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SUMMARY 33 

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer for which few effective therapies exist. 34 

Immunotherapies specifically are ineffective in pancreatic cancer, in part due to its unique stromal and 35 

immune microenvironment. Pancreatic intraepithelial neoplasia, or PanIN, is the main precursor lesion to 36 

PDAC. Recently it was discovered that PanINs are remarkably abundant in the grossly normal pancreas, 37 

suggesting that the vast majority will never progress to cancer. Here, through construction of 48 samples 38 

of cm3-sized human pancreas tissue, we profiled the immune microenvironment of 1,476 PanINs in 3D 39 

and at single-cell resolution to better understand the early evolution of the pancreatic tumor 40 

microenvironment and to determine how inflammation may play a role in cancer progression.  41 

We found that bulk pancreatic inflammation strongly correlates to PanIN cell fraction. We found that the 42 

immune response around PanINs is highly heterogeneous, with distinct immune hotspots and cold spots 43 

that appear and disappear in a span of tens of microns. Immune hotspots generally mark locations of 44 

higher grade of dysplasia or locations near acinar atrophy. The immune composition at these hotspots is 45 

dominated by naïve, cytotoxic, and regulatory T cells, cancer associated fibroblasts, and tumor associated 46 

macrophages, with little similarity to the immune composition around less-inflamed PanINs. By mapping 47 

FOXP3+ cells in 3D, we found that regulatory T cells are present at higher density in larger PanIN lesions 48 

compared to smaller PanINs, suggesting that the early initiation of PanINs may not exhibit an 49 

immunosuppressive response. 50 

This analysis demonstrates that while PanINs are common in the pancreases of most individuals, 51 

inflammation may play a pivotal role, both at the bulk and the microscopic scale, in demarcating regions 52 

of significance in cancer progression. 53 
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INTRODUCTION 57 

Invasive pancreatic ductal adenocarcinoma, or PDAC, is the most common form of pancreatic cancer and 58 

is projected to be the second leading cause of cancer-related deaths by 2030.1 While novel 59 

immunotherapies have made great strides in improving outcomes in malignancies including non-small cell 60 

lung cancer, melanoma, and Hodgkin’s lymphoma,2-5 immunotherapies are generally ineffective in 61 

pancreatic cancer.6-8 Paradoxically, inflammation is believed to play a key role in PDAC development and 62 

invasion.9-11 Individuals suffering from chronic pancreatitis have a 13-fold increase in risk of developing 63 

PDAC.10 Pancreatic cancer cells are surrounded by a dense network of fibrotic tissue containing 64 

immunosuppressive cells such as regulatory T cells, tumor-associated macrophages, and cancer-65 

associated fibroblasts.12-16 As these stromal populations are believed to evolve early during pancreatic 66 

tumorigenesis,11,17 better understanding of the immune landscape in pancreata containing pancreatic 67 

cancer precursor lesions may improve our ability to develop effective strategies for immune-mediated 68 

cancer interception. 69 

Pancreatic intraepithelial neoplasia (PanIN) is a noninvasive precursor lesion to PDAC that develops 70 

extensively throughout the pancreas with age.18-20 While most of us will develop PanINs, very few of these 71 

lesions will progress to invasive disease: the yearly incidence of PDAC diagnosed in the United States is 72 

roughly twelve per 100,000 individuals.21-23 Efforts to understand the drivers of PanIN initiation and 73 

progression have shown that the size, incidence, and genetic variation of these lesions is high.18,20 Here, 74 

we add to these efforts through in-depth quantitative 3D mapping and analysis of the immune 75 

microenvironment in exceptionally large (cm3) samples of human pancreas using CODA.  76 

CODA is a workflow for quantitative 3D mapping of tissues using serially sectioned, hematoxylin and eosin 77 

(H&E) stained and digitized microscope slides that has been used extensively to study the 3D 78 

microanatomy, transcriptomic signatures, and 3D genetic heterogeneity of PanINs at single-cell 79 

resolution.11,18,24-29 As with existing serial sectioning workflows30-37, CODA is compatible with integration 80 

of multiple histological stains for study of structures that are difficult to detect using H&E alone.36-39  81 

Here, through extension of CODA to analyze immunohistochemically (IHC) stained serial histological 82 

images, we explore at cellular resolution the spatial landscape of immune infiltration in large 3D pancreas 83 

tissues containing PanINs. We confirm that pancreas inflammation is strongly correlated with PanIN 84 

density. Around the PanINs, we find striking heterogeneity in leukocyte, T cell, and regulatory T cell 85 

density, with more regulatory T cells around larger PanINs compared to smaller PanINs. Using imaging 86 

mass cytometry (IMC), we profile the immune composition around PanIN immune hotspots, revealing 87 

that a minority of PanINs possess a distinct, immunosuppressive microenvironment that often surrounds 88 

regions of higher grade of dysplasia and acinar atrophy. By quantifying the spatial heterogeneity of these 89 

hotspots, we find that the immune cell density around a PanIN lesion decorrelates in a span of tens of 90 

microns, suggesting that immune infiltration cannot be well characterized through assessment of a 2D 91 

tissue section. In sum, this work reveals the importance of 3D analysis in revealing biologically significant 92 

events in cancer progression.  93 
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RESULTS 94 

Three-dimensional reconstruction of the pancreatic immune microenvironment at single-cell resolution 95 

We assessed 48 samples of grossly normal human pancreas tissue surgically resected in response to 96 

various pancreatic abnormalities (Fig 1A, see methods). Samples were serially sectioned, stained with H&E 97 

every third slide, and digitized.18 To characterize immune infiltration, two samples were selected for IHC 98 

staining (Fig 1B). Every third slide was stained with CD45 to label leukocytes. In one sample, the remaining 99 

sections were dual stained with CD3 / FOXP3 to label T cells and regulatory T cells. 100 

We adapted CODA nonlinear image registration for application to datasets with multiple stains (Fig 1C). 101 

CODA registers images by maximizing pixel cross-correlation and has been shown to outperform other 102 

registration algorithms in several parameters.24 In the case of registration of similarly stained image pairs 103 

(H&E to H&E or IHC to IHC), structures in the images are colored similarly (Fig S1A). However, for 104 

registration of multi-stained datasets, structures on adjacent sections may show variable staining patterns 105 

– for example collagen stains pink in H&E but is light grey in most IHC images, reducing pixel-to-pixel 106 

correlation. We tested three workflows to determine the optimal procedure: (1) registration of color 107 

images, (2) registration of the hematoxylin channel images, and (3) registration of the H&E images, 108 

followed by serial integration of the IHC images (Fig S1B). By comparing target registration error and warp, 109 

we found that the third method yielded the best results (Fig S1C). 110 

We next used semantic segmentation40 to label ten structures in the pancreas at two µm resolution: 111 

PanIN, normal ducts, acinar tissue, islets of Langerhans, vasculature, nerves, fat, stroma, immune 112 

aggregates, and non-tissue (Fig 1A). When compared to an independent testing dataset, the model 113 

performed with an accuracy of 95.1% (FigS2A). Color deconvolution was used to de-mix the hematoxylin 114 

from the remaining stains and  nuclear coordinates were generated.24 In IHC, the antibody signal in the 115 

area surrounding each nucleus was determined, and K-medoids clustering was used to distinguish CD45+ 116 

and CD45- cells, or CD3+ / FOXP3-, CD3+ / FOXP3+, and CD3- / FOXP3- cells (Fig 1D). Validation against 117 

manual counts revealed an average precision and recall of 0.89 and 0.88 (Fig S2B). Finally, as previously 118 

described,24 we adjusted our cell counts to account for over- or under-counting due to serial sectioning 119 

(Fig S2C). Integration of image registration, segmentation, and immune cell detection enabled 3D 120 

visualization of pancreas structures and the immune microenvironment.  121 

After noting the high density of leukocytes in the pancreatic stroma, we hypothesized that we could 122 

accurately estimate CD45+ cell density from H&E-based measure of stromal cell density (Fig 1E). We 123 

extracted these data from the two samples containing H&E and IHC images. Using R2, mean squared error, 124 

and root mean squared error, we tested linear, power, and exponential fits to determine that a power 125 

law well approximated CD45+ cell density. To confirm that our model accurately estimated PanIN 126 

inflammation, we performed two checks. First, we compared IHC-measured to H&E-measured PanIN 127 

inflammation in the two samples containing H&E and IHC staining, revealing a close match. Second, we 128 

compared the IHC-measured PanIN inflammation in the two samples with H&E and IHC staining to the 129 

H&E-measured PanIN inflammation in the 46 samples with only H&E staining, revealing similar 130 

distributions between the two cohorts and demonstrating the accuracy of our power-law model. 131 

Together, this workflow enabled us to reconstruct 48 cm3-sized samples of the pancreas immune 132 

microenvironment. Next, we assess correlations between pancreas structure and inflammation at 133 

microanatomical (µm) and bulk (cm) scale to map immune patterns around pancreatic precancers.   134 
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 135 
Fig 1. Integration of CODA + IHC for mapping the pancreatic immune microenvironment. (a) Forty-eight samples of cm3-sized 136 
human pancreas tissue were reconstructed using CODA to create 3D maps of pancreatic microanatomy. (b) In a subset of cases, 137 
intervening sections were stained for CD45 and CD3/FOXP3, enabling integration of immune cells in the 3D pancreas 138 
microenvironment. (c) Nonlinear image registration was used to align the multiplex images to the same coordinate space. Target 139 
registration error (TRE) demonstrates the quality of the registration. (d) Immune cell coordinates were generated using color 140 
deconvolution and a k-medoids algorithm. (e) Top left: table cataloging the number of tissue samples, sections, and PanIN per 141 
cohort. Bottom left: sample H&E and CD45-stained histology showing a non-inflamed normal pancreatic duct and an inflamed 142 
PanIN. Cell density in the stroma (pink in H&E image) appears to correlate to CD45+ stain. Center: approximation of 3D CD45+ 143 
cell density using 3D stromal cell density via five-fold cross-validation of linear, power, and exponential fits, with the best fit 144 
achieved using a power law. Top right: graph depicting error in approximation of mean PanIN inflammation using the power law 145 
fit. Bottom right: violin plot depicting the mean PanIN inflammation as determined using CD45-stained IHC images from two 3D 146 
samples and as determined using H&E images from 46 3D samples. 147 
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PanINs are the most inflamed structures in most normal pancreases and possess complex immune 148 

patterns 149 

We first broadly examined the 3D samples to identify and understand the major relationships between 150 

pancreatic structure and inflammation. We compared the bulk inflammation to patient demographics (Fig 151 

2A), identifying significantly higher inflammation in samples surgically resected from the pancreatic head 152 

compared to those resected from the pancreatic tail. We found elevated but nonsignificant inflammation 153 

in the pancreases of individuals diagnosed with PDAC compared to those diagnosed with pancreatic 154 

neuroendocrine tumors (PanNETs), metastatic carcinomas from outside the pancreas, and other 155 

abnormalities necessitating pancreatic resection. We found no significant difference in inflammation 156 

between individuals based on age or sex.  157 

We quantified the average immune cell density within eight structures of the pancreas to identify those 158 

most associated with inflammation (Fig 2B), defining local inflammation in a 150-µm radius around each 159 

structure. We found that PanIN lesions were often the most inflamed structure, followed by normal 160 

pancreatic ducts and stroma. Acinar lobules, islets of Langerhans, and fat were consistently the least 161 

inflamed structures, with the exception of one sample that contained extensive acinar to ductal 162 

metaplasia and so greater inflammation in the lobules (Fig S3A). 163 

To understand the high immune cell density surrounding PanIN lesions, we generated 3D immunomaps 164 

(Fig 2C), where the 3D structure of the PanIN was overlaid by the local immune cell density. These 165 

immunomaps revealed that most PanIN lesions exhibit striking immune heterogeneity, possessing both 166 

immune “hotspots” and “cold spots.” We quantified this heterogeneity in immune cell density around 167 

PanINs in two ways: orthogonally away from the PanINs, and tangentially along the 3D external surface 168 

of the PanINs.  169 

First, we compared the radial immune cell density around PanIN lesions in 2D and 3D (Fig 2D). In the 170 

graphs, each thin grey line represents the radial density around each 2D instance of the PanIN as it appears 171 

in the histology. The dashed blue line represents the bulk average of these 2D calculations, and the solid 172 

black line is the true, 3D radial immune cell density. This calculation demonstrates that random calculation 173 

of inflammation around a single 2D instance of a 3D structure can result in dramatic over- or under- 174 

estimation of the true immune response in a tissue, and that even the bulk average of 2D measurements 175 

fails to recapitulate true 3D information. Finally, we computed the “length scale” of inflammation at PanIN 176 

lesions, or the distance one would need to travel across the surface of a PanIN for the local inflammation 177 

to change by 25%, 50% or 100% (Fig 2E). We found that inflammation changes rapidly, on average 178 

changing 50% within 40µm, or 10 histological sections, suggesting that conclusions on the hot or cold 179 

nature of a tumor may be misleading if determined through assessment of a single 2D slide.  180 
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 181 
Figure 2. PanIN are most inflamed structure in most normal pancreases and feature complex immune patterns. (a) Samples 182 
resected from the pancreatic head were found to be significantly (p = 0.03) more inflamed than samples resected from the 183 
pancreatic tail. No significant difference in inflammation found as a function of patient diagnosis, age, or sex. P-values calculated 184 
using the Wilcoxon rank sum test. (b) Bar graph depicting the average inflammation present within eight structures of the 185 
pancreas. PanIN was found to be the most inflamed, followed by normal pancreatic ducts. Table containing mean and range 186 
values. (c) Sample 3D renderings depicting PanIN local immune cell density. Sample histology contains immune “hotspots” and 187 
“cold spots” present in these PanINs (d) Quantification of radial immune cell density around the PanINs depicted in c. Grey lines 188 
were calculated at each 2D instance of PanIN in the histology. Dashed blue line is the average of the 2D. Solid blue line is the true, 189 
3D radial immune cell density. (e) Quantification of inflammatory heterogeneity. For a PanIN, 1,000 starting points were randomly 190 
chosen. Moving across the surface of the PanIN, the distance necessary for inflammation to change 25%, 50%, and 100% was 191 
found. On average, inflammation changed 25% within 5 sections (20 µm), 50% within 10 sections (40 µm), and 100% within 19 192 
sections (76 µm).  193 
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Pancreatic inflammation correlates to pancreatic structure on bulk, but not microscopic, scale 194 

We next investigated the hypothesis that higher incidence of PanIN correlates to higher levels of 195 

inflammation. We compared inflammation to pancreatic structure across microanatomical and bulk 196 

length scales (µm vs. cm scales). To compute the microanatomical correlation, we determined the cellular 197 

composition within the 150-µm radius around each of the 1,476 PanINs, as visualized in the sample 3D 198 

heatmap renderings (Fig 3A). To compute bulk correlation, we determined the 3D bulk cellular 199 

composition in each of the 48 3D pancreas samples, as visualized in the sample z-projections (Fig 3B). We 200 

determined the correlation coefficient of local inflammation to each local tissue structure, and similarly 201 

determined the correlation coefficient of bulk inflammation to each bulk tissue structure (Fig 3C).  202 

Remarkably, while local inflammation correlated moderately with stromal and acinar composition, bulk 203 

inflammation correlated strongly with many pancreatic structures including stroma, acini, PanIN, normal 204 

duct, vasculature, and nerves. While locally we identify no correlation of PanIN volume to inflammation 205 

(Fig 3D), in bulk we identify strong correlation between overall PanIN cell fraction (PanIN cell number / 206 

total cell number in tissue) and inflammation (Fig 3E). These data suggests that while PanIN is highly 207 

correlated to inflammation, the associated immune cells are not always immediately surrounding the 208 

PanIN but may be elsewhere in the pancreatic parenchyma. This finding is supported by our identification 209 

of regions of highly inflamed acinar lobules that are upstream, but physically separated from large PanINs 210 

(Fig S3B).   211 
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 212 
Figure 3. Pancreatic precancer inflammation is a global process. (a) 3D heatmap renderings of a PanIN depicting local 213 
composition of immune cells, and local density of pancreatic structures including stroma, acini, and vasculature. (b) Z-projections 214 
of three pancreatic tissue samples showing bulk changes to tissue structure with increasing PanIN content. (c) Table showing r2 215 
values of the correlation between tissue structures and inflammation at the local (150 µm) scale and the bulk (entire cm3 tissue 216 
sample) scale. Several structures, including PanIN, stroma, normal ducts, vasculature, acinar lobules, and acinar-to-stromal ratio 217 
are highly correlated to inflammation at the bulk scale. (d) Average PanIN inflammation plotted as a function of PanIN volume. 218 
No correlation found. (e) Sample visualization of data in c, showing correlation of bulk inflammation to PanIN cellular composition. 219 

  220 
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PanINs possess distinct immune hotspots and cold spots, characterized by differences in structure and 221 

immune cell content 222 

We found that bulk pancreas inflammation is highly correlated to overall PanIN content, but that some of 223 

this inflammation surrounds the acinar lobules, not the PanIN themselves (Fig 3C). To better understand 224 

those immune cells that directly surround the PanINs, we next developed an algorithm to identify PanIN 225 

immune hotspots and cold spots. In each of the 48 3D samples, we pinpointed the coordinates of the ten 226 

hottest and ten coldest locations on a PanIN (Fig 4A). For each hotspot and cold spot region of interest 227 

(ROI), the algorithm output the corresponding H&E image from our serial histological dataset. Analysis of 228 

the histology revealed more high grade PanIN (PanIN-2 or PanIN-3), acinar to ductal metaplasia, and 229 

reactive stroma surrounding the PanIN hotspots, and pancreatic ducts containing large lumens or dilated 230 

pancreatic ducts associated with the PanIN cold spots. To confirm these results, we quantified the tissue 231 

composition in these regions of interest, revealing significantly higher composition of acini, islets of 232 

Langerhans, and PanIN in the histology outputs containing immune hotspots, and significantly higher 233 

composition of stroma and ductal lumen in the histology outputs containing immune cold spots (Fig 4B). 234 

To understand differences between PanIN immune hotspots and non-hotspot PanINs we applied an 235 

imaging mass cytometry (IMC) panel to label distinct immune cell types in a subset of three 3D pancreas 236 

samples (Table S1). We identified whole slide images in each sample containing a PanIN immune hotspot, 237 

a secondary, non-hotspot PanIN, and a non-neoplastic duct of similar radius and compared the IMC-238 

derived immune cell densities around these regions (Fig 4C-D). We found generally higher density of all 239 

immune cell types around the PanIN hotspots. These hotspots were particularly notable for the relatively 240 

higher presence of pro-inflammatory cell types such as CD8+ cytotoxic T cells (along with markers of 241 

activation and/or exhaustion, e.g., Granzyme B, PD1, LAG3) and DC-LAMP+ dendritic cells, as well as 242 

immunosuppressive cell types such as foxP3+ regulatory T cells and macrophages (assessed by the 243 

expression of CD163, CD206, and Arg1). Remarkably, these data reveal that the immune profile around 244 

the non-inflamed PanIN lesions more closely resembles that of a non-neoplastic duct than that of the 245 

hotspot PanIN, suggesting that on average PanINs possess relatively low immune infiltrate, with the 246 

exception of distinct, hotspots that are easily missed without 3D analysis.  247 
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 248 
Figure 4. PanIN immune hotspots feature unique microenvironments. (a) A 3D rendering of a PanIN with regions of immune 249 
hotspots and cold spots. The table contains observed phenomena in the PanIN hotspots and cold spots for all 48 samples, with 250 
hotspots containing more high-grade dysplasia, reactive stroma, and acinar to ductal metaplasia (ADM), and cold spots containing 251 
more large ductal lumens or dilations. Sample histology provided, arrows indicate the regions of interest. (b) Comparison of the 252 
tissue composition in hotspot and cold spot histology revealed more acini, islets, and PanIN in hotspot regions, and more stroma 253 
and lumen in cold spot regions. P-values calculated using the Wilcoxon rank sum test. (c) In 3 samples, we identified a WSI 254 
containing a PanIN hotspot, another PanIN, and a normal pancreatic duct and applied a 38-plex imaging mass cytometry panel. 255 
(d) Quantitative comparison revealed generally higher immune cell densities at the hotspot PanIN. The immune cell densities of 256 
the randomly selected PanIN appeared to generally mirror those cell densities of the non-neoplastic duct.  257 
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PanIN size correlates to changes in presence of regulatory T cells 258 

Finally, to understand changes to PanIN immune cell subtypes in 3-dimensions, we serially stained a single 259 

3D pancreas sample alternately with H&E, CD45 to label leukocytes, and a dual stain to label CD3+ T cells 260 

and FOXP3+ regulatory T cells. This sample contained 34 spatially independent PanIN lesions. We created 261 

3D immunomaps, revealing similar local cell densities between CD45+, CD3+, and FOXP3+ (Fig 5A). 262 

Confirming this observation, we computed the correlation coefficient between local CD45+, CD3+, and 263 

FOXP3+ cell density around all 34 PanINs in the 3D sample to find a high correlation between CD3 and 264 

CD45 and a moderate correlation between FOXP3 and CD3 (Fig S6A). 265 

We computed the density of immune cells in each structure, finding similar results to the calculation 266 

shown in Fig 2B, that PanIN is the most inflamed structure in the pancreas, followed by normal pancreatic 267 

ducts and stroma (Fig 5B). 268 

Considering each of the 34 PanIN lesions in the 3D sample separately, we computed the volume of each 269 

PanIN, as well as its average CD45+, CD3+, and FOXP3+ cell density. Graphed in violin format, we find that 270 

PanIN lesions possess a range of immune cell densities (Fig 5C). For each PanIN, we similarly calculated 271 

the ratio of CD3+ to CD45+ cells, FOXP3+ to CD45+ cells, and FOXP3+ to CD45+ cells (Fig 5D).  272 

Using 0.01 mm3 as a cutoff, we compared the immune cell density and composition between small and 273 

large PanINs (Fig 5E). We found that larger PanINs contain slightly higher densities of CD45+ cells and 274 

CD3+ cells, and much higher levels of FOXP3+ cells. Additionally, while the ratio of CD3+ to CD45+ was not 275 

related to PanIN size, we found significantly higher ratios of FOXP3+ to CD45+ cells and FOXP3+ to CD3+ 276 

cells in larger PanINs compared to smaller PanINs (bar plots in Fig 5E, scatter plots in Fig S6B-C). This 277 

suggests that regulatory T cells exist in higher density and make up a larger percentage of the total 278 

immune cells around more developed PanINs than they do around small PanINs. We show sample 279 

histology of a small and large PanIN (Fig 5F) possessing dramatically different immune cell densities and 280 

ratios. The larger PanIN contains a high ratio of regulatory T cells to T cells (ratio: 0.40) compared to the 281 

smaller PanIN (ratio: 0.09). Volumes and immune cell density information presented in the table in Fig 5G.  282 
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 283 
Figure 5. The composition of T cells around PanIN is heterogeneous. (a) 3D renderings of the CD45+, CD3+, and FOXP3+ cell 284 
density across a PanIN. Sample H&E and IHC histology at locations on the characterized by heavy or light immune infiltration. (b) 285 
Bar graph depicting the average CD45+, CD3+, and FOXP3+ cell density present within eight components of the pancreas. (c). 286 
Violin plot displaying the CD45+, CD3+, and FOXP3+ cell density at 34 PanIN. (d) Violin plot displaying the CD3 to CD45, FOXP3 to 287 
CD45, and FOXP3 to CD3 cell ratios at 34 PanIN. (e) Bar graphs depicting the CD45+, CD3+, and foP3+ cell density, and the CD3 to 288 
CD45, FOXP3 to CD45, and FOXP3 to CD3 cell ratios between small (< 0.01 mm3) and large (≥ 0.01 mm3) PanIN. Larger PanIN are 289 
in general more inflamed and have higher FOXP3 composition than small PanIN. P-values calculated using the Wilcoxon rank sum 290 
test. (f) Sample histology of a small PanIN possessing low FOXP3+ cell composition and a large PanIN possessing large FOXP3+ cell 291 
composition. (g) Table containing the immune cell properties of the PanIN shown in the sample histology.  292 
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DISCUSSION 293 

In this work, we demonstrate the power of quantitative 3D mapping to reveal novel patterns in 294 

inflammation in early pancreatic carcinogenesis that span multiple length scales – from bulk changes to 295 

organ structure on the multi-cm scale to rapid shifts in local immune cell density on the µm scale. 296 

We identified a strong correlation between bulk pancreas inflammation and several pancreatic structures 297 

including large-scale structures such as acinar lobular and stroma, as well as microscopic structures such 298 

as PanIN. We found that some of this inflammation appears surrounding the Panin lesions and some 299 

inflammation is further away, often located near upstream acinar atrophy and fibrosis (see again Fig S3B). 300 

This data provides strong evidence derived from human tissue samples to support proposed links between 301 

inflammation and neoplastic initiation in the pancreas, specifically the existence of a positive feedback 302 

loop between precancer abundance and pancreatic inflammation.41-45 The noted correlation between 303 

microscopic structures such as inflammation and PanINs to macroscopic structures such as pancreatic 304 

acinar lobules and stroma may explain the successes of works to non-invasively detect features such as 305 

pancreatic fibrosis, pancreatitis, lobulocentric atrophy, and PanINs using techniques such as MRI, CT, and 306 

EUS,45-52 and suggests that further development of imaging-based screening for pancreatic inflammation 307 

and PanINs is warranted. Extension of this 3D analysis to detailed assessment of samples from individuals 308 

diagnosed with chronic pancreatitis remains an important area for future study.  309 

Additionally, we found that PanINs feature a heterogeneous immune response in 3D that is not well 310 

characterized through assessment of individual 2D histological slides. We found that the immunologically 311 

hottest regions on a PanIN are associated with higher-grade of dysplasia and acinar atrophy, and that the 312 

immunologically coldest regions on a PanIN are associated with large, open ductal lumens or dilations.  313 

Using imaging mass cytometry, we profiled the immune cell composition of these hotspots in comparison 314 

to ‘average PanIN in the cohort and to normal pancreatic ducts. We identified distinct immunological 315 

hotspots at PanINs rich in CD8+ T cells, regulatory T cells, cancer associated fibroblasts, and tumor 316 

associated macrophages, supporting previous work in human tissues suggesting these regions contain 317 

early immunosuppressive activity.11 In comparison, recent work profiled PanIN lesions in organ donor 318 

pancreata to find CD4+ T cells, fibroblasts and myeloid cells, but not regulatory T cells, at PanINs.20 We 319 

noted similar populations surrounding the ‘average’ PanIN regions in this cohort, but noted distinct, 320 

immunosuppressive cell types around the rarer, hotspot regions.  321 

In sum, we find that pancreatic inflammation correlates strongly with pancreatic micro- and macro- 322 

structures, supporting the hypothesis of a positive feedback loop between inflammation and PanINs and 323 

supporting the feasibility of detecting pancreatic inflammation and PanINs in the clinic using non-invasive 324 

imaging. Through 3D assessment, we find that inflammation around PanIN lesions is heterogeneous, and 325 

that distinct hotspots composed of unique immunosuppressive cell types may hint at regions of the 326 

precancer that are at higher risk of progression to invasive cancer. This work demonstrates the ability of 327 

3D mapping to quantify anatomical heterogeneity and to uncover rare biologically significant regions in 328 

large tissues.  329 
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Data Availability Statement: The 3D rendering software used in this paper is available at the following 330 

GitHub page: https://github.com/ashleylk/CODA. Due to their large file size (TB scale per 3D sample), raw 331 

tissue data will be available from the corresponding authors upon request. 332 
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MATERIALS & METHODS 350 

Specimen acquisition and sample processing  351 

This study was approved by the Institutional Review Board of the Johns Hopkins Hospital. Samples of 352 

grossly normal human pancreas tissue were harvested from the normal-adjacent tissue to a mass of 353 

clinical interest following surgical pancreatectomy. Tissues containing significant fibrosis, atrophy, or 354 

cancer in the normal adjacent region were excluded. The 48 samples analyzed here came from patients 355 

undergoing surgery for treatment of pancreatic ductal adenocarcinoma, pancreatic neuroendocrine 356 

tumors, serous cystadenomas, distal common bile duct adenocarcinomas, metastatic carcinomas from 357 

other organs, mucinous cystic neoplasms, tubulovillous adenomas of the duodenum, ampullary tumors, 358 

and lymphoepithelial cysts. The majority of these tissues were first described in a paper investigating the 359 

abundance and genetic heterogeneity of PanIN in grossly normal human pancreases.18 360 

Samples were formalin-fixed, paraffin-embedded, and serial sectioned at a thickness of 4-microns. Every 361 

third section was stained with hematoxylin and eosin (H&E) and digitized at 20x magnification. In some 362 

samples, the intervening unstained slides were discarded or used for other purposes. In a subset of 363 

samples, the intervening tissue was cut onto plus slides, where it was integrated for labelling of immune 364 

cells using immunohistochemical (IHC) staining. Here, two large (>cm3) pancreas samples were 3D 365 

reconstructed using serial labelling of leukocytes using CD45. One of the samples also contains labels for 366 

T cells using CD3 and regulatory T cells using FOXP3. The remaining 46 samples contain serial H&E staining 367 

for mapping of gross anatomical pancreas structures and cell counts. 368 

CODA 3D reconstruction of pancreas microanatomy from H&E images 369 

Samples were 3D reconstructed using CODA24, resulting in visualizable and quantifiable maps of human 370 

pancreas. The CODA workflow consists of four steps: image registration, nuclear detection, tissue multi-371 

labelling, and visualization. Openslide software was used to save reduced size copies of all tissue images, 372 

corresponding to 2µm/pixel using nearest neighbor interpolation.53 For a pair of images, the registration 373 

was calculated through maximization of 2D cross correlation of pixel intensity to all images and correct 374 

for tissue rotation, translation, folding, splitting, and stretching. The CODA cell detection algorithm was 375 

used to quantify the cellularity of components via detection of 2D intensity peaks in the hematoxylin 376 

channel of the H&E images. Deep learning semantic segmentation was used to create microanatomical 377 

labels from histological images. Using annotations on a subset of histological images, the trained algorithm 378 

labelled, to a resolution of 2 µm, ten structures in histological images of the pancreas: islets of Langerhans, 379 

normal ductal epithelium, vasculature, fat, acinar tissue, collagen, PanIN, nerves, immune cell aggregates, 380 

and non-tissue whitespace with per class precision and recall of >90%. The image registration, cell 381 

detection, and tissue segmentation are integrated to create 3D reconstructions of pancreas 382 

microanatomy at large scale (up to multi-cm3), while maintaining cellular resolution. 383 

Registration of H&E and IHC images  384 

For samples containing a mix of H&E and IHC images, the CODA image registration workflow was adapted 385 

to enable accurate and smooth integration of multi-plex datasets. Similar to the original CODA 386 

registration,24 sections were registered with a two-step process with the central image of each case 387 

serving as reference. Images were downsampled to a resolution of 8 µm / pixel. In a global rigid alignment 388 

step, the cross-correlation of a pair of whole slide images was maximized through determination of 389 
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rotation and translation values. Then, in a local elastic step, images were cropped into patches (250 x 250 390 

pixels) and rigid registration was applied to each region. Finally, displacement fields were interpolated 391 

from the grid of local registration data to generate maps to correct for non-uniform deformation between 392 

the images. 393 

To optimize our H&E to IHC registration workflow, we tested three approaches: (1) registration of all raw, 394 

color images using the original CODA workflow, (2) registration of the hematoxylin channel of all images 395 

using the original CODA workflow, and (3) registration first of all H&E images using the original CODA 396 

workflow followed by serial integrative registration of the raw, color IHC images to the registered H&E 397 

images. The accuracy of registrations was assessed by calculating target registration error (TRE), change 398 

in tissue area from unregistered to registered images (Δarea), and maximum per-image magnitude of 399 

nonlinear displacement (tissue warp). Using 100 manually annotated fiducial landmarks on 50 pairs of 400 

images, TRE was calculated by determining the Euclidean distance between pairs of fiducial points in 401 

unregistered and registered images. To screen for shrinking or expanding of tissue sections caused by the 402 

registration process, Δarea was measured by calculating the %change in tissue area from unregistered to 403 

registered images. Finally, to screen for erroneous stretching of tissue regions during the nonlinear step 404 

of the registration process, the tissue warp was determined by calculating the difference between the 405 

maximum and minimum translations in the nonlinear displacement matrix. While this number is expected 406 

to be greater than zero (as zero means the image was only rigidly transformed), very large values imply 407 

non-biological stretching of the tissue. 408 

Detection of immune cell coordinates from IHC images 409 

The previously described CODA cell detection algorithm was adapted to detect positive cells in IHC-stained 410 

images.24 First, the hematoxylin and antibody stain channels were isolated using color deconvolution. For 411 

each image, the pixels containing tissue were isolated by finding regions of low green channel intensity 412 

and high red-green-blue channel standard deviation. One hundred k-medoids clusters were calculated to 413 

represent the optical densities the tissue-containing pixels. The most common, blue-favored clusters were 414 

averaged to define the hematoxylin channel, and, for the CD45 stained images, the most common, brown-415 

favored clusters were averaged to define the CD45 channel. The third channel was defined as the 416 

complement of the average of the hematoxylin and CD45 channels. For the dual stained CD3/FOXP3 417 

stained images, the most common, red-favored clusters were averaged to define the CD3 channel, and 418 

the most common, black-favored clusters were averaged to define the FOXP3 channel. These optical 419 

densities were used to deconvolve the IHC images into their respective stains. To minimize variations in 420 

staining hue and saturation among images, histogram equalization was employed using the deconvolved 421 

channels of the first image of each sample as the reference. Next, CODA cell detection was used to 422 

generate nuclear coordinates from the hematoxylin channel of the images. The intensity of the antibody 423 

channels was determined at each nuclear coordinate. Joint histograms of the normalized intensities of 424 

the detected nuclei in the different channels were built. First, a joint histogram of the hematoxylin channel 425 

and the CD45 channel of the first IHC image of each sample was built to separate CD45+ and CD45- cells. 426 

Similarly, a joint histogram with three channels (hematoxylin, CD3, and FOXP3) of the first dual-IHC stained 427 

image was generated to separate T cells and Treg cells from the rest of cell types. In both cases, K-medoids 428 

partitioning54 was used to establish the separation thresholds. 429 

To assess immune cell detection accuracy, four images of each CD45 stained images were randomly 430 

selected from each sample. Adjacent images were selected for the sample containing CD3 / FOXP3 431 
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staining. In this way, the same tissue region was assessed for all the immune cell types. From these images, 432 

tiles of 1 mm x 1 mm were extracted, containing hundreds of immune cells each. Cells were manually 433 

annotated. A manually labelled cell was considered equivalent to an automatically identified cell if the 434 

coordinates were within 5 µm of each other. The 5 µm was selected as the radius as this was determined 435 

to be half of the average radius of cytoplasm in the images. Finally, immune cell detection accuracy was 436 

assessed by measuring the precision and recall within each validation tile. 437 

Construction of 3D matrices for calculation of tissue metrics 438 

The integration of image registration, cell detection, and tissue multi-labelling allowed construction of 439 

digital maps of tissue and cellular components. This reconstruction resulted in 3D matrices corresponding 440 

to each sample reconstruction. A 3D matrix containing tissue labels, a matrix containing nuclear 441 

coordinates generated from the H&E images, and a 3D matrix containing nuclear coordinates generated 442 

from the IHC images were obtained for the samples. Matrices were created at a resolution of 12x12x12 443 

micron3. These matrices were used to perform all calculations shown in this manuscript. Calculations were 444 

performed in MATLAB 2022b. 445 

Calculation of volumes, cell counts, and cell densities 446 

The volumes of each PanIN were calculated by summing the number of voxels in the tissue type matrix 447 

labelled as PanIN and converting from units of voxels to micron3. The number of cells of different 448 

structures were determined by dot multiplying the cell coordinate matrix by the tissue type matrix and 449 

summing the result. Cell counts determined via dot multiplication were corrected using the factors 450 

described in the cell detection section above. The number of immune cells surrounding a PanIN was 451 

determined using the tissue and cellular data matrices. The MATLAB function bwdist was used to 452 

determine the area of 150 microns surrounding each PanIN, and the number of immune cells located 453 

within that area was determined via dot multiplication of the distance matrix with the immune cell matrix. 454 

Calculation of local immune cell density and creation of 3D heatmap renderings 455 

Local immune cell density was determined by counting the number of immune cells within a given 456 

distance of a voxel in the cell coordinates matrices and normalizing by the number of voxels labelled as 457 

tissue (and not whitespace) in the tissue type matrix. To visualize local immune cell densities, PanIN were 458 

first 3D rendered using the MATLAB functions isosurface and patch. The local immune cell density map 459 

was overlaid on this patch using a determined colormap (with black corresponding to low density values 460 

and a brighter color corresponding to high density values).   461 

Estimation of 3D CD45+ cell density from 3D stromal cell density 462 

In two 3D samples containing H&E and IHC-stained sections, we compared the coordinates of detected 463 

CD45+ cells to those of all nuclei located in the H&E images. Initially, we calculated the immune cell density 464 

within local spheres of 150-micron radius. Next, the number of stromal cells was determined by dot 465 

multiplying the H&E cell matrix with a stromal mask. This mask was derived from the tissue type matrix 466 

label generated through deep learning 3D segmentation of each sample. The stromal cell density was then 467 

measured using the same 150-micron radius spheres. 468 

From the two 3D pancreas matrices containing H&E and CD45+ cell data, we extracted CD45+ and stromal 469 

cell densities for 500,000 voxels each, resulting in a combined dataset of 1,000,000 points. Using this 470 
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combined dataset of 1,000,000 voxels, we employed five-fold cross validation to evaluate linear, 471 

exponential, and power fits. We assessed the performance of these models using R2, mean squared error 472 

(MSE), and root mean squared error metrics. The resulting functions enabled the estimation of 3D CD45+ 473 

cell density based on 3D stromal cell density. 474 

Quantification of PanIN inflammatory heterogeneity 475 

For all 1,476 PanIN in the 48 3D pancreas samples, 1,000 starting points were randomly chosen. Moving 476 

across the surface of each PanIN in 12 µm intervals, we measured the change in immune cell density with 477 

distance to determine the distance necessary for the inflammation to change 25%, 50%, and 100%. This 478 

was repeated for all 1,476 PanIN and plotted as a histogram.  479 

Calculation of 2D and 3D radial immune cell density  480 

The MATLAB function bwdist was used to calculate the 2D or 3D radial distance of pixels in the tissue type 481 

matrix to a defined PanIN. For iterative distances away from the PanIN, the immune cell matrix was dot 482 

multiplied to determine the number of immune cells occupying a radial shell around the PanIN in 2D or 483 

3D space. This number was normalized by the area or volume of the shell to determine the immune cell 484 

density at that distance from the PanIN. This calculation was performed starting at the external edge of 485 

the PanIN to a distance of 2 mm into the tissue. This radial data was visualized as a line (for calculation in 486 

3D) or a series of lines (for calculation over a collection of 2D images) to show decay of immune cell density 487 

from the PanIN into the surrounding pancreas.  488 

Calculation of 3D local tissue density 489 

Tissue density was determined by calculation of the number of voxels of a certain tissue type contained 490 

in a local sphere of 150-micron radius. This number was normalized by the number of tissue pixels 491 

(excluding nontissue whitespace) contained in the sphere. Correlation coefficient and p-values were 492 

determined using MATLAB 2022b. 493 

Detection of immune hotspots and cold spots around PanINs 494 

Using the tissue label matrix, the location of all PanIN in each 3D sample was determined. The immune 495 

cell density at each PanIN voxel was computed through dot multiplication with the power-law adjusted 496 

stromal cell density matrix. The voxel with the highest immune cell density (a “hotspot”) was identified, 497 

and a 0.5 x 0.5 mm2 histological image centered on that coordinate was output, along with the tissue 498 

composition at that region of interest. All voxels within 0.5 mm of the hottest location in 3D space were 499 

eliminated, such that the next hotspot would be a minimum of 0.5 mm away from any previous hotspot. 500 

The next hottest location was found, and this process was repeated until ten hotspots were output. The 501 

process was repeated to identify the ten PanIN locations with the lowest immune cell density (“cold 502 

spots”) in each 3D sample. 503 

IMC staining and acquisition 504 

Slides were cut from the FFPE blocks onto slides. The slides were first baked for two hours at 60°C, 505 
dewaxed in xylene wash, and rehydrated in an alcohol gradient (100%, 95%, 80%, 70% EtOH in Maxpar® 506 
H2O). The slides were then washed with Maxpar® Water, then incubated in an Antigen Retrieval Agent 507 
(Dako) at a temperature of 105°C for 1 hour. Slides were blocked with 3% BSA in Maxpar® PBS for 45 508 
minutes. Selected antibodies were conjugated in-house, diluted to a concentration ranging from 0.25 mg 509 
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/ mL to 0.5 mg / mL, then aliquoted for use.  The slides were stained with the final antibody cocktail 510 
(detailed in Table S1) overnight at 4°C. Slides were subsequently washed with Triton-X in Maxpar® PBS, 511 
then washed in Maxpar® PBS. For DNA labelling, Cell-ID™ Intercalator-Ir (Fluidugm) was diluted at 1:400 512 
in Maxpar® PBS and stained. As a tissue counterstain, Ruthenium tetroxide 0.5% Stabilized Aqueous 513 
Solution (Polysciences) was diluted at 1:2000 in Maxpar® PBS and stained. A final wash was performed in 514 
Maxpar® Water. Images were acquired with a Hyperion Imaging System (Standard BioTools) at the Johns 515 
Hopkins Mass Cytometry Facility. Following acquisition, stacks of multi-layered ome.tiff images were 516 
exported, and representative images were generated utilizing MCD Viewer™ (Standard BioTools). 517 

Immune cell mapping using imaging mass cytometry 518 

To quantify the resulting images, each channel of the ome.tiff file was exported as a separate TIF file. First, 519 

nuclear coordinates were generated using the CODA cell detection algorithm on the DAPI channel. Next, 520 

the intensity of each antibody channel was measured at each nuclear coordinate. Nuclei with an intensity 521 

greater than 50% of the maximum intensity were counted as positive cells. To exclude non-periductal 522 

stroma region, image mask were manually generated for each region of interest. The immune cell counts 523 

were converted to immune cell density through normalization by the periductal stroma area in mm2. 524 

Immune cell densities were compared across conditions (inflamed PanIN ROIs, randomly selected PanIN 525 

ROIs, and normal duct ROIs) using a bar graph.  526 
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 701 
Fig S1.  Validation of multiplex image registration workflow. (a) Left: sample H&E and IHC images display varying color 702 
intensities. Right: these differences are quantified using pixel-to-pixel 2D cross-correlation. (b) Three techniques for image 703 
registration of multiplex histological images: (left) co-register all color images, (center) co-register the extracted hematoxylin 704 
channel of all images, (right) first register H&E color images, then integrate IHC color images. (c) Left: manual generation of 705 
fiducial points between serial, multiplex images allowed quantification of each method’s performance. Top right: target 706 
registration error (TRE), change in tissue area (Δarea) and tissue warping were calculated for each method, showing an overall 707 
best performance of method 3. Bottom right: normalized, graphical representation of the registration validation metrics shown 708 
in the table.   709 
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 710 
Fig S2. Validation of CODA tissue segmentation and immune cell detection from IHC. (a) Left: confusion matrix of semantic 711 
segmentation performance, with an overall accuracy of 96.6%. Right and bottom: sample human pancreas histology and 712 
segmented mask. (b) Top: sample histological sections used to validate detection of leukocytes, T cells, and regulatory T cells 713 
from IHC. Bottom: computed recall, precision, and F1 score. (c) The diameter of the IHC labelled immune cells was measured to 714 
extrapolate true 3D cell count from subsampled, serial histological images using the formula provided.   715 
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 716 
Fig S3. Immune aggregates associated with PanIN are sometimes distant. (a) Top and left crop: sample histology of a pancreas 717 
containing the median acinar immune cell density (4.5 CD45+ cells / mm3). Bottom and right crop: sample histology of a pancreas 718 
containing the maximum acinar immune cell density (63.2 CD45+ cells / mm3). The sample with higher inflammation in the acini 719 
contains extensive acinar to ductal metaplasia. (b) 3D renderings show a large PanIN located in a pancreatic duct directly 720 
upstream of a location of lobulocentric atrophy (black arrow indicates connection to duct). This region is highly inflamed, showing 721 
6-fold greater local inflammation than the precursor lesion itself. Radial immune profiles around the PanIN and inflamed lobule 722 
are plotted, and bulk inflammation is shown in tabular form.  723 
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 724 
Fig S4. Immune hotspot histology. Sample histology from each of the 48 3D tissue samples containing the immunologically 725 
hottest PanIN region of interest in the analyzed sample.  726 
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 727 
Fig S5. Immune cold spot histology. Sample histology from each of the 48 3D tissue samples containing the immunologically 728 
coldest PanIN region of interest in the analyzed sample.  729 
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 730 
Fig S6. Detailed graphs comparing 3D immune cell compositions around PanIN. (a) Pixel-wise correlation between local CD45+ 731 
cell density and CD3+cell density, and between CD3+ cell density and FOXP3+ cell density reveals strong correlations (r2 = 0.83 732 
and r2 = 0.32, respectively). (b) Scatter plots depicting the relationship between PanIN volume and immune cell ratios between 733 
CD3 and CD45, FOXP3 and CD45, and FOXP3 and CD3. (c) Scatter plots depicting the relationship between: CD45+ cell density 734 
and immune cell ratios of CD3 to CD45, FOXP3 to CD45, and FOXP3 to CD3, and CD3+ cell density and the immune cell ratio of 735 
FOXP3 to CD3.  736 
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 737 
Table S1. Details of imaging mass cytometry antibody cocktail. 738 
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