105. The tumor specificity is very apparent in case of GO functionalized with TRC105 than not
functionalized GO. (D) The CT, PET, and combined CT/PET images of 64Cu-NOTA-GO-TRC105.
Reprinted/adapted with permission from Ref. [120]. Copy right 2012, copyright ACS.

After that 66Ga was functionalized to GO and obtained the same result with similar
strategy of PET imaging of 4T1 cells in vitro, in vivo and ex vivo with good distribution
in the body without toxicity [121]. Later, the same researchers labelled the 64Cu to the
rGO with the same synthetic adaption to prepare 64Cu-NOTA-rGO-TRC105 for targeting
4T1 murine breast cancer cells and obtained successful results than with non-targeting
rGO nanodrug [122]. Very recently, radioactive iodine (124I)-labelled GO nanocomposite
has been reported for PET imaging and boron delivery inside mice. The images reveal
that time-dependent biodistribution in the liver, spleen, stomach, and heart for long-time
circulation inside the body, up to 48 h. The in vitro studies of C. elegans confirmed that the
124I-GO does not show any significant toxicity. Hence 124I-GO could be a better candidate
for boron neutron capture therapy of cancer [123].

3.5. PAI for Imaging Guided Therapy

PAI is another non-invasive imaging model to monitor the tumor environment with
greater resolution and high tissue penetration depth. The PA signal production involves
the following process. The light energy absorbed by the material converts into heat and
increases the temperature, followed by thermoelastic expansion which causes the gen-
eration of acoustic waves (AWs). The AW generates an image contrast respective to the
concentration of the absorbing material. In this regard, light absorbing nanomaterials have
an advantage of converting photo energy into thermal energy and generation of AWs for
better PAI imaging [124,125]. Among carbon nanomaterials, graphene-based 2D nanoma-
terials and their composites draw great interest in the study of PAI imaging due to their
unique light absorption from UV, VIS, to NIR-I and NIR-II regions. Based on the belief of
the light absorption of graphene, RGO are highly advantageous than GO as the later has a
poor absorption of light in the visible and NIR regions [126]. Graphene-based nanoplatelets
and nanoribbions (GNRs) are tested for PAI and thermal acoustic imaging (TAI) imaging.
The oxidized GNRs were found to reveal dual modal PAI and TAI imaging [127]. Similar
results of NIR absorption of microwaves reducing RGO-based PAI has been reported, and
it is believed that the imaging intensities are wavelength-independent [128]. In the same
year, dye-enhanced NIR absorption of GO was reported to overcome the limitations of
GO absorption in NIR region to produce PA images for phototherapy of cancer. It was
observed that the GO-ICG-FA (indocynine green an NIR absorbing dye and folic acid, a
tumor targeting agent) showed better contrast, and no contrast was observed with GO-ICG
or GO-FA alone [129]. Graphene microbubbles as an enhanced NIR PAI contrast agent
was also reported with good biocompatibility and spatial resolution [130]. Another work
describes that GO functionalized with chitosan–FA (GO-CS-FA) has good success as a PA
and fluorescence tumor vascular imaging guided therapy for cancer in vivo [131].

A dual modal PAI and photothermal imaging probe rGADA nanocomposite was
fabricated by the rGO functionalized with AuNS (gold nanostars), bilayered lipids, FA
(rGADA), and K-Ras gene plasmid (KrasI) rGADA-KrasI, for targeted imaging guided
photothermal and gene therapy of pancreatic cancer. The Figure 9A shows that there is a
good PAI contrast with increasing concentrations of rGADA. The Figure 9B reveals in vivo
tumor PAI imaging at different times from 0–48 h showing that a distinct rGADA at tumor
has been apparent with time. Figure 9C,D are photothermal curves for the temperature rise
of the nanocomposite and photothermal images at 808 nm. From the information obtained
from the above experiments it is evident that the rGADA has successfully internalized
and distributed at the tumor site for PTT and gene transfection of cancer in vivo. In vivo
PTT experiments showed 76.1% tumor suppression under laser with rGADA+L, whereas
the gene therapy results in 55.2% with rGADA-KrasI. The combined PTT and gene ther-



Molecules 2022, 27, 5588 17 of 33

apies ofrGADA-KrasI + L with laser resulted in very good tumor suppression of 98.5%
compared individual therapy and therapy without a laser. The measured comparative
weights are shown in Figure 9E of the tumors for controls and rGADA-KrasI after laser
irradiation. They demonstrate that a negligible and completely vanished tumor was evi-
denced [132]. Similarly, rGO–AuNPs also reported to PAI for NIR–II phototherapy [133].
Hence, graphene-based targeted multiple imaging guided combination therapies could be
a very good idea in the implementation of non-invasive theranostic probes.
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Figure 9. PAI and PT images of rGADA with different concentration and, at different time after
intravenous injection to mice containing Capan-1 tumor and, PT and gene therapies with RGADA-
KrasI. (A,B) are for PAI images of samples and in mice. The white circles represent the tumor region.
(C,D) are temperature curves of tumor with different irradiation times (0–48 h) and thermographic
images from in vivo tumor site at the irradiation time of 10 min with 808 nm laser with 1.2 W/cm2

power densities. (E) Tumor bearing mice and its weights before and after laser treatment with PBS-L,
rGADA + L, and rGADA-KrasI + L. The stars (*) represents the statistical significance of the data (*
for 0.05, ** for 0.01). Reprinted/adapted with permission from Ref. [132]. Copy right 2020, copyright
Wiley-VCH.

3.6. Raman for Imaging Guided Therapy

Raman is a spectroscopic technique named by its inventor Sir. C. V. Raman in 1928
who proposed the Raman Effect. The phenomenon is based on the inelastic and elastic
scattering of light from the vibrations of objects such as nanomaterials, drugs, and other
biological molecules. When this technique is coupled with microscopy it is called Raman
microscopy, and can be used to visualize in vitro and in vivo biological components, inter-
nalized nanomaterials, and drugs with high specificity and sensitivity at workable spatial
resolutions. However, high sample concentration is required for better resolution and fast
image acquisition due to the weak scattering signals. To overcome this hurdle, Resonance
Raman (RR), Surface-Enhanced Raman Spectroscopy (SERS), and Coherent Raman spec-
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troscopy (CRS) were developed. Scientists have mostly adopted SERS in nanomedicine
due to its signal enhancement in the presence of rough surface nanomaterials such as Au,
Ag, and Cu in the sample system [134].

A GO@Au and fluorescent tag functionalized dual modal luminescent and Raman
imaging has been reported [135]. Moreover, the GO-Ag nanocomposite for a SERS-based
imaging cellular probe and FA for targeting the tumor to impart was prepared. The GO-Ag-
FA treated cells have shown excellent uptake and cellular internalization and evidenced by
SERS images taken after 2 h of incubation time [136]. In addition, a AuNR@GO nanocom-
posite functionalized with DOX to obtain DOX@GO@AuNRs for chemo and PT of HeLa
cancer cells was reported. The GO and AuNRs showed strong SERS signals, but the DOX
signals decreased within the cells due to the phagocytosis and the acidic environment
inside the cells. The prepared nanomaterial showed good SERS signals and temperature
changes upon laser irradiation. Hence it demonstrated good chemo-PTT results under
light and was titled as a two-step Raman guided therapy [137]. After GO, an RGO-based,
SERS-guided, low laser-powered, targeted PT was reported by preparing anti-EGFR-PEG-
rGO@CPSS-Au-R6G. The RGO was functionalized with PEG, CPSS (carbon porous silica
nanosheets), Au nanosheets, R6G, (Rhodamine 6G a Raman reporter), and anti-EGFR (epi-
dermal growth factor receptor for targeting tumor) for sensitive low-powered laser-efficient
NIR PT therapy against A549 and MRC-5 cells [138].

Recently, a SERS-guided multi modal chemo, gene, and PT of cancer with Au@GO-
NP-NACs was reported, where the NP stands for nanoparticles and NACs for nucleic
acid components ex. BCL2 mRNA. Figure 10A shows the schematic image of the guided
SERS imaging and therapy in vivo. There is a tumor microenvironment which depicts
the heterogeneity of the tumor, and the laser illumination of the tumor and normal tissue
projects the effectiveness of the tumor eradication with Au@GO-NP-NACs. Figure 10B is for
schematic representation of SERS signals at non-tumor and tumor site and the SERS intensity
mapping, where the intensity of Cy5 is high at non-tumor tissues and less at the tumor.
Figure 10C shows the corresponding Raman spectrum intensities at 1120 cm of Raman dye
in different tissues. From the observation of the mapping and the spectral intensity, the SERS
was varied, and we observed very weak signal at tumor in vivo due to the over expression of
BCL2 in mice after the injection of the graphene drug. This kind of analysis is indispensable
to evaluate drug distribution and its circulation in healthy and unhealthy tissues for specific
and effective eradication of cancer. After the therapy process, the tumor from tissue has
removed and observed its volume compared with untreated tumors. It was found that there
is a great reduction in its volume in (Au@GO-NP-NACs) NP-NIR-treated mice, as shown
in Figure 10D. The comparative tumor volume and time of therapy with control, NIR, and
non-NIR treated NPs (Au@GO-NP-NACs) was plotted and it was apparent that the therapy
was highly effective with NIR laser and NPs after 3 weeks (Figure 10E). The same material
was functionalized with DOX and other types of genetic materials to evaluate the combined
chemo-gene–PT of cancer to provide a better outlook of the therapy results in a single and
minimal dosage of a drug, within a short time, with non-invasive NIR lasers. Such efforts
for evaluating the potential of single material theranostic ability are highly warranted in
nanomedicine to clear the hurdles of clinical trials [139].
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Figure 10. In vivo Raman (SERS) imaging and multimodal therapy of cancer. (A) Au@GO NP-NACs
injected mice, tumor heterogeneity and PT. (B) Schematic diagram for non-tumor and tumor tissue
and corresponding SERS mappings. (C) Raman shifts and SERS intensities at tumor sites and non-
tumor tissues. (D) Extracted tumor from mice after 3 days of PT, the images are for control, without
NP and NIR laser, with NP and without NIR laser, with NP and with NIR laser treated tumor and
its volume. The NP-NIR treated tumor has shown a complete shrinkage of tumor. (E) The tumor
volume ratio with synergistic cancer therapies of control, no NP-NIR, NP-No NIR, and NP-NIR. After
3 weeks of the therapy, the NP-NIR gave a remarkable therapy result of close to zero tumor volume
ratio. Reprinted/adapted with permission from Ref. [139]. Copy right 2020, copyright Wiley-VCH.

3.7. ToF-SIMS for Cellular Imaging and Guided Cancer Therapy

ToF-SIMS imaging is one of the most surface-sensitive techniques to analyze chemical
compositions of materials and biological systems containing chemical components. It
has great capability to map low molecular weight components (<500 KD) and submicron
resolution. ToF-SIMS involves sputtering the primary ion beam (Bi3+, Arn

+, and C60
+) with

the sample surface, and the secondary ions generated from the sample will be collected
according to their flight times and its mass/charge. The chemical compositions can be
predicted based on their respective masses in comparison with the reference library. This
technique is unique in imaging single cells, human tissues, and skin and cancer cells, and
could be an important label-free tool to diagnosis the cancer cells from healthy normal
cells. It is helpful in studying the toxicity of nanomaterials, drug internalization into
the cells, apoptosis, and to predict other cellular killing mechanisms by collecting and
imaging the cellular components’ mass/time values [140,141]. The information obtained
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also has great importance in predicting the drug and cellular interactions, hence also in
drug development and pharmacology studies [142]. However, it has a limitation of low
sensitivity in analyzing the very low molecular weight components in wet samples, as the
large molecules’ excessive fragmentation obtained with a high energy ion beam is not very
accurate. As a result, any material which could enhance the signal sensitivity has priority,
as every single fragment is indispensable in predicting the disease information. GO and
graphene have been used as a matrix material for enhancing surface sensitivity and signal
intensity in analyzing small lipid molecules [143].

The potential toxicity by ZnO NPs in sun cream is of increasing concern. We have
developed ToF-SIMS and CLSM imaging methods using human skin equivalent HaCaT
cells as a model system for rapid and sensitive ZnO NPs cytotoxicity study (Figure 11A).
The CLSM images (Figure 11B) revealed the absorption and localization of ZnO NPs
in the cytoplasm and nuclei. The TOF-SIMS images demonstrated elevated levels of
intracellular ZnO concentration and associated Zn concentration-dependent 40Ca/39K
ratio, presumably caused by the dissolution behavior of ZnO NPs (Figure 11C). The imaging
results demonstrated spatially-resolved cytotoxicity relationship between intracellular ZnO
NPs, 40Ca/39K ratio, phosphocholine fragments, and glutathione fragments [144].
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(h,i) enlarged images of individual cells treated with 50 and 100 µg/mL ZnO NPs. Green fluorescence
and red color, respectively, represent the ZnO (68ZnO) NPs and nuclei of HaCaT cells (highlighted by
arrow mark in (f): 68ZnO NPs). (C) The TOF-SIMS ion images of 39K+, 40Ca+, and 64Zn+ of HaCaT
cells treated with 0, 10, 50, and 100 µg/mL ZnO NPs. Scale bar is 20 µm [144]. Reprinted/adapted
with permission from Ref. [144]. Copy right 2014, copyright Elsevier.

In a recent study, the ToF-SIMS signal enhancement of the single layer graphene cov-
ered wet cells with Bi3+ as a primary ion source was reported. The secondary ion imaging
of cholesterol at m/z 369.25, phosphoethanolamine at m/z 142.05, palmitic acid at m/z 255.25,
and oleic acid at m/z 281.26 are mapped [145]. An earlier study on the signal enhancement
of ToF-SIMS by amine functionalized graphene quantum dots (GQDs) also show a better
signal enhancement compared to hydroxyl GQDs in a comparative study [146]. From
the above discussion it was evident that, GO, GQDs, and graphene have a remarkable
effect on the quality of ToF-SIMS spectra and imaging and can overcome the hurdles of
wet cell imaging’s complex matrix effects. Non-invasive multimodal imaging by a single
nanoprobe could offer a greater advantage of gathering the diagnosis information from
each technique by providing its advantage where an individual imaging technique cannot.
It will improve diagnosis accuracy and efficiency. Moreover, the multiple nanoprobe-based
nanotheranostic material offers minimal toxicity and provides body–blood clearance eas-
ily by avoiding multiple drug dosages. In brief, each technique has its advantages and
disadvantages. However, highly sensitive, non-invasive techniques could take a greater
importance than other techniques in nanomedicine in the future.

3.8. Guided Phototherapy of Bacteria

Bacterial infections have led to millions of patients dying every year all over the
world. Generally, antibiotic treatment has been used for bacterial infections. However,
inappropriate and overuse of antibiotics has led to an increase in the drug-fighting capacity
of bacteria [146]. Notably, antibiotic resistance is related to structure transformation, gene
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mutation, and bacterial biofilm formation. Additionally, biofilm is a multicellular bacterial
group surrounded by its own synthesized extracellular polymeric material composed of
proteins, polysaccharides, lipids, and extracellular DNA [147]. The extracellular polymeric
material provides an appropriate microenvironment for bacterial growth, and protection
against antibiotics, and hence, bacterial infection control becomes an obstinate challenge.
Thus, there is an urgent need to find new strategies to combat bacterial infections [148]. PTT
gained increasing demand in the medical field over conventional antibiotic therapy because
it destructs bacteria and their biofilm. Specifically, PTT combined with NIR light has various
benefits, including deep tissue penetration, spatiotemporal controllability, and little light
absorption in tissue. Nevertheless, the disadvantage of PTT is that a nonselective thermal
effect may arise due to the weak affinity between pathogenic bacteria and a photothermal
agent that may damage healthy cells during irradiation [149].

Increasing bacterial infections are a serious problem for human health. Hence, the
synthesis of multifunctional antibacterial materials is needed for surgical operations. Con-
cerning this situation, we prepared non-targeted and targeted magnetic graphene and
carbon nanotubes against S. aureus and E. coli for PTT. Excellent bacterial capturing effi-
ciency (Figure 12A,B) was observed with MRGOGA (magnetic RGO functionalized with
glutaraldehyde). This was also evident from the SEM images shown in Figure 12C. The
batch-mode- and continuous-mode PTT showed 99% killing efficiency under NIR laser
irradiation at 808 nm, shown in Figure 12B. The plate count method, shown in Figure 12D,
demonstrated that both the strains had completely vanished after laser treatment with
MRGOGA [150,151].
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The capturing capability of S. aureus (a) and E. coli (b). (B) The batch mode and dynamic mode (lab 
on chip) PTT with laser irradiated at 808 nm. (C) SEM of E. coli (a) and S. aureus (b) after capturing 
by MRGOGA. (D) Bacterial plates for both S. aureus (a) and E. coli (b), blank, laser only, MRGOGA 
dark, and MRGOGA with NIR laser). Reprinted/adapted with permission from Ref. [150]. Copy 
right 2013, copyright ACS 2013. 
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Figure 12. Efficient capture and targeted PTT of bacteria by MRGO, MRGOGA, and MCNGA. (A)
The capturing capability of S. aureus (a) and E. coli (b). (B) The batch mode and dynamic mode (lab
on chip) PTT with laser irradiated at 808 nm. (C) SEM of E. coli (a) and S. aureus (b) after capturing by
MRGOGA. (D) Bacterial plates for both S. aureus (a) and E. coli (b), blank, laser only, MRGOGA dark,
and MRGOGA with NIR laser. Reprinted/adapted with permission from Ref. [150]. Copy right 2013,
copyright ACS 2013.

We have started working on phototherapy of bacterial infection with progressive achieve-
ments firstly using ZnO NPs [152] followed by using modified carbon nanotubes [153] and
lastly extends to biomimetic applications using graphene nanomaterials [154–157]. The
trend of using graphene nanomaterials is just at the beginning. For instance, the preparation
of GO-functionalized (noncovalent) PEGylated phthalocyanines was used for antibacterial
phototherapy (ZnPc-TEGMME@GO). The antibacterial activity against E. coli and S. aureus
bacteria at different illumination was shown in Figure 13A,B. As reported, the synthesized
nanocomposite showed PTT/PDT capacity with antibacterial activity. The authors further
recorded SEM images before and after the treatment of nanocomposites against bacteria.
The formation of holes on the bacterial surface confirmed the damage to the cell membrane.
Further, the material was demonstrated in vivo by considering mice as a model animal.
From the thermographic images it was confirmed that the material was internalized and
can create local heating around the wound. Hence, it favors the in vivo PT/PDT, and the
results after irradiation with 450 nm (PTT) and 680 nm (PDT) confirmed complete wound
healing after 12 days of treatment. Whereas the control mice has the persistent wound even
after laser irradiation without photodrug (Figure 13C–E) [76]. In addition, the concept of
targeted nanoparticles in cancer therapy with in vivo biocompatibility of graphene-based
nanomaterials is summarized. The detailed chemistry and properties of GO as well as the
review of functionalized GO and GO-metal nanoparticle composites in nanomedicine for
anticancer drug delivery and cancer treatment is reviewed [158]. Moreover, the concept of
targeted nanoparticles in cancer therapy with in vivo biocompatibility of graphene-based
nanomaterials is summarized. The detailed chemistry and properties of GO as well as the
functionalized GO and GO-metal nanoparticle composites in nanomedicine for anticancer
drug delivery and cancer treatment is reviewed [159].
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Figure 13. (A,B) for S. aureus and E. coli antibacterial activity with ZnPc-TEGMME@GO at different
lasers (450 nm and 680 nm) triggered combined PTT/PDT. (C) In vivo antibacterial activity to infected
mice treated with ZnPc-TEGMME@GO and its thermographic images. (D) Infected wound area
before and after PT from Day 1 to day 12 represented in five groups. Group I with saline water
and dark. Group II is ZnPc-TEGMME@GO and dark. Group III is ZnPc-TEGMME@GO 680 nm
laser. Group IV is for ZnPc-TEGMME@GO and 450 nm lasers and finally Group V is for ZnPc-
TEGMME@GO with 680 nm and 450 nm laser. (E) H&E (Hematoxylin and Eosin) Staining [76].
Reprinted/adapted with permission from Ref. [76]. Copy right 2021, copyright ACS 2021.

In another study, the RGO was functionalized with polycationic poly-L-lysine (PLL)
because of more drug loading capability with colloidal stability. Further, rGO-PLL is labeled
with anti-HER2 to form a bond with HER2 receptors to detect breast cancer cells [159].

3.9. Comparison among GNCs

According to the above research discussion, every author made their contribution
towards this field. Dai et al., for the first time, introduced the GO and RGO to the ther-
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anostic applications, thereby extensively contributing to this important research. Later,
other researchers gave their insights to fuel the graphene nanomedicine. For instance,
we have prepared MFG to impart long-range absorption of graphene in both biologi-
cal window I and II, along with demonstrating the CLSM/MRI and both single light
induced PTT/PDT [70,95,96]. Choi et al., Yang et al., Mirrahimi et al., Hong et al., Jia
et al., Yang et al., Belu et al., and Lim et al. demonstrated multimodal imaging (CLSM,
MRI, CT, PET, PAI, RAMAN and ToF-SIMS) and multimodal therapies including chemo,
gene, and PTs. Most of these researchers have also given tremendous efforts to improve
the therapeutic capabilities by minimizing GNCs concentration, laser wavelengths from
the first biological windows to the second biological window, and less laser powers and
irradiation times [84,97,107,108,119,120,132,139,145,146]. Keshav et al., provided excellent
pharmacokinetic data to take the material towards preclinical trials. Table 1 represents
some of the interesting works discussed. Based on the comparison of the tabulated liter-
ature, 808 nm laser with irradiation time of 5–15 min with ~1 W/cm2 and ~100 µg/mL
were the most suitable parameters for phototheranostics. In the case of bacteria, the same
parameters are good for photodisinfection. However, according to us and to Liang et al.,
experiments with very low powers and GNCs dosage have also shown great therapeutic
effects [96,150,158]. As each datum is indispensable, we appreciate the existing literature
greatly. Apart from GNCs, there are several nanomaterials which have been reported for
nanomedicine. Among the reported carbon, Au, Fe, Si, dendrimer, and polymer nano-
materials are highly suitable as novel theranostic agents [160–164]. Graphene has a great
advantage over other nanomaterials due its tunable size, dimensionality, tunable surface,
covalent and non-covalent chemistry, atomic sensitivity and <nm thickness, easy synthesis,
and its economic availability for both cancer therapy and antibacterial activity [165–167].

Table 1. Self-comparison of GNCs phototheranostic ability for cancer and bacterial infection.

No
GNCs Imaging Cell/Animal Model Light and Power

Time (min) Therapy Dose Ref. No

1 MFG-SiNC4 CLSM and MRI HeLa cells/Zebrafish
Tungsten halogen
lamp, 1 W/cm2,

775 nm

20 PTT/PDT 100 µg/mL [70,95]

2 MS-RGO-ICG-PEG-FA CLSM and IVIS CT-26 cells/mice 808 nm laser,
2.0 W/cm2

10 PTT/PDT 100 µg/mL [97]

3 GO (99mTc− and
Gd-usNGO-PEG)

MRI and
SPECT/CT Lymph nodes -

- - - [107]

4 RGO-IONP-PEG CLSM, MRI and
PAT 4T1 tumor cells/mice 808 nm laser,

0.5 W cm2

5 PTT/PDT 2 mg/mL [108]

5 ZnFe2O4/UCNPs UCL, CT, MRI,
PAT. U14 cells/mice 980 nm laser,

0.8 W/cm2

15 PTT/PDT 250 µg/mL [118]

6 DOX-NCs CT and MRI CT26 cells/mice 808 nm laser,
0.7 W/cm2

15 Chemo and PTT 20 µg/mL [119]

7 64Cu-NOTA-GO-TRC105 CT/PET 4T1 tumor cells/mice -

- - - [120]
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Table 1. Cont.

No
GNCs Imaging Cell/Animal Model Light and Power

Time (min) Therapy Dose Ref. No

8 rGADA-KrasI PAI/PT Pancreatic cancer
cells/mice

808 nm laser,
1.2 W/cm2

10 PTT and gene
therapy 0.6 mg/mL [132]

9 anti-EGFR-PEG-
rGO@CPSS-Au-R6G

Optical micro-
scope/CLSM/SERS A549 cells 808 nm laser,

0.5 W/cm2

5 PTT 100 µg/mL [138]

10 Single layer graphene ToF-SIMS A549 cells -

- - - [84]

11 GQDs ToF-SIMS MCF-7 cell -

- - - [146]

12 MRGOGA SEM and CLSM S. aureus and E. coli 808 nm laser,
1.2 W/cm2

10 PTT 80 µg/mL [150]

13 ZnPc-TEGMME@GO SEM/Thermographic
imaging S. aureus and E. coli

450 nm and
680 nm lasers,
0.0142 W/cm2

10 PTT/PDT 50 µg/mL [76]

14 RGO-PAA CLSM HeLa cells/S. aureus
and E. coli

808 nm/1064 nm
laser, 0.4 mW/cm2

10 PTT 3 mg/mL [96]

15 Chitosan with
ZnOQDs@GO

SEM/Thermographic
imaging S. aureus and E. coli 808 nm laser,

2 W/cm2

6 PTT 500 µg/mL [158]

4. Conclusions and Future Perspectives

We summarized the recent progress of the general preparation and functionalization
of GO, RGO, and GNCs as theranostic materials to provide simple and advanced imaging-
guided therapeutic drugs to invade malignant tumors and bacterial infections. The water
solubility, low toxicity, and high surface area of GO made a very good nanoplatform to
carry many therapeutic organic drugs and to load different imaging probes. However, its
low NIR absorption is unlikely, and not very favorable to the phototherapy of cancer and
bacteria. Hence, RGO or functionalized nanocomposites of graphene-related materials
provide a better solution to overcome the difficulties where GO cannot. The multi-modal
imaging and PS functionalized nanographene composite provide a very accurate diagnostic
confidence to proceed with the therapy of combined PTT/PDT, which may require in less
time and smaller drug concentrations. Among the nanotherapies reported, phototherapy
has good results, with less intensive time and energy, and without any side effects and
damage to healthy tissues.

Graphene/GO/GQDs can offer diversified chemistry for self-acting luminescent for
CLSM, magnetic for MRI, surface plasmonic state for SERS and ToF-SIMS signal enhance-
ment, PAI imaging, and inherent PTT, PDT agent. It has great potential to carry many
chemical drugs and genes for chemo- and gene therapies with very good biocompatibility.
However, much research is required to move GNCs towards clinical implementation, as
their size, shape, no of carbons, layers, number of oxygen functional groups, accurate mass,
and photo yield to generate ROS and heat have to be optimized precisely. In perspective of
PT, the biological windows must be explored in NIR-I and NIR-II. Overall, nanotechnology
scientists could use flexible GNCs in whatever they want to fabricate.
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