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Abstract

Background: The locations and shapes of synapses are important in reconstructing connectomes and analyzing
synaptic plasticity. However, current synapse detection and segmentation methods are still not adequate for
accurately acquiring the synaptic connectivity, and they cannot effectively alleviate the burden of synapse validation.

Results: We propose a fully automated method that relies on deep learning to realize the 3D reconstruction of
synapses in electron microscopy (EM) images. The proposed method consists of three main parts: (1) training and
employing the faster region convolutional neural networks (R-CNN) algorithm to detect synapses, (2) using the
z-continuity of synapses to reduce false positives, and (3) combining the Dijkstra algorithm with the GrabCut
algorithm to obtain the segmentation of synaptic clefts. Experimental results were validated by manual tracking, and
the effectiveness of our proposed method was demonstrated. The experimental results in anisotropic and isotropic
EM volumes demonstrate the effectiveness of our algorithm, and the average precision of our detection (92.8% in
anisotropy, 93.5% in isotropy) and segmentation (88.6% in anisotropy, 93.0% in isotropy) suggests that our method
achieves state-of-the-art results.

Conclusions: Our fully automated approach contributes to the development of neuroscience, providing
neurologists with a rapid approach for obtaining rich synaptic statistics.

Keywords: Electron microscope, Synapse detection, Deep learning, Synapse segmentation, 3D Reconstruction of
synapses

Background
A synapse is a structure that permits a neuron (or nerve
cell) to pass an electrical or chemical signal to another
neuron, and it has an important responsibility in the neu-
ral system. If we consider the brain network to be a map
of connections, then neurons and synapses can be con-
sidered as the dots and lines, respectively, and it can be
hypothesized that the synapse is one of the key factors
for researching connectomes [1–3]. In addition, synaptic
plasticity is associated with learning andmemory. Sensory
experience, motor learning and aging are found to induce
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alterations in presynaptic axon boutons and postsynaptic
dendritic spines [4–6]. Consequently, understanding the
mechanism of synaptic plasticity will be conducive to
the prevention and treatment of brain diseases. To study
the correlation between synaptic growth and plasticity
and to reconstruct neuronal connections, it is necessary
to obtain the number, location and structure of synapses
in neurons.
According to the classification of synaptic nerve

impulses, there are two types of synapses: chemical
synapses and electrical synapses. In this study, we focus
on the chemical synapse, which consists of presynaptic
(axonal) membrane, postsynaptic (dendritic) membrane
and a 30-60 nm synaptic cleft. Because of its limited reso-
lution, optical microscopy cannot provide sufficient reso-
lution to reveal these fine structures. Fortunately, it is now
possible to more closely examine the synapse structure
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due to the rapid development of electron microscopy
(EM). In particular, focused ion beam scanning elec-
tron microscopy (FIB-SEM) [7] can provide nearly 5nm
imaging resolution, which is conducive to obtaining
the very fine details of ultrastructural objects; however,
this technique is either limited to a small section size
(0.1mm × 0.1mm) or provides blurred imaging.
By contrast, automated tape-collecting ultramicrotome

scanning electron microscopy (ATUM-SEM) [8] offers
anisotropic voxels with a lower imaging resolution in the z
direction (2 nm× 2 nm× 50 nm), but it is capable of work-
ing with large-area sections (2.5 mm ×6 mm). Moreover,
ATUM-SEM does not damage any sections; thus, the pre-
served sections can be imaged and analyzed many times.
Considering volume and resolution, this paper employs
ATUM-SEM and FIB-SEM image stacks to verify the
validity and feasibility of our algorithms.
Note that EM images with higher resolution will

inevitably produce more data in the same volume; thus,
synapse validation requires a vast amount of laborious
and repetitive manual work. Consequently, an automated
synapse reconstruction pipeline is essential for analyz-
ing large volumes of brain tissue [9]. Prior works on
synapse detection and segmentation investigated a range
of approaches. Mishchenko et al. [10] developed a synap-
tic cleft recognition algorithm to detect postsynaptic den-
sities in serial block-face scanning electron microscopy
(SBEM) [11] image stacks. However, this method was
effective for synapse detection only if the prior neu-
ron segmentation was satisfactory. Navlakha et al. [12]
presented an original experimental technique for selec-
tively staining synapses, and then they utilized a semi-
supervised method to train classifiers such as support
vector machine (SVM), AdaBoost and random forest to
identify synapses. Similarly, Jagadeesh et al. [13] presented
a newmethod for synapse detection and localization. This
method first characterized synaptic junctions as ribbons,
vesicles and clefts, and then it utilized maximally stable
extremal region (MSER) to design a detector to locate
synapses. However, all these works [10, 12, 13] ignored the
contextual information of synapses.
For the above reasons, Kreshuk et al. [14] presented a

contextual approach for automated synapse detection and
segmentation in FIB-SEM image stacks. This approach
adopted 35 appearance features, such as magnitude of
Gaussian gradient, Laplacian of Gaussian, Hessian matrix
and structure tensor, and then it employed a random
forest classifier to produce synapse probability maps. Nev-
ertheless, this approach neglected the asymmetric infor-
mation produced by the presynaptic and postsynaptic
regions, which led to some inaccurate results. Becker
et al. [15] utilized contextual information and different
Gaussian kernel functions to calculate synaptic character-
istics, and then they employed these features to train an

AdaBoost classifier to obtain synaptic clefts in FIB-SEM
image stacks. Similarly, Kreshuk et al. [16] proposed an
automated approach for synapse segmentation in serial
section transmission electron microscopy (ssTEM) [17]
image stacks. The main idea was to classify synapses from
3D features and then segment synapses by using the Ising
model and object-level features classifier. Ref. [16] did
not require prior segmentation and achieved a good error
rate. Sun et al. [18] focused on synapse reconstruction in
anisotropic image stacks, which were acquired through
ATUM-SEM; detected synapses with cascade AdaBoost;
and then utilized continuity to delete false positives. Sub-
sequently, the variational region growing [19] was adopted
to segment synaptic clefts. However, the detection accu-
racies of Ref. [16] and Ref. [18] were not satisfactory, and
the segmentation results lacked smoothness.
Deep neural networks (DNNs) have recently been

widely applied in solving medical imaging detection and
segmentation problems [20–23] due to their extraordi-
nary performance. Thus, the application of DNNs to
synapse detection in EM data holds great promise. Roncal
et al. [24] proposed a deep learning classifier (VESICLE-
CNN) to segment synapses directly from EMdata without
any prior knowledge of the synapse. Staffler et al. [25]
presented SynEM, which focused on classifying borders
between neuronal processes as synaptic or non-synaptic
and relied on prior neuron segmentation. Dorkenwald
et al. [26] developed the SyConn framework, which used
deep learning networks and random forest classifiers to
obtain the connectivity of synapses.
In this paper, we introduce a fully automatedmethod for

realizing the 3D dense reconstruction of synapses in FIB-
SEM and ATUM-SEM images by combining a series of
effective detection and segmentation methods. The image
datasets are depicted in Fig. 1. To avoid false distinctions
between a synaptic cleft andmembrane, we utilize contex-
tual information to consider the presynaptic membrane,
synaptic cleft and postsynaptic membrane as a whole, and
then we adopt a deep learning detector [27] to obtain the
accurate localization of synapses. Subsequently, a screen-
ing method with z-continuity is proposed to improve the
detection precision. To precisely segment synapses, the
Dijkstra algorithm [28] is employed to obtain the opti-
mal path of the synaptic cleft, and the GrabCut algorithm
[29] is applied for further segmentation. Finally, we uti-
lize ImageJ [30] to visualize the 3D structure of synaptic
clefts, and we compare our results with other promis-
ing results obtained by Refs. [15, 18, 19, 23]. By using
deep learning, z-continuity and GrabCut, our approach
performs significantly better than these methods.

Method
The proposed automated synapse reconstruction method
for EM serial sections of biological tissues can be divided
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Fig. 1 Datasets and synapses. a Left: An anisotropic stack of neural tissue from mouse cortex acquired by ATUM-SEM. Right: Isotropic physical
sections from rat hippocampus obtained by FIB-SEM. b Serial synapses in ATUM-SEM images. c Serial synapses in FIB-SEM images. As shown, the
ATUM-SEM images are the sharper ones

into five parts, as follows: image registration (ATUM-SEM
only), synapse detection with deep learning, screening
method with z-continuity, synapse segmentation using
GrabCut and 3D reconstruction. The related video of the
3D reconstruction is shown in Additional file 1: Video S1.
In this paper, we focus on the middle three steps. Figure 2
illustrates the workflow of the proposed method.
The proposed image registration method for serial

sections of biological tissue is divided into three parts:
searching for correspondences between adjacent section,
displacement calculations for the identified correspon-
dences, and warping the image tiles based on the new
position of these correspondences. For the correspon-
dences searching, we adopted SIFT-flow algorithm [31],
to search for correspondences between adjacent sections
by extracting equally distributed grid points on the well-
aligned adjacent sections. For the displacement calcula-
tion, the positions of the identified correspondences were
adjusted throughout all sections by minimizing a target
energy function, which consisted of the data term, the
small displacement term, and the smoothness term. The
data term keeps pairs of correspondences at the same
positions in the x-y plane after displacement. The small

displacement term constrains the correspondence dis-
placements to minimize image deformation. The smooth-
ness term constrains the displacement of the neighbor
correspondences. For the image warping, we used the
Moving Least Square (MLS) method [32] to warp each
section with the obtained positions. The deformation
results produced byMLS are globally smooth to retain the
shape of biological specimens. The similar statement also
can be seen fromRef. [33]. This image registrationmethod
not only reflects the discontinuity around wrinkle areas
but also retains the smoothness in other regions, which
provides a stable foundation for follow-up works.

Synapse detection with deep learning
In this part, Faster R-CNNwas adopted to detect synapses
in EM image stacks. Faster R-CNN mainly consists of
two modules: the first module is the region proposal
network (RPN), which generates region proposals, and
the second one is Fast R-CNN [34], which classifies the
region proposals into different categories. The process of
applying Faster R-CNN to detect synapses is illustrated in
Fig. 3. First, we used a shared fully convolutional network
(FCN) to obtain the feature maps of the raw data. The
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Fig. 2 The workflow of our proposed method. Left to right: the raw data with one synapse, shown in red circles; image registration results; synapse
detection results of the faster region convolutional neural networks (R-CNN); the results of screening method using z-continuity, with positive
shown in red and negative in green; synaptic cleft segmentation through GrabCut; and 3D reconstruction of the synapse

visualizations of feature maps indicate that, more neurons
in the convolutional layer positively react to the visual
patterns of synapses than others. Thus making it easier
to recognize synapses from these maps. Subsequently,
we adopted RPN to extract candidate regions from the
feature maps (the architectures of shared FCN layers and
RPN are illustrated in [Appendix 1]). Given the proposed
regions and feature maps, the Fast R-CNN module was
employed to classify the region proposals into synapse
and background. In Faster R-CNN, the four basic steps
of target detection, namely, region proposal, feature
extraction, object classification and bounding-box regres-
sion, are unified in a deep-learning-based and end-to-end
object detection system. Consequently, it is capable of

guaranteeing a satisfactory result in terms of both overall
detection accuracy and operation speed.
Faster R-CNN is widely used to train and test natural

image datasets, such as PASCAL VOC and MS COCO,
where the height and width ranges of these images are
from 500 pixels to 800 pixels. For an EM image, its size is
generally larger than that of a natural image, larger than
even 8000 pixels, which requires more memory storage
in the GPU. To avoid exceeding the memory of the GPU,
smaller images are proposed to train Faster R-CNN. For
the ATUM-SEM dataset, we divided the original ATUM-
SEM images (size of 8624 ×8416) into 72 small images
(size of 1000 ×1000), allowing a nearly 50 pixel overlap
between each image to avoid false negatives, as shown in

Fig. 3 Faster R-CNN architecture. A raw image is input into a shared FCN, and then RPN is applied to generate region proposals from feature maps.
Subsequently, each proposal is pooled into a fixed-size feature map, followed by the Fast R-CNN model to obtain the final detection results. This
architecture is trained end-to-end with a multi-task loss
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Fig. 4a. Similarly, we divided one original FIB-SEM image
(size of 768 ×1024) into 6 overlapping small images (size
of 500 ×500). In the following, the application Training
Image Labeler was employed to label synapses. To avoid
overfitting, we used augmentation strategy such as flip

Fig. 4 Image progressing during the use of Faster R-CNN. a Illustration
of image clipping. b Top: Detection results, where the blue arrow is
pointing to the duplicate detections. Bottom: Detection results with
the fusion algorithm, where the red arrow is pointing to the fusion
result

and rotation to enlarge the training dataset. Through data
augmentation, the number of both training samples is
greater than 7000, which is sufficient for single target
detection.
The deep learning network was implemented using

Caffe [35] deep learning library (The process of training
the Faster R-CNN is shown in [Appendix 2]). In training
process, Faster R-CNN was optimized by the stochas-
tic gradient descend (SGD) algorithm with the following
optimization hyperparameters: weight decay = 0.0005,
momentum = 0.9, gamma = 0.1, learning rate = 0.0001
for numerical stability. The mini-batch size and number
of anchor locations were set to 128 and 2400, respectively.
In addition to ZF [36] and VGG16 [37], we also applied
ResNet50 [38] as shared FCN to train Faster R-CNN. It
took nearly 20-28 hours to train the network for 80000
iterations on a GeForce Titan X GPU.
Given the detection results of small images, it is easy to

gather all detections and obtain the final detection results
of an original image. However, synapses distribute ran-
domly in EM images, and it is possible that one synapse
coexists in two adjacent small images. In this case, this
method might lead to duplicate detections, which reduces
the detection precision, as illustrated in Fig. 4b. Therefore,
an effective detection boxes fusion method is proposed
to solve this challenge. Through observations and analy-
ses, we find that the distributions of synapses are sparse.
Suppose that there are Ni synapse detection boxes in
the ith section, Si,j represents the jth synapse detection
box in the ith section, and

(
c1i,j, c2i,j

)
and

(
c3i,j, c4i,j

)
are

Fig. 5 Simple schematic of screening method with z-continuity. In
the case of the synapses in section i, we compare their location with
that of the upper and lower layers; synapses that appear L or more
times will be retained. In this figure, L = 3, and synapse detections in
red boxes are retained while those in green boxes are removed
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the upper-left coordinates and lower-right coordinates of
Si,j, respectively. If two synapse detection boxes are close
enough or even overlapped, it can be concluded that these
might be duplicate detections. A direct evaluation cri-
terion for duplicate detections is the distance between
synapses in the same section. The main procedure in the
ith section is illustrated in Algorithm 1. In line 11 and 12
of Algorithm 1,

(
c′1
i,j, c

′2
i,j

)
and

(
c′3
i,j, c

′4
i,j

)
are the upper-left

coordinates and lower-right coordinates of the updated
S ′i,j, respectively.

Algorithm 1: Fusion of duplicate synapse detection
boxes
Input:
Ni: the number of synapse detection boxes in the ith
section.
Si,j, j ∈ [1,Ni]: jth synapse detection box in ith section.
Ci,j: the coordinates of central point of Si,j.
ϑ : threshold.
Output:
S ′i,j: the updated jth synapse detection box in ith
section.

1 Initialize j = 1
2 repeat
3 for each Si,k(j + 1 ≤ k ≤ Ni) do
4 Calculate the Euclidean distance between Si,j

and Si,k :
5 dij,k = ∥∥Ci,j − Ci,k

∥∥2 , k = j + 1, · · · ,Ni.
6 end
7 Seek the nearest synapse box Si,k0 from Si,j:
8 k0 = argmin

{
dij,k

}
, k = j + 1, · · · ,Ni.

9 if dk0i,j < ϑ then
10 Fuse these two detection boxes Si,j and Si,k0

into S ′i,j:
11 c′r

i,j = min
(
cri,j, cri,k0

)
, r = 1, 2

12 c′s
i,j = max

(
csi,j, csi,k0

)
, s = 3, 4.

13 end
14 j ← j + 1
15 until j = Ni;

Screeningmethod with z-continuity
A synapse is a flat 3D structure with a size of nearly 400
nm in long axis [39], whereas the distance between adja-
cent section is 50 nm in ATUM-SEM image stacks and 5
nm in FIB-SEM image stacks. As shown in Fig. 5, it can be
hypothesized that a real synapse is capable of appearing in
several layers.

In contrast, false positives only appear in one or two lay-
ers. Therefore, we utilized z-continuity to eliminate false
positives. Specifically, if a synapse detection box appears
L times or more in the same area of continuous 2L − 1
layers, it can be considered as a real synapse; otherwise,
it is regarded as a false positive. The clear-cut principle is
described in Algorithm 2.

Algorithm 2: Screening method with z-continuity
Input:
M: the number of all images.
Ni: the number of synapse detection boxes in the ith
section.
Si,j, j ∈ [1,Ni]: jth synapse detection box in ith section.
Ci,j: the coordinates of central point of Si,j.
υ: distance threshold.
L: z-continuity layers.
Output:
S ′′n(n = 1, 2, ...): the screening results.

1 Initialize i = L + 1, j = 1
2 repeat
3 repeat
4 for each

Sl,m(i − L ≤ l ≤ i + L − 2, 1 ≤ m ≤ Nl) do
5 Calculate the Euclidean distance between

Si,j and other synapse detection boxes Sl,m
in continuous 2L + 1 layers:

6 di,lj,m = ∥∥Ci,j − Cl,m
∥∥2 , l =

i − L, · · · , i + L; m = 1, · · · ,Nl.
7 end
8 Determine the nearest synapse box

Sl,tl , l = i−L, · · · , i+L. from Si,j in each layer:
9 tl = argmin

{
di,lj,m

}
, m = 1, · · · ,Nl.

10 Obtain the times that the synapse detection
box Si,j appears:

11 T = ∑i+L
l=i−L

[
di,lj,tl < υ

]
.

12 if T ≥ L then
13 Remain the synapse detection box Si,j.
14 end
15 j ← j + 1
16 until j = Ni;
17 i ← i + 1
18 until i = M − L;

In line 11 of Algorithm 2, [·] denotes the indicator func-
tion.When Tmeets T ≥ L, we can confirm that the object
detected by Faster R-CNN is a synapse with high proba-
bility; thus, this detection result Si,j with an index in the
3D view S ′′n(n = 1, 2, . . . ) will remain. Otherwise, it will
be removed.
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Fig. 6 The workflow of synaptic cleft segmentation. Left to right: raw image; the result of morphological processing; fitted curve of synaptic cleft (in
bold type for representation); shortest path of synaptic cleft (in bold type for representation); and segmentation result of GrabCut

Synapse segmentation using GrabCut
Because synaptic clefts, which are at least 40 nm in width,
are wider than other dark regions in the detection boxes,
they can be segmented using several image processing
methods, as illustrated in Fig. 6.
First, we converted the original detection images into

binary images using an adaptive threshold. On this basis,
the erode and dilate operations were employed to elim-
inate noise and obtain synaptic clefts. After morpho-
logical processing, synaptic clefts can be approximately
located. Since most shapes of synaptic clefts are simi-
lar to quadratic curves, suitable curves are proposed to
fit the structure of the synaptic clefts and obtain more
refined results. We randomly selected m pairs of points
pi = (xi, yi), 1 < i � m from the image after mor-
phological processing, and m is defined as one third of
the number of white points in the corresponding image,
which is empirically based. Subsequently, we employed
them to fit the quadratic curve y = ax2 + bx + c.

Consequently, a series of synaptic clefts are observed as
quadratic curves. Finally, we selected the starting point p1
and the ending point pn from the two ends of each fit-
ted curve, and then we calculated the shortest path [28]
between p1 and pn.
Note that the obtained shortest path is only a curve

rather than a segmentation result, and sometimes the
dilated results of fitted curve and shortest path cannot
effectively fit the various synaptic clefts, as shown in
the Fig. 6, an effective segmentation algorithm has to be
introduced. Motivated by previous researches [29], we
proposed to use GrabCut algorithm for fine segmentation.
First, we considered the image as an array α =

(α1, . . . ,αN ), and we regarded the segmentation result as
an array β = (β1, . . . ,βn, . . . ,βN ) at each pixel, βn = {0, 1}
with 1 for synapse and 0 for background. The parameters
θ denoted the distributions of synapse and background in
the image. Next, we modeled a full-covariance Gaussian
mixture model (GMM) [40] for synapse and background

Fig. 7 The description of synapse segmentation through GrabCut. Normal automatic segmentation methods have poor performance in EM images
(top row); Therefore, further prior information is necessary. According to the existing shortest path, automatically marking with a foreground brush
(red) and a background brush (blue) is sufficient to obtain a desired segmentation result (bottom row)
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with K components separately. To properly use the
GMM, an additional vector k = (k1, . . . , kn, . . . , kN )

is introduced, where kn is the Gaussian component
corresponding to the n th pixel. For each pixel, the GMM
component is either from the synapse model or the back-
ground model. The task of segmentation is to obtain the
unknown variables β from the given image α and the
model parameters θ . The Gibbs energy E consists of a data
term D and smoothness term S , which can be defined as

E(β , k, θ ,α) = D(β , k, θ ,α) + S(β ,α). (1)

The minimum of Eq. (1) can be considered as a good
segmentation. In Eq. (1), the data term D indicates the
penalty for a pixel that is classified incorrectly. According
to the GMMs, it can be defined as

D(β , k, θ ,α) =
∑
n

G(βn, kn, θ ,αn). (2)

where G can be expressed as

G(βn, kn, θ ,αn)= − log p(αn | βn, kn, θ)−logπ(βn, kn).
(3)

In this work, p(·) denotes the Gaussian probability distri-
bution, and π(·) represents the mixture weight.
GraphCut [41] is a one-time minimization, whereas

GrabCut is an iterative minimization, and each iteration
process makes the GMM parameters better for image
segmentation. Initialize the trimap T = {TS,TB,TU} by
selecting the rectangular box. The pixels outside the box
belong to background TB, whereas the pixels inside the
box indicate “they might be synapses" and belong to TU ,
and TS implies synapse. To obtain a better result, users
can draw a masking area inside the box with a synapse
brush and a background brush, where the pixels in dif-
ferent masking areas are regarded as different classes.
The detailed procedures for synapse segmentation using
GrabCut are described in Algorithm 3.
In Fig. 7, we present a more visual description of

synapse segmentation by using GrabCut. The bounding
box in green is automatically obtained by the bound-
ary of images, which denotes the initial area TU (top
left corner). In the case of our datasets, the automatic
segmentation result is not accurate (top right corner).
For this task, we take the skeletonization of the shortest
path and random sampling points as prior information,
and then we apply GrabCut to synapse segmentation. The
skeletonizations of the shortest path (in red) are regarded
as synapse TS (bottom left corner), and random sampling
points (in blue) indicate background TB. In this case, the
final segmentation result is satisfactory.

Algorithm 3: Iterative image segmentation with
GrabCut
Input:
α = (α1, ...,αN ): image data.
T = {TS,TB,TU}: the initialized trimap.
Output:
β = (β1, ...,βn, ...,βN ): segmentation result.

1 Initialize the k-means algorithm is adopted to
initialize the synapse and the background GMM.

2 repeat
3 Assign GMM components to each pixel in T :
4 kn := argmin

kn
Gn(βn, kn, θ ,αn).

5 Learn and optimize GMM parameters through
image data α:

6 θ := argmin
θ

D(β , k, θ ,α).

7 Utilize min cut to minimize energy E and obtain
the segmentation result:

8 min{βn:n∈TU }min
k

E(β , k, θ ,α)

9 until convergence;

Results and Discussion
In this section, we present several experiments on the
two datasets depicted in Fig. 1a to validate our proposed
method. All algorithm parameters are summarized in
Table 1. Due to the difference between the two datasets,
the parameters are different in the detection box fusion
process and screening method with z-continuity. Parame-
ters (subscript 1) are applied to the ATUM-SEM dataset,
and parameters (subscript 2) are suitable for the FIB-SEM
dataset. Although it appears that there are many param-
eters to tune in the pipeline, only the fusion distance
threshold, z-continuity layer and z-continuity distance
threshold need to be replaced when the dataset changes.
We first present the datasets and evaluation methods.

Subsequently, we adopt precision-recall curves to evalu-
ate the performances of our detection and segmentation

Table 1 Algorithm parameters and values

Parameter Symbol Value

Fusion distance threshold ϑ1 100

ϑ2 50

z-continuity layers L1 3

L2 20

z-continuity distance threshold υ1 200

υ2 100

GrabCut iterations TG 10

Gaussian mixture components K 5
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Table 2 Illustration of two datasets

Dataset EM Voxel size (nm3) Train size Test size

(A) Cortex ATUM-SEM 2 ×2 ×50 8624 × 8416 × 30 7616 × 8576 × 178

(B) Hippocampus FIB-SEM 5 ×5 ×5 1024 × 768 × 165 1024 × 768 × 165

methods. Then, average precision (AP), F1 score and Jac-
card index are employed for further quantitative analyses.
Finally, we present and analyze the reconstruction results
of synapses.

Datasets and evaluation method
In this work, the specimens and ATUM-SEM sections
of mouse cortex were provided by the Institute of
Neuroscience, Chinese Academy of Sciences (CAS). The
physical sections were imaged using an SEM (Zeiss
Supra55) with an imaging voxel resolution size of 2 nm
×2 nm ×50 nm and dwell time of 2 μs by the Insti-
tute of Automation, CAS. The dataset of rat hippocam-
pus1 was acquired by Graham Knott and Marco Cantoni
at École Polytechnique Fédérale de Lausanne (EPFL). It
is made publicly available for accelerating neuroscience
research, and the resolution of each voxel is approximately
5 nm ×5 nm ×5 nm.
The details of the training and testing data for each

dataset are summarized in Table 2. The ground truths of

Fig. 8 Comparison between normal overlap and 1-pixel overlap.
a Normal overlap. b One-pixel overlap. Areas surrounded by red and
blue solid lines denote the ground truth and segmentation result,
respectively, and the yellow area represents the intersection of these
two areas. In (b), the ground truth and segmentation result both
dilate by one pixel, and it can be observed that the intersection area
of (b) is larger than that of (a), which improves the fault tolerance of
the evaluation

the datasets are annotated manually using ImageJ soft-
ware. For the ATUM-SEM dataset, the training dataset
contains 142 synapses in 3D view and 1522 synapses in
2D view, and the testing volume contains 723 synapses in
3D view and 7183 synapses in 2D view. For the FIB-SEM
dataset, the number of synapses in training and testing
are 25 and 26. Clearly, it is a time consuming and labo-
rious process, which takes several experienced students
approximately one month to obtain such a large amount
of databases. respectively.
Since our approach is composed of two primary parts,

detection and segmentation, we choose different met-
rics for the different parts. The main metrics utilized for
evaluation are as follows:

• Precision and recall. In this work, precision is the
probability that detected synapses are correct, and
recall is the probability that the true synapses are
successfully detected.

precision = true positives
true positives + false positives

, (4)

recall = true positives
true positives + false negatives

. (5)

• Average precision. AP denotes the area under the
precision-recall curve, and it can be expressed as the
following formula, where P represents precision and
R indicates recall:

AP =
∫ 1

0
P (R) dR. (6)

Table 3 Detection results of Faster R-CNN based on different
models

Dataset EM Size Model AP Rate

(A) Cortex ATUM-SEM 1000 × 1000 ZF 82.0% 9 fps

VGG16 83.2% 3 fps

ResNet50 84.1% 4 fps

(B) Hippocampus FIB-SEM 500 × 500 ZF 86.8% 36 fps

VGG16 87.4% 12 fps

ResNet50 90.9% 16 fps
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Fig. 9 Detection results. Top: The detection results of original images. Bottom: Feature maps corresponding to the detection results

• F1 score. Since precision and recall are often
contradictory, F1 score is the weighted average of
precision and recall, which shows the comprehensive
performance of methods.

F1 score = 2 × P × R
P + R

. (7)

• Jaccard index. This metric is also known as the VOC
score [42], which calculates the pixel-wise overlap
between the ground truth (Y) and segmentation
results (X).

Jaccard index (X,Y ) = X
⋂

Y
X

⋃
Y
. (8)

Motivated by Ref. [43], we define that a detection or seg-
mentation result is considered as a true positive only if the
overlap between the region of the result and correspond-
ing ground truth reaches at least 70%.
For segmentation, the shape of the synapses is always

long and narrow, and the boundaries of synapses are often
difficult to define. According to Ref. [15], manual annota-
tions near synapse borders are not always accurate. Hence,
due to the error in the annotations, the evaluation mea-
sure such as Jaccard index may be impacted with high
probability. Inspired by the average 3-pixel error rate in
Ref. [44], we define a pixel neighborhood overlap measure
to eliminate this adverse effect. As depicted in Fig. 8a, the
area surrounded by the red solid line denotes the ground
truth (Y ), and the area surrounded by the blue solid line
indicates the segmentation result (X). The yellow area in
Fig. 8a represents the intersection of the ground truth

and segmentation result. In Fig. 8b, both the ground truth
and segmentation result dilate one pixel, and the dilated
ground truth (Y 1) and dilated segmentation result (X1) are
denoted with dashed lines. Therefore, the Jaccard index of
1-pixel overlap can be expressed as

Jaccard index1(X,Y ) =
(
X1 ⋂

Y
) ⋃ (

X
⋂

Y 1)

X
⋃

Y
. (9)

Furthermore, we use the dilated segmentation result (X1)
and dilated ground truth (Y 1) to calculate the precision
and recall and to obtain the 1-pixel overlap of AP. For 3-
pixel overlap and 5-pixel overlap, the ground truth and
segmentation result dilate three pixels and five pixels,
respectively.

Detection Accuracy
In this subsection, we evaluate the detection performance
of our approach and compare it with Refs. [15, 18, 23] on
different datasets in terms of precision recall curves, AP
and F1 measure.
Table 3 presents the detection results of Faster R-CNN

on a GeForce Titan X GPU. In Table 3, the rate shows the
processing speed of different models on the test images.
Through the experimental results, it can be found that the
ResNet50 network provides the highest AP with an accep-
tance rate. Therefore, we exploited ResNet50 networks to
detect synapses.

Table 4 Detection performance of different threshold L on the
ATUM-SEM dataset

Size of L L = 2 L = 3 L = 4 L = 5 L = 6 L = 7

AP 77.8 86.8 83.3 75.2 70.1 66.2
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a b

Fig. 10 Precision-recall curves of detection for each dataset. Our approach yields better performance than that of the baseline approaches of Refs
[15, 18, 23]. a ATUM-SEM dataset. b FIB-SEM dataset

Figure 9 shows the detection results of original images
and presents the feature maps extracted from the Faster
R-CNN model. These figures indicate that neurons in the
convolutional layer positively react to the visual patterns
of synapses.
From the subsection of screening method with z-

continuity, it can be hypothesized that a real synapse
is capable of appearing L times or more in the same
area of continuous 2L − 1 layers. Therefore, we con-
duct several experiments by considering the cases of L =
2, 3, 4, 5, 6, 7 on the ATUM-SEM dataset. As shown in
Table 4, the detection performance (measured by AP) is
highest when taking L = 3. When L ≥ 3, note that the
AP decrease as the threshold L increase, which is mainly
because of filtering the true positives.

Precision-recall curves are presented in Fig. 10. Accord-
ing to the behavior of the precision-recall plots, it can be
deduced that our approach performs better than the base-
line approaches of Refs. [15, 18, 23] for all recall values.
For the ATUM-SEM dataset, the performance signifi-

cantly decreases since it ignores fusion and z-continuity.
For the FIB-SEM dataset, the difference between synapses
and other subcellular structures is significant due to its
small area and simple scene. Thus, our approach achieves
a higher average detection precision, and the promotion
of the screening method is not enormous.
Although U-Net [23] is a simple and effective fully

convolutional networks for image segmentation, which
achieves good performance on different biomedical
segmentation applications. Due to the imbalanced data

Table 5 Quantitative detection performance for two EM datasets

Metrics Sun [18] U-Net [23] F-RCNN F-RCNN + F-RCNN + F-RCNN + fusion +
fusion continuity continuity

ATUM-SEMDATASET

AP 67.6% 74.9% 84.1% 89.7% 86.8% 92.8%

F1 64.8% 74.8% 79.3% 83.6% 83.9% 89.2%

FIB-SEMDATASET

Metrics Becker [15] U-Net [23] F-RCNN F-RCNN + F-RCNN + F-RCNN + fusion +
fusion continuity continuity

AP 90.6% 82.4% 90.9% 91.9% 92.4% 93.5%

F1 88.4% 82.0% 88.5% 90.6% 89.2% 91.4%
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Fig. 11 Qualitative segmentation results for two different datasets at the best threshold. Top: ATUM-SEM images, Bottom: FIB-SEM images. Note
that our method achieves more accurate results as well as reducing false positives

and complex scene, the performance of U-Net is not
very satisfactory in synapse segmentation task. As shown
in Table 5, our approach outperforms other algorithms
on different metrics. For the ATUM-SEM and FIB-SEM
datasets, our approach yields 92.8 and 93.5% AP and 89.2
and 91.4% F1 score, which are higher than that of others
algorithms.

Segmentation accuracy
The qualitative segmentation results are shown in Fig. 11,
from which we can easily conclude that our approach
achieves satisfactory results. Our approach provides more
accurate results and reduces false positives, and most
of the synaptic clefts are correctly segmented from the
original images.
For the quantitative analysis, evaluation of the model is

performed by using precision-recall curves, AP, F1 score
and Jaccard index. Precision-recall curves at different
pixel overlap sizes are shown in Fig. 12, and our approach
outperforms the baseline approaches of Refs. [15, 18, 19,
23] for most of the recall values and pixel overlap sizes.
Note that the proposed approach with GrabCut perform
much better than the approach with variational region
growing [19], which verifies the effectiveness of GrabCut.
In the following, we present the AP and the highest
values of the F1 score and Jaccard index for all recalls at

different values of pixel overlap sizes in Tables 6 and 7,
which illustrate the same results. In general, our results
indicate a significant improvement in the segmentation
performance for each dataset.

3D visualization
After obtaining the segmentation results, we import them
into ImageJ [30], and we show the 3D visualization of
synapses for each dataset in Fig. 13. The related videos are
shown in Additional file 2: Video S2 and Additional file 3:
Video S3, respectively.

Computational Efficiency
In this subsection, we illustrated the comparisons of com-
putational efficiency in Table 8. Being different from Ref.
[18] and our approach, Ref. [15] obtained the synapse
segmentation results directly, thus its computational
cost only contain segmentation part. For the large-scale
ATUM-SEM dataset, the total detection and segmenta-
tion time of our approach is 255 mins, which is slightly
slower than that of Ref. [18] (202 mins). For the FIB-SEM
dataset, the test time of our approach is 8 mins, which
is almost one-fourth of Ref. [15]. Note that our approach
outperforms Refs. [15, 18] in precision of detection and
segmentation. It can be speculated that the proposed
pipeline is capable of guaranteeing a promising result
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a

b

c

d

e

f

Fig. 12 Precision-recall curves of segmentation for each dataset at different pixel overlap sizes. Cut denotes the GrabCut method, growing denotes
the variational region growing method. The performance of our approach is better than that of the baseline approaches of Refs. [15, 18, 19, 23].
a-c ATUM-SEM dataset at 0, 3 and 5 pixel overlap, respectively. d-f FIB-SEM dataset at 0, 3 and 5 pixel overlap, respectively

in terms of both segmentation accuracy and operation
speed.

Discussion
As mentioned in this section, our approach outperforms
the approaches of Refs. [15, 18, 19, 23] on several standard
metrics. However, note that the results of Ref. [15] in this
paper are lower than those reported in the TMI paper.
There might be two reasons for this inaccuracy. The first
is that the authors of Ref. [15] offer no ground truth, and
they allow us to draw it by ourselves. The second is that

our performance measurements are not similar to those
in Ref. [15].
Since the synapse is a flat 3D structure and the screen-

ing method with z-continuity have indeed reduced false
positives in our work, which demonstrates the importance
of 3D information in synapse detection problem. In addi-
tion, inspired by the promising results [45, 46], it can
be speculated that the 3D network could effectively pre-
serve and extract the 3D spatial information from volu-
metric data. Therefore, we believe that the extension of
2D R-CNN to 3D one could help improve the detection
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Table 6 Segmentation performance for the ATUM-SEM dataset

Size of pixel Metrics Sun [18] U-Net [23] F-RCNN+ F-RCNN + F-RCNN + fusion +
overlap Growing [19] GrabCut continuity + GrabCut

0-pixel AP 32.7% 55.4% 49.0% 57.6% 65.6%

F1 36.3% 58.1% 53.4% 60.6% 65.2%

Jaccard 30.6% 49.5% 43.2% 52.6% 58.1%

3-pixel AP 56.3% 67.4% 67.8% 78.8% 86.1%

F1 60.6% 66.9% 69.2% 75.8% 81.5%

Jaccard 50.1% 59.0% 59.8% 69.0% 74.7%

5-pixel AP 59.4% 70.6% 76.4% 80.3% 88.6%

F1 62.7% 70.1% 74.4% 77.5% 84.1%

Jaccard 53.7% 60.2% 63.5% 72.2% 76.9%

accuracy, and we are planning to design 3D Faster R-CNN
network to detect synapses in EM data set.

Conclusion
In this paper, we propose an effective approach to recon-
struct synapses with deep learning. Our strategy is to
utilize Faster R-CNN to detect the regions of synapses
and then employ z-continuity to reduce false positives.
Subsequently, shortest path and GrabCut are employed to
obtain the synaptic clefts. Finally, we utilize our approach
for the 3D reconstruction of synapses in isotropic and
anisotropic datasets. The experimental results demon-
strate that our algorithm enhances the precision of
detection and guarantees the accuracy of segmentation,
which will promote efficiency in synapse validation and
benefit connectomics and synaptic plasticity analysis.
Furthermore, we apply our approach to neuroscience
experiments. Our automated approach helps neurologists
quickly identify the number of synapses and multi-
synapses in different experimental specimens, and further

analyses reveal a correlation between spine formation and
responses of fear-conditioned animals [4].
Despite the promising segmentation results of our

approach, the segmentation process is somewhat tedious,
and the efficiency and accuracy of traditional segmen-
tation algorithms can be increased. For this task, future
work will focus on detection and segmentation using end-
to-end 3D deep neural networks, which will enhance both
speed and accuracy for synapse reconstruction algorithm.

Endnote
1 http://cvlab.epfl.ch/data/em

Appendix 1: The architecture of shared FCN layers
and RPN
Faster R-CNN mainly consists of two modules, the first
module is RPN that generates region proposals, the sec-
ond one is Fast R-CNN [34] which classifies the region
proposals into different categories. In practice, the archi-
tecture of RPN and Fast R-CNN are fixed, ZF [36] and

Table 7 Segmentation performance for the FIB-SEM dataset

Size of pixel Metrics Becker [15] U-Net [23] F-RCNN + F-RCNN + F-RCNN + fusion +
overlap Growing [19] GrabCut continuity + GrabCut

0-pixel AP 79.3% 70.3% 66.8% 79.4% 82.8%

F1 78.2% 68.9% 69.4% 77.5% 82.9%

Jaccard 61.5% 54.1% 53.5% 65.2% 70.9%

3-pixel AP 88.0% 78.8% 74.0% 88.1% 91.6%

F1 84.4% 77.2% 74.6% 85.4% 89.4%

Jaccard 74.6% 60.9% 60.2% 75.7% 79.6%

5-pixel AP 90.2% 80.6% 79.5% 90.8% 93.0%

F1 86.6% 79.3% 78.9% 87.8% 91.1%

Jaccard 80.3% 67.5% 67.7% 80.6% 83.7%

http://cvlab.epfl.ch/data/em
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Fig. 13 3D reconstruction of synapses. a Reconstruction of synapses on the ATUM-SEM dataset with a volume of 15.2 μm ×17.2 μm ×8.9 μm.
b Reconstruction of synapses on the FIB-SEM dataset with a volume of 5.1 μm ×3.8 μm ×0.8 μm

VGG16 [37] are applied as shared FCN to train the whole
network. Here we introduce the shared FCN and RPN
modules in details.
The architecture of the shared FCN layers (eg. ZF) and

RPN is showed in Fig. 14. The structure above the dot-
ted line is ZF network, and the structure below the dotted
line is RPN network. Assuming the size of the input map
is 224 ×224 ×3. The parameters of Conv1 layer are as
follows: the kernel size is 7 ×7, the channels of feature
maps is 96, the padding size and the stride size is 5 and
2, respectively. In ZF, each convolution layer is followed
by batch normalization and rectified linear unit (RELU),
and the size of output feature maps is 14 ×14 ×256. In
RPN, it first takes a 3 × 3 convolutional kernel (sliding
window) in the input feature maps. In the center of slid-
ing window (illustrated in Fig. 15), there are k (k = 9)
anchor boxes with different scales (128, 256, 512) and
aspect ratios (1:1, 1:2, 2:1), which are used to solve the
multi-scale target tasks in detection. In what follows, cls
layer and reg layer are employed for classification and
border regression respectively. cls layer generates two ele-
ments to determine the probability of candidates, while
the reg layer produces four coordinate elements (x, y,w, h)
to identify the location of candidates. Finally, according
to the probability of candidates, RPN selects the top 300

region proposals as the input of Fast R-CNN for further
classification.

Appendix 2: The process of training the Faster
R-CNN
Since RPN and Fast R-CNN share the same feature extrac-
tion network, we utilized the alternating training method
to train the network with features shared, the training
process is described as follows:
Step 1: Initialize RPN network parameters by using

ImageNet pre-trained model, and then fine-tune RPN
network.
Step 2: Utilize the region proposals generated by the

step-1 RPN to train Fast R-CNN detection network. In
this process, ImageNet pre-training model is also used to
initialize Fast R-CNN network parameters.
Step 3: Keep the shared FCN layers to be fixed. Subse-

quently, apply step-2 Fast R-CNN network and train data
to re-initialize RPN, and only fine-tune the layers unique
to RPN.
Step 4: Employ step-3 RPN and train data to fine-tune

Fast R-CNN with the shared FCN layers fixed.
The above four steps enable RPN and Fast R-CNN net-

works to share the convolutional layers and form a unified
Faster R-CNN network.

Table 8 The comparisons of computational efficiency

Dataset Volume (μm3) Becker [15] Sun [18] Our approach

Segmentation Detection Segmentation Detection Segmentation

ATUM 15.2 ×17.2 ×8.9 - 48 mins 154 mins 70 mins 185 mins

FIB 5.1 ×3.8 ×0.8 30 mins - 2 mins 6 mins

The test time was calculated on the same desktop equipped with an Intel i7-4790 CPU of 32 GB memory and a GeForce Titan X GPU
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Fig. 14 The architecture of the shared FCN layers and RPN

Fig. 15 The schematic of RPN (credited by [27])



Xiao et al. BMC Bioinformatics  (2018) 19:263 Page 17 of 18

Additional files

Additional file 1: Video S1. 3D reconstruction result in Fig. 2. (MOV 946 kb)

Additional file 2: Video S2. 3D reconstruction of synapses on the
ATUM-SEM dataset. (MOV 13,499 kb)

Additional file 3: Video S3. 3D reconstruction of synapses on the FIB-SEM
dataset. (MOV 2275 kb)
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