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5-Methylcytosine (m5C) is closely associated with cancer. However, the role of m5C in breast cancer(BC)
remains unclear. This study combined single-cell RNA sequencing (scRNA-Seq) and transcriptomics 
datasets to screen m5C regulators associated with BC progression and analyze their clinical values. 
Firstly, This study elucidates the mechanisms of the m5C landscape and the specific roles of m5C 
regulators in BC patients. we found that the dysregulation of m5C regulators with m5Cscore play the 
essential role of the carcinogenesis and progression in epithelial cells and myeloid cells of BC at single 
cell level. External validation was conducted using an independent scRNA-Seq datasets. Then, three 
distinct m5C modification patterns were identified by transcriptomics datasets. Based on the m5C 
differentially expressed regulators, the m5Cscore was constructed, and used to divide patients with 
BC into high and low m5Cscore groups. Patients with a high m5Cscore had more abundant immune cell 
infiltration, stronger antitumor immunity, and better prognoses. Finally, Quantitative real-time (PCR) 
and immunohistochemistry were used for the in vitro experimental validation, which had extensive 
prognostic value. In this study, we aimed to assess the expression of m5C regulators involved in BC and 
investigate their correlation with the tumor microenvironment, clinicopathological characteristics, 
and prognosis of BC. The m5C regulators could be used to effectively assess the cell specific regulation 
prognosis of patients with BC and develop more effective immunotherapy strategies.
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Breast cancer (BC) is now the most diagnosed cancer and the leading cause of cancer-related death in women1. 
The incidence of BC has risen in most of the past four decades; approximately 13% of women will be diagnosed 
with invasive BC and 3% will die from the disease in their lifetimes2. In BC, triple-negative breast cancer (TNBC) 
is characterized by genomic instability and a higher mutation rate, which makes it aggressive, prone to early 
recurrence, and associated with a poor prognosis3,4. Therefore, it is crucial to enhance research focused on 
elderly TNBC patients in order to improve the therapeutic outcomes for this special population.

Methylation of C5 cytosine (m5C) is a dynamic and reversible process that can affect various aspects of RNA 
metabolism. Three different types of proteins regulate the m5C modification: methyltransferases, demethylases, 
and binding proteins, which are also termed “writers”, “erasers”, and “readers” respectively5. In humans, m5C 
RNA methylation is generally catalyzed by NOP2/NSUN family (NSUN1–7) and DNA methyltransferase 
member (DNMT, DNMT3A, DNMT3B, and TRDMT1), with a residue specificity6, and some documents have 
reported that the demethylation process predominantly relied on the ten-eleven translocator family (TET) and 
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Alpha-Ketoglutarate-Dependent Dioxygenase AlkB Homolog 1 (ALKBH1)7,8. The aberrant levels of m5C and its 
regulators are closely associated with various human diseases, including cancer9. The biological functions of the 
m5C regulator and its regulatory mechanisms are summarized in the supplemental Table S1.

The BC tumor microenvironment (TME) is a complex, dynamic entity. It plays a key role in various biological 
behaviors of BC, such as inhibiting apoptosis, promoting tumor progression and immune escape, and inducing 
immune tolerance10. Several studies have revealed the association between m5C modification and TME-
infiltrating immune cells, such as the deficiency of TET2 and TET3 in regulatory T cells (Treg cells) results in a 
dysregulated expression of multiple Treg-activation and phenotypic molecules, leading to deleterious effectors, 
and eliciting disease in healthy mice11. Therefore, clearing the role of m5C related regulatory factors in immune 
cell infiltration in TME can help predict immune therapy responses, improve the success rate of existing immune 
therapies, and develop new immune therapy strategies12.

Single-cell RNA sequencing (scRNA-seq) is a powerful tool that can provide expression profiling of human 
cancer at the resolution of individual cells, which allows the identification and characterization of specific 
subclusters that bear unique biological effects13. Such studies have been widely performed in breast cancer 
research to investigate the TME and the evolvement of tumor cells14.

In this study, we collected 5 normal samples and 5 BC samples for single-cell RNA-seq data and used a gene 
expression dataset, consisting of eligible 56,619 cells to analyze the m5C regulation landscape at the molecular 
level. We found that m5Cscore is of great significance in analyzing and evaluating immune infiltration and 
prognosis of BC. In addition, based on the m5C-related differentially expressed genes (DEGs), the m5Cscore was 
constructed, and used to divide BC patients into high and low m5Cscore groups. Altogether, we provided a new 
perspective that m5C modification could be a potential epigenetic mechanism in BC development, which could 
provide a reference for reasonable diagnosis and treatment strategies.

Results
Distribution and expression profiles of m5C regulators across diverse cell types regulated BC 
progression and their associated signaling pathways
To understand the cellular diversity and molecular features of the breast tissue in BC patients, five normal samples 
and five BC samples were collected for single-cell RNA-seq data. After quality control, 56,619 cells were retained 
for subsequent analysis, comprising 24,330 cells from normal samples and 32,289 from BC samples. Five known 
cell types including 42,712 epithelial cells, 3568 lymphocytes, 3221 fibroblasts, 2840 myeloid cells and 4278 
endothelial cells were identified and annotated by using classical marker genes15,16 (Fig. 1a). To investigate the 
role of m5C regulator regulation in BC, the heatmaps show the distribution of m5C regulators at the single cell 
level. We found that m5C regulators both distribution of genes either expressed and each cell population are 
heterogeneous in five cell types (Fig. 1b-c). To reveal the DEGs of m5C regulators between BC and normal group, 
we found endothelial cells and epithelial cells show more differential genes than others (Fig. 1d). The DNMT1 
is over-expressed and MECP2 is down regulation in myeloid cells (Fig. 1e). To identify the cell-type expression 
and correlation between m5C regulators and cell types, We used the upset plot to analyze the intersection of m5C 
regulators and marker genes of diverse cell types. m5C had little overlap with marker genes of each cell type in 
BC (Fig S1a). Survival analysis indicates that within the first 100 months, the survival rate of the low-expression 
group of DNMT3B is superior to that of the high-expression group (Fig. 1f). We used the AddModuleScore 
function to define m5Cscore, we found that epithelial cells and endothelial cells have higher scores, suggesting 
that m5C-related regulators play function more in epithelial cells and endothelial cells (Fig. 1g). DNMT1and 
ALYREF were found to have broad-spectrum expression in BC samples (Fig. 1h-i). To investigate the association 
between the m5C-regulation and progression of BC, we used the functional enrichment analysis based on the 
GSEA database, we performed the correlation between m5C regulators by AUCell and classical pathways in BC 
to explore the influence of m5C regulators on breast cancer pathways. Notably, the heatmap shows that most 
m5C-related regulators exhibit high expression levels in the WNT pathway and in BRCA1 pathway (Fig. 2a, 
S1b-c). Next, we observed the differences in m5C signature across various cell types using violin plots and found 
that in endothelial, epithelial, and myeloid cells, the signature in the tumor group were higher than those in the 
normal group (Fig. 2b-d). To infer biologically interpretable results, using Metascape’s functional enrichment 
analysis capability, the several most significantly enriched ontology terms were combined to annotate the putative 
biological roles of the m5C-related regulators, such as chromatin organization, mitotic cell cycle processm, RNA 
metabolic process, cell division and DNA damage response (Fig S1d). Beside, the cumulative frequency curve 
plot shows that the cumulative frequency in the tumor group is significantly higher than that in the normal group, 
indicating that the m5c signature in the tumor group is higher than in the normal group (Fig S1e). To explore 
whether m5C regulators were associated with pathways were significantly correlated with tumor progression. We 
used the Metacell algorithm (K = 40) and conducted a correlation analysis by WGCNA, WGCNA was performed 
to identify the biological functions of m5C regulators in each cell types in BC. WGCNA showed that some genes 
were closely related to ALYREF expression in epithelial cells, pathway enrichment analysis to verify the biological 
functions of genes of ALYREF related module in epithelial cells, like cellular response to tumor necrosis, intrinsic 
apoptotic signaling pathway and DNA damage response (Fig. 2e-f); And some genes were closely related to 
DNMT1 expression in myeloid cells, pathway enrichment analysis to verify the biological functions of genes 
of DNMT1 related module in myeloid cells, like regulation of tumor necrosis factor production, macrophage 
differentiation, myeloid leukocyte differentiation and regulation of T cell activation(Figs.  2g-h); Next, we 
validated our above results using another data. The UMAP plots show the distribution of the different cell types 
in the tumor tissues (Fig. 2i). To understand the proportion of m5C regulators in each cell types, we used the 
bar graph to show the percentage of m5C regulator expression in each cell type. YTHDF2 YBX1, DNMT1 and 
ALYRF have a high proportion of five cell types (Fig.  2j). We used the AddModuleScore function to define 
m5Cscore, we found that epithelial and myeloid cells have higher scores, suggesting that m5C-related regulators 
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play function more in epithelial and myeloid cells (Fig.  2k). WGCNA showed that some genes were closely 
related to ALYREF expression in epithelial cells, pathway enrichment analysis to verify the biological functions 
of genes of ALYREF related module in epithelial cells, like epidermis development, ERBB signaling pathway and 
canonical Wnt signaling pathway (Fig. 2l-m); And some genes were closely related to DNMT1 expression in 
myeloid cells, pathway enrichment analysis to verify the biological functions of genes of DNMT1 related module 
in myeloid cells, like endothelial cell development positive regulation of canonical Wnt signaling, positive 
regulation of mast cells and macrophages (Fig. 2n-o); Some genes were closely related to DNMT3A expression 
in endothelial cells, pathway enrichment analysis to verify the biological functions of genes of DNMT3A related 
module in endothelial cells, like chromatin remodeling, regulation of DNA damage response, endothelial cell 
development and positive regulation of canonical Wnt signaling (Figs S1f-g);

Overall, these results showed that the up-regulation of m5C regulators play the essential role of the 
carcinogenesis and progression in epithelial cells and myeloid cells of BC.

Evaluation of m5C methylation modification patterns based on 17 m5C-related regulators
To ascertain the influence of m5C methylation in BC, we obtained the gene expression data and full clinical 
annotations of 1089 BC patients from the TCGA database for analysis. We found compare to the normal 
groups, the expression in the mRNA levels of m5C regulators were more higher in the tumor groups (Fig. 3a). 
Survival analysis showed that m5C regulatory genes were closely related to prognosis (Fig S2). To further 
study the interaction between m5C regulators, we depicted the comprehensive landscape of m5C regulator 
interactions using the m5C regulator network (Fig. 3b). These results illustrate that the dysregulation of m5C 
RNA methylation regulators leads to different m5C modification patterns, playing a vital role in the occurrence 
and development of BC. Based on this result, we used unsupervised clustering and principal component analysis 

Fig. 1. Single-cell transcriptomic landscape of m5C regulators regulating breast tissue key pathways in breast 
cancer (BC). (a) T-Distributed Stochastic Neighbor Embedding (TSNE) plot of normal cells and BC cells, 
colored by cell type. (b) Heatmap for differences in the expression of m5C regulators in different cell types 
between normal and BC samples. Red, up-regulation; blue, down-regulation. (c) Heatmap of each m5C 
regulators expression in each cell type. (d) Differential expression of genes (DEGs) in different cell types of 
BC patients compared with control samples. Red, up-regulation; blue, down-regulation. (e) Dot plot showing 
DEGs expression patterns of m5C regulators of each cell types. Each dot represents a regulator, of which the 
color saturation indicates the average expression level, and the size indicates the percentage of cells expressing 
the regulator. (f) Kaplan-Meier survival analysis based on m5C regulator expression. Red, high expression of 
m5C regulator; blue, low expression of m5C regulator. (g) Analysis of m5Cscore for 5 cell types. The two T-SNE 
plots of m5C regulators expression in BC samples. (h) ALYREF. (i) DNMT1.
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to classify 1089 patients with BC based on their distinct modification patterns. We identified three different 
patterns, termed m5C cluster A, m5C cluster B, and m5C cluster C, which were displayed by 567, 334, and 
188 patients, respectively (Fig. 3c-d). Survival analysis indicated that the m5C clusters were significantly related 
to prognosis in patients with BC, and patients in m5C cluster B had the greatest survival advantage (Fig. 3e). 
To further explore the characteristics of m5C modification patterns, we conducted unsupervised clustering 
of 14 m5C regulators in the TCGA cohort, including demographic and clinical data such as age, sex, Tumor 
Node Metastasis (TNM) classification, clinical stage, and survival status. This unsupervised cluster analysis 
also identified three significantly different patterns of m5C modification. The heatmap not only revealed the 
characteristics of different clinical traits in the three m5C modification patterns but also their correlation with 
the expression of m5C regulators. There was a significant difference in m5C-related gene transcriptional profiles 
among the three m5C modification patterns; most m5C regulators were downregulated in m5C cluster B (Fig. 3f). 
Based on these results, we performed GSVA to further compare the differences in enriched pathways among the 
three m5C clusters. As shown in the heatmap, m5C clusters A and C were significantly enriched in multiple 
pathways, such as mismatch repair, homologous recombination, nucleotide excision repair, spliceosome, and 
cell cycle, and the enrichment scores of these pathways were higher in m5C cluster C than in m5C cluster A. m5C 
cluster B was enriched in the arachidonic acid metabolism pathway (Fig. 3g-i).

Fig. 2. Regulation of tumor-related pathways by the m5C regulators. (a) Correlation analysis was used to 
analyze the association between the m5C regulators and tumor related pathways. Red, positive correlation; 
blue, negative correlation. (b–d) Differences in m5C signature between tumor and normal groups in different 
cell types, including endothelial cells (En), epithelial cells (Ep), and myeloid cells (mye). (e) Networks of 
WGCNA module which included ALYREF in myeloid cells. (f) Functional enrichment of module which 
included ALYREF in myeloid cells. (g) Networks of WGCNA module which included DNMT1 in myeloid cells. 
(h) Functional enrichment of module which included DNMT1 in myeloid cells. (i) UMAP plots showing the 
expression of different cell types in other BC tissues. (j) Proportion of m5C regulators expression in different 
cell types. (k) Analysis of m5C score for several cell types. (l) Networks of WGCNA module which included 
ALYREF in myeloid cells. (m) Functional enrichment of module which included ALYREF in myeloid cells. (n) 
Networks of WGCNA module which included DNMT1 in myeloid cells. (o) Functional enrichment of module 
which included DNMT1 in myeloid cells.
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Construction of m5C gene signatures and functional annotation
To further investigate the potential biological behavior associated with each m5C modification pattern, we 
identified 2312 m5C phenotype-related DEGs (The gene list is presented in Table S2) among the m5C cluster 
groups and conducted unsupervised clustering analyses based on these genes (Fig.  4a). Consistent with the 
clustering grouping of the m5C modification pattern, the unsupervised clustering analysis and principal 
component analysis revealed three distinct m5C modification genomic phenotypes. We named these three 
clusters m5C gene cluster A, m5C gene cluster B, and m5C gene cluster C, which contained 326, 621, and 142 
patients, respectively (Fig. 4b-c). Further survival analysis to investigate the correlation between the different 
m5C genomic phenotypes and the prognosis of patients with BC revealed significant differences in prognosis 
among the three m5C gene cluster groups. Patients in gene cluster B had an advantageous prognosis, whereas 
patients in gene cluster A had a poor prognosis (Fig. 4d). These results demonstrated that three m5C methylation 
modification patterns are present in BC and are closely related to clinicopathological characteristics. To explore 

Fig. 3. Evaluation of m5C methylation modification patterns. (a) Differential expression of m5C regulators 
between breast cancer and normal breast tissues. Blue, normal tissue; red, tumor tissue. The lines in the boxes 
represent the median value, the bottoms and tops of the boxes represent the interquartile range, and the dots 
represent outliers. ***P < 0.001, **P < 0.01, *P < 0.05. Differences among the three modification patterns 
were tested by one-way ANOVA. (b) The interaction between m5C regulators in breast cancer. The lines 
connecting the m5C regulators represent the interaction between them. Blue, negative correlation; red, positive 
correlation. (c) Three different m5C modification subtypes were identified by unsupervised clustering based 
on m5C regulators (m5C cluster A, B, and C). (d) PCA derived from the m5C clusters showed a difference 
between the three clusters. Blue, m5C gene cluster A; yellow, m5C gene cluster B; and red, m5C gene cluster C. 
(e) Survival analysis based on the three m5C clusters in 1089 patients with breast cancer in the TCGA-BRCA 
cohort (P = 0.015, log-rank test). Blue, 567 patients in m5C cluster A; yellow, 334 patients in m5C cluster B; 
and red, 188 patients in m5C cluster C. (f) Unsupervised clustering of 17 m5C regulators in the TCGA-BRCA 
cohort identified a significant difference in the expression of regulators among the three modification patterns. 
The m5C clusters, TCGA project, age, sex, TNM classification, clinical stage, and survival status were used 
as patient annotations. Red, high expression of regulators; blue, low expression of regulators. (g–i) GSVA 
enrichment analysis showing the activation states of biological pathways in distinct m5C modification patterns. 
Red, activated pathways; blue, inhibited pathways. (g) m5C cluster A compared with m5C cluster B; (h) m5C 
cluster A compared with m5C cluster C; (i) m5C cluster B compared with m5C cluster C.
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the relationship between biological behaviors and m5C methylation modification in BC, we performed gene 
ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment 
analysis of 2312 m5C phenotype-related DEGs (Fig.  4e-f). Gene ontology functional enrichment analysis 
showed that the m5C-related genes were enriched in DNA replication, organelle fission, chromosomal region, 
chromosome centromeric region, replication fork, and helicase activity.

Fig. 4. Construction of m5C gene signatures and functional annotation. (a) Overlapping m5C phenotype-
related DEGs in the three m5C clusters. (b) Three different genomic subtypes identified by unsupervised 
clustering based on the overlapping m5C phenotype-related DEGs. (c) PCA derived from the three m5C gene 
clusters showed a difference between gene clusters. Blue, m5C gene cluster A; yellow, m5C gene cluster B; and 
red, m5C gene cluster C. (d) Survival analysis based on the three m5C gene clusters in 1089 patients from the 
TCGA-BRCA cohort (P = 0.025, log-rank test). Blue, 326 patients with m5C gene cluster A; yellow, 621 patients 
with m5C gene cluster B; and red, 142 patients with m5C gene cluster C. (e) GO functional enrichment analysis 
of 2312 overlapping m5C phenotype-related DEGs. (f) KEGG pathway enrichment analysis of 2312 overlapping 
m5C phenotype-related DEGs. (g) Differences in the m5Cscore among the three m5C clusters in the TCGA-
BRCA cohort (P < 0.001, Kruskal–Wallis test). Blue, m5C cluster A; yellow, m5C cluster B; and red, m5C cluster 
C. (h) Differences in the m5Cscore among the three m5C gene clusters in the TCGA-BRCA cohort (P < 0.001, 
Kruskal–Wallis test). Blue, m5C gene cluster A; yellow, m5C gene cluster B; and red, m5C gene cluster C.
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These analyses were based on the entire cohort. To further explore the heterogeneity and complexity of m5C 
methylation modifications, we constructed a set of scoring models based on these phenotype-related genes to 
quantify the m5C modification pattern of individual patients with BC and to predict treatment responses and 
prognoses, which we termed the m5Cscore. The Kruskal–Wallis test revealed an association not only between 
the m5C clusters and the m5Cscore but also between the m5C gene clusters and the m5Cscore. Differential 
expression analysis of the m5Cscore in m5C clusters indicated that patients in m5C cluster B had a significantly 
higher m5Cscore than patients in other clusters, and patients in m5C cluster C had the lowest median score 
(Fig. 4g). We also conducted differential expression analysis of m5Cscore in the m5C gene clusters and found 
that patients in m5C gene cluster B had the highest median score and those in m5C gene cluster C had the lowest 
median score (Fig. 4h). Based on the correlation of the m5Cscore with different m5C methylation modification 
patterns and m5C modification genomic phenotypes, we determined the optimal cutoff value and divided our 
patients with BC into high and low m5Cscore groups.

The m5Cscore activates immune infiltration
To investigate the role of m5C methylation in immune cell infiltration in the TME, we first compared immune 
cell characteristics among different m5C clusters. Among the three m5C clusters, there was no difference in the 
infiltration of activated dendritic cells, gamma delta T cells, immature B cells, or Treg cells; however, the three 
types of m5C clusters were significantly correlated with infiltration of the other 19 types of immune cells. m5C 
cluster B was remarkably rich in innate immune cell infiltration, including activated B cells, activated CD8+ T cells, 
eosinophils, myeloid-derived suppressor cells, macrophages, mast cells, monocytes, NK cells, and neutrophils 
(Fig S3a). Similarly, the infiltration of most immune cell populations was significantly different among the three 
m5C gene clusters, and immune cells, such as activated B cells, activated CD8+ T cells, eosinophils, macrophages, 
mast cells, monocytes, NK cells, and neutrophils, were enriched in m5C gene cluster B (Fig S3b). Crosstalk 
among m5C regulators may create different m5C modification patterns and different m5C modification genomic 
phenotypes, thereby playing a critical role in the formation of different cell-infiltrating characteristics in BC. 
Therefore, we analyzed the immune cell and immune function scores between the high and low m5Cscore groups, 
noting remarkable differences. The high m5Cscore group generally had higher immune cell scores, including 
for B cells, CD8+ T cells, cytolytic activity, HLA, infiltrating dendritic cells (iDCs), mast cells, NK cells, T cell 
co-stimulation, T helper cells, tumor-infiltrating lymphocytes, and type II interferon (IFN) response (Fig S3c).

To investigate the relationship between the m5Cscore and different infiltrating immune cell characteristics, 
we analyzed the correlation between the m5Cscore and classical infiltrating immune cell populations. The 
m5Cscore was positively correlated with eosinophils, mast cells, NK cells, and plasmacytoid dendritic cells 
and negatively correlated with activated CD4+ T cells (Fig S3d). These results indicate the m5Cscore can not 
only better evaluate the m5C modification patterns of individual tumors, but also further evaluate the immune 
infiltration characteristics.

Considering the role of immune cell infiltration in tumor occurrence and development and its prognostic 
impact, we conducted survival analyses to assess the value of the m5Cscore in predicting patient outcomes. 
The Kaplan–Meier curves showed that patients with a high m5Cscore had significantly increased survival than 
those with a low m5Cscore (Fig S3e). Subsequently, we applied the constructed signature to two independent 
BC cohorts from the Gene Expression Omnibus database (GSE7390 and GSE103091) to assess the stability of 
the m5C gene signature. The m5Cscore of each patient in the testing dataset was acquired, and the optimal cutoff 
point was identified. Thus, the 305 patients with BC in the testing dataset were also divided into two groups: 138 
in the high m5Cscore group and 167 in the low m5Cscore group. Survival analysis yielded a similar result to that 
obtained in the TCGA cohort; patients with a high m5Cscore had a significantly better prognosis than those with 
a low m5Cscore (Fig S3f). Next, we analyzed the correlation between survival and the ssGSEA scores of classical 
immune cells. As indicated by the heatmap, there was no significant correlation between survival status and the 
ssGSEA score of immune cells other than that of plasma cells (Fig S3g). These results suggest that although a 
single type of immune cell is not significantly associated with prognosis, the different characteristics of immune 
cell infiltration formed by the interaction between multiple different immune cell types can have a crucial 
impact on prognosis. We further analyzed the correlation between the m5Cscore and the infiltration abundances 
of immune cells. We found that the m5Cscore was positively correlated with the abundance of activated NK 
cells (Fig S3h). Subsequently, we measured mRNA expression to further explore the relationship between the 
m5Cscore and the stem-like properties of BC tumor cells (Fig S3i). The m5Cscore was negatively associated with 
expression of stem cell mRNAs in a statistically significant manner, indicating that a higher m5Cscore is closely 
correlated with lower tumor stem cell activity and a higher degree of tumor differentiation.

We next examined the expression profiles of immune checkpoint genes and the correlation between these 
genes and the m5Cscore. Although most immune checkpoint genes had low expression in the three m5C 
clusters, the statistical difference among clusters was significant, and the same was true for the m5C gene 
clusters. The expression of CD44 was lower in m5C cluster B than in the other m5C clusters, and among the 
m5C gene clusters, the expression of VTCN1 and TNFRSF18 were higher in m5C gene cluster B than in the 
other m5C gene clusters (fig S4a-b). Correlation analysis of the m5Cscore and immune checkpoint genes showed 
that most correlations between them were statistically significant, and the m5Cscore was positively associated 
with TNFRSF14, TNFRSF4, CD27, TMIGD2, TNFRSF25, CD40LG, and CD200 and negatively associated 
with CD80 and ICOSLG (Fig S4c). The analysis of HLA gene expression indicated that the expression of HLA 
genes, including HLA-E, HLA-C, HLA-J, HLA-DMA, HLA-DRB1, HLA-DOA, HLA-DPB1, and HLA-DRB6, 
was significantly different among the m5C clusters, and HLA-E, HLA-C, HLA-DRB1, and HLA-DPB1 were 
highly expressed in m5C cluster B, whereas HLA-DRA was highly expressed in m5C cluster A. Similarly, the 
expression of most HLA genes significantly differed among the m5C gene clusters, and HLA-E, HLA-C, HLA-A, 
HLA-DRB1, HLA-DRB5, and HLA-DPB1 were markedly higher in m5C gene cluster B than in the other gene 
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clusters (Fig S4d-e). We also noted a positive association between the m5Cscore and the expression of HLA-
DPB2, HLA-C, HLA-J, HLA-DQB1, HLA-DQB2, HLA-DMA, HLA-DRB1, HLA-H, HLA-DRB5, HLA-DPB1, 
HLA-DRB6, HLA-L, HLA-DMB, and HLA-DPA1 (Fig S4f). In addition, the expression of interleukin (IL)-4 
and IL-33 were significantly different among the m5C clusters, and the expression of IL-4, TSLP, and IL-33 were 
significantly different among the m5C gene clusters. IL-33 levels were significantly higher in m5C cluster B and 
m5C gene cluster B than in the other clusters and gene clusters, respectively (Fig S4g-h), and the expression of 
IL-5, TSLP, and IL-33 were positively correlated with the m5Cscore in a statistically significant manner (Fig 
S4i). Furthermore, we performed GSVA enrichment analysis to compare differences in the activation states of 
immune functions and immune cells between distinct m5Cscore groups. As shown in the heatmap, the high 
m5Cscore group had significant enrichment in multiple immune pathways, such as mast cells and type II IFN 
response (Fig S4j).

To explore the correlation between the m5Cscore and the proportion of immune and stromal cells in the TME 
and further examine the differences in survival between the two m5Cscore groups, we analyzed the stromal, 
immune, and ESTIMATE scores (Fig S4k). Patients with a high m5Cscore had significantly higher stromal, 
immune, and ESTIMATE scores than patients with a low m5Cscore. Therefore, compared with patients with BC 
that had a low m5Cscore, those with a high m5Cscore had tumors with more abundant immune and stromal 
components and had stronger immune function and better prognosis.

The negative correlation between the m5Cscore and response to pharmacotherapy
ICB, as represented by PD-1 and CTLA-4 inhibitors, has caused a breakthrough in tumor immunotherapy. 
On this basis, we used TIDE to predict the therapeutic effect of ICB based on pretreatment tumor profiles 
and to establish an indirect connection between the m5Cscore and the immune response. The TIDE score was 
significantly higher in the high m5Cscore group than in the low m5Cscore group, indicating that tumors in 
patients in the high m5Cscore group were more likely to induce immune escape and that these patients would 
have a lower therapeutic response to ICB (Fig. 5a). Consistent with this result, prognosis and survival analysis 
indicated patients with a high TIDE score had a distinctly better prognosis than those with a low TIDE score 
(Fig. 5b). Survival analysis based on both the TIDE score and the m5Cscore showed that patients with a low 
TIDE score and a low m5Cscore had the worst prognosis, whereas patients with a high m5Cscore and a low TIDE 
score had the best prognosis (Fig. 5c). Moreover, we also found that the low m5Cscore group had a significantly 
higher response rate to ICB, and the Area Under the Curve (AUC) value illustrated that the TIDE model has 
acceptable performance in predicting the therapeutic response to ICB in patients with BC (Fig. 5D). We further 
analyzed targeted immune dysfunction and exclusion. Consistent with the TIDE score distribution, patients with 
a high m5Cscore were more likely to have immune dysfunction (Fig. 5e). Survival analysis combining immune 
dysfunction with the m5Cscore showed that patients with a high m5Cscore and high immune dysfunction 
had increased survival (Fig. 5f). Moreover, we also found similar results in the analyses of immune exclusion 
(Fig. 5g-h). Therefore, regardless of the TIDE, immune dysfunction, and immune exclusion scores, patients in 
the high m5Cscore group consistently had increased survival than those in the low m5Cscore group, indicating 
the value of m5Cscore in predicting the therapeutic response to ICB.

The efficacy of doxorubicin-based chemotherapy as a first-line therapy after BC surgery has been widely 
demonstrated. However, researchers continue to investigate novel drugs for BC. Considering the differences 
in survival in the different m5Cscore groups, we analyzed the ability of the m5Cscore to predict responses to 
several different novel chemotherapeutic drugs. The results revealed higher estimated half maximal inhibitory 
concentrations for chemotherapeutic drugs in the low m5Cscore group, and the m5Cscore was negatively 
correlated with the therapeutic effect of these drugs (Fig. 5i-t, S5), indicating that patients with BC that have a 
low m5Cscore have better therapeutic response to chemotherapeutic drugs than patients in the high m5Cscore 
group.

The positive correlation between the good clinicopathological characteristics and the 
m5Cscore
Based on these results, we performed survival analysis to explore the distribution of survival status between 
patients with high and low m5Cscores. Patients who were still alive had a significantly higher m5Cscore than 
those who died (Fig. 6a), and the low m5Cscore group had a decreased survival (Fig. 6b). patients with N0 and 
N2 disease had a lower m5Cscore than those with N1 and N3 disease (Fig. 6c). We also assessed the correlation 
between the m5Cscore and human epidermal growth factor receptor 2 (HER2) status, TNM stage, and clinical 
stage (Figs S6A-D). We then analyzed the correlation of the m5Cscore with clinicopathological characteristics. 
The m5Cscore differed based on T, N, and clinical stage (Figs S6 E-F); Patients in the low m5Cscore group were 
more likely to have HER2 + disease, whereas those with a high m5Cscore were more likely to have HER2- disease 
(Fig. 6d).

Because of these findings, we used the Sankey diagram to show the flow of m5Cscore fraction construction 
and the changes in individual patient attributes, such as age, TNM classification, clinical stage, and survival status, 
based on the m5Cscore (Figs S6I-L). m5C cluster and m5C gene cluster were both associated with the m5Cscore. 
Patients in m5C cluster B and m5C cluster A tended to be classified into m5C gene cluster B, and almost all 
patients in m5C gene cluster B were classified into the high m5Cscore group, which had better prognosis than the 
low m5Cscore group. Conversely, m5C gene cluster C was associated with a low m5Cscore and poor prognosis 
(Fig. 6e). The high and low m5Cscore groups had similar proportions of patients < 65 and ≥ 65 years (Fig. 6f). 
To further assess the prognostic value of the m5Cscore in different subgroups, we performed Kaplan–Meier 
analyses (Fig. 6g-l and S6g-h). We found that the m5Cscore exhibited prognostic power in various subgroups; 
among women, those younger than 65 years, and those with M0, N1, T2, or stage III disease. Additionally, the 
high m5Cscore group had a better prognosis than the low m5Cscore group.
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The m5C related genes expressions are generally increased in BC tissue
To further validate the expression of m5C related genes in BC tissues, we utilized the transcriptomic information 
of BC patients and normal breast patients from public databases, founding the expression levels of DNMT1, 
DNMT3B, TET3, and UHRF1 in the tumor group were higher than that in normal group (Fig. 7a-d). Next, 
mmunohistochemistry (IHC) for three normal mammary gland tissues and three paracancerous tissues was also 
performed using different m5C related gene antibodies. The results showed that compare to the paracancerous 
tissues, ALYREF, DNMT1 and DNMT3a showed stronger expression on the cytoplasm and nucleus in tumor 
tissues (Fig. 7e-m and S7a-i). The bar chart showed that in the tumor tissues, the percentage contribution of 

Fig. 5. Association between the m5Cscore and response to pharmacotherapy. (a) The relative distribution 
of TIDE scores was compared between the low and high m5Cscore groups. The lines in the boxes represent 
the median value, the bottoms and tops of the boxes represent the interquartile range, and the dots represent 
outliers. Blue, low m5Cscore group; red, high m5Cscore group. (b) Survival analysis for 858 patients with a 
high TIDE score and 231 with a low TIDE score (P < 0.05, log-rank test). (c) Survival curves of TIDE scores 
combined with m5C scores (P < 0.05, log-rank test). (d) Comparisons of the proportions of non-responders 
and responders to ICB between the low and high m5Cscore groups; the ROC curves of the TIDE score model 
in patients with BC (AUC: 0.846, 95% CI: 0.801–0.888). Blue, non-responder groups; red, responder groups. 
(e) Relative distribution of immune dysfunction scores between the low and high m5Cscore groups (P < 0.001). 
Blue, low m5Cscore group; red, high m5Cscore group. (f) Survival analysis stratified by both m5Cscore and 
immune dysfunction scores (P = 0.001, log-rank test). (g) survival analysis for 977 patients with a high immune 
exclusion and 112 with a low immune exclusion (P < 0.05, log-rank test). (h) Survival analyses stratified by 
both the m5Cscore and immune exclusion (P < 0.001, log-rank test). (i–t) Predicted response of patients to six 
chemotherapeutic drugs based on the m5Cscore. (I, j) bortezomib; (k, l) erlotinib; (m, n) roscovitine; (o, p) 
salubrinal; (q, r) sorafenib; (s, t) vinorelbine. Blue, low m5Cscore group; red, high m5Cscore group.
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Fig. 6. Correlation between clinicopathological characteristics and the m5Cscore. (a) m5Cscore based on 
survival status (P < 0.001). The lines in the boxes represent the median value, the bottoms and tops of the 
boxes represent the interquartile range, and the dots represent outliers. Blue, living patients; red, deceased 
patients. (b) The proportions of living and dead patients with BC in the low and high m5Cscore groups. In the 
low m5Cscore group, 82% of patients were alive and 18% were dead, and in the high m5Cscore group, 90% of 
patients were alive and 10% were dead. Blue, living patients; red, deceased patients. (c) The m5Cscore based 
on N stage. The Kruskal–Wallis test was used to compare the statistical difference between five N stage groups. 
The lines in the boxes represent the median value, the bottoms and tops of the boxes represent the interquartile 
range, and the dots represent outliers. Blue, N0 stage group; red, N1 stage group; yellow, N2 stage group; purple, 
N3 stage group; green, Nx stage group. (d) HER2 expression status in the low and high m5Cscore groups. In 
the low m5Cscore group, 81% and 19% of patients had HER2 + and HER2- disease, respectively; in the high 
m5Cscore group, 87% and 13% of patients had HER2+ and HER2− disease, respectively. Blue, patients with 
HER2− disease; red, patients with HER2+ disease. (e) Sankey diagram showing the flow of m5C cluster, m5C 
gene cluster, m5Cscore, and survival status. (f) Sankey diagram showing the flow of m5C cluster, m5C gene 
cluster, m5Cscore, and age. (g–l) Kaplan–Meier survival analysis based on the m5Cscore in subgroups with 
different clinical characteristics. Red, high m5Cscore group; blue, low m5Cscore group. (g) patients ≤ 65 years; 
(h) patients with T2 stage; (i) patients with stage III disease; (j) patients with N1 disease; (k) patients with M0 
disease; (l) Women.
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positive for m5C related gene were higher than that in the paracancerous group (Fig. 7n-p). These results showed 
that m5C related genes expression levels gradually increased from normal tissues to tumor tissues, which further 
verified that m5C related genes can act as a pro-oncogenic gene to regulate the occurrence and development of 
BC.

Discussion
BC is the most common malignant disease in women, and owing to the lack of cost-effective therapies, it has 
become one of the most severe disease burdens globally. Triple-negative breast cancer is the type with the highest 
malignancy and the worst prognosis. It is challenging to predict the treatment effect and prognosis of different 
methods. The estrogen receptor, progesterone receptor, and HER2 expression patterns in different subtypes 
of BC represent a predictive method for the therapeutic guidance of BC. However, the existing classification 
models based on these molecules cannot accurately reflect tumor heterogeneity or evaluate the prognosis of BC. 
Therefore, a comprehensive understanding of the molecular mechanisms of BC development and progression is 
urgently needed to further explore more effective therapeutic targets and prognostic biomarkers.

The m5C modification is one of the most important RNA modifications in eukaryotes, and it plays an 
indispensable role in posttranscriptional regulation, which is closely related to tumor formation, maintenance and 
progression5,17. m5C modification is involved in bladder cancer progression by modulating mRNA stability18, and 

Fig. 7. The expression of m5C-related genes was verified using RT-qPCR and IHC. (a–d) Differential 
expression of m5C-related genes in normal and tumor groups. (e–m) IHC of the ALYREF, DNMT1 
and DNMT3a in tumor tissue. (n–p) Percentage of positive staining for m5C-related genes between the 
paracancerous and tumor groups.
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some studies have confirmed that m5C is involved in the progression of hepatocellular carcinoma19. Furthermore, 
recent studies have indicated that m5C modification is associated with the infiltration of multiple immune cells, 
including CD8+ T cells and neutrophils, regulating their behavior20. In addition, RNA modification regulators 
have the potential to act as biomarkers for the diagnosis of cancer and in prognostic monitoring21,22. For example, 
high expression of the m5C writer NSUN1 has been identified as a prognostic marker for non-small cell lung 
cancer23. However, as most previous studies have focused on a single m5C regulatory factor, for example, In oral 
squamous cell carcinoma, inhibition of DNMT1 expression by inhibitors increases tumor-infiltrating T cells 
and subsequently blocks tumor growth24. The characteristics of immune infiltration mediated by multiple m5C 
regulatory factors are unclear, and comprehensive analysis of the prognostic value and functional annotation of 
m5C regulators in BC are still lacking. Hence, identifying the function of m5C modification patterns in immune 
cell infiltration is fundamental for improving our understanding of the interaction between m5C methylation 
and the antitumor immune response and facilitating the advancement of personalized treatments for patients 
with BC.

In this study, we performed single-cell RNA sequencing from 5 normal and 5 BC samples and successfully 
characterized samples into 5 cell clusters: epithelial cells, fibroblasts, endothelial cells, lymphocytes and myeloid 
cells.

We have found that m5C-related regulators can modulate the expression of tumor-associated pathways, 
thereby affecting the formation and development of BC. For example, m5C can inhibit the PAX5 pathway, 
reducing the production of chemokines, which in turn inhibits the infiltration of T cells in the TME and weakens 
the ability to restrict tumor cell metastasis25. m5C can also activate the FOXM1 pathway. In tumor cells, the 
overexpression of FOXM1 may lead to errors during the G2/M phase of mitosis, increasing chromosomal 
instability and thereby accelerating the proliferation of tumor cells26. Meanwhile, the up-regulation of m5C 
regulators also play the essential role of the carcinogenesis and progression in myeloid cells and epithelial cells 
of BC. In myeloid cells, the biological function of DNMT1 related module has been demonstrated to be enriched 
in neutrophil activation and T cell proliferation. Consistent with the previous study that targeting DNMT1 in 
breast tumors can upregulate major histocompatibility class-I mediated antigen presentation and tip the balance 
at equilibrium to elicit a CD8+ T cell response which promotes tumor regression and anti-tumor immunity27. In 
endothelial cells, DNMT3A’s related module’s biological function has been verified correlated with ferroptosis 
which is a new form of programmed cell death caused by the accumulation of lipid-based reactive oxygen 
species, and is closely related to immune response of BC through by PPAR signaling pathway and IL-17 signaling 
pathway28; In the epithelial cells, ALYREF related module’s biological functions was verified enriched in Wnt 
signaling pathway and DNA damage response, when Wnt ligands bind to Frizzled receptors on the cell surface, 
they can lead to the stabilization and accumulation of β -catenin and affect cell proliferation, differentiation29. 
When wnt is dysregulated, it can cause uncontrolled cell proliferation and tumor formation.

At the same time, we identified three distinct patterns of m5C modification, termed m5C cluster A, m5C 
cluster B, and m5C cluster C, based on the expression of 17 regulatory factors associated with m5C modification. 
These three patterns were associated with significantly different immune infiltration characteristics, functional 
characteristics, and prognoses. Furthermore, we demonstrated that the differentially expressed mRNAs between 
distinct m5C modification patterns were important m5C-related signature genes that were significantly associated 
with m5C- and immune-related biological pathways in BC. Subsequently, similar to the clustering results of 
m5C modification phenotypes, we also identified three genomic subtypes based on m5C-related signature genes, 
which were also significantly correlated with immune cell infiltration and BC prognoses, demonstrating that 
m5C modification is of great significance in shaping the TME landscape. Based on these results and considering 
the heterogeneity of m5C modification, we established scoring systems to evaluate the m5C modification pattern 
of individual patients with BC, that is, the m5C gene signature and functional annotation, which we called the 
m5Cscore, to further quantify the m5C modification patterns of individual tumors. We investigated not only the 
association between the m5Cscore and immune infiltration characteristics but also the association between the 
m5Cscore and clinicopathological characteristics. We also predicted the pharmacotherapy response based on 
the m5Cscore.

The current study investigated the functions and pathways of 2312 m5C phenotype-related DEGs. NSUN2 is 
an important methyltransferase for m5C modification in tRNA, abundant noncoding RNAs, and a small subset 
of mRNAs and can promote cell growth by regulating cyclin-dependent kinase 1 expression in a cell cycle-
dependent manner30–32. Moreover, IGF2BP3, a newly reported reader of RNA methylation, is associated with 
DNA replication, and knockdown of IGF2BP3 significantly represses cell proliferation and the percentage of cells 
in S phase33. We showed that m5C phenotype-related DEGs were highly enriched in cancer-related functions and 
pathways, such as DNA replication, spliceosome, and cell cycle signaling. In addition, there were three distinct 
m5C methylation modification patterns in BC, and both the expression of m5C-related genes and their enriched 
pathways were different. Significantly, m5C cluster B, in which most m5C regulators were downregulated, lacked 
enrichment of classical cancer-related pathways, such as DNA replication and the cell cycle, and was associated 
with better prognosis than other clusters. Analysis of the m5C gene clusters led to similar results. In m5C gene 
cluster B, most m5C-related genes were downregulated, and patients exhibited better survival. These results 
indicate that m5C regulators play an important role in the occurrence, development, and prognosis of BC, have 
a prognostic predictive value, and could be novel prognostic indicators for patients with BC.

We also established the m5Cscore, a scoring system that could individually quantify the m5C modification 
pattern in patients with BC, and investigated its association with immune infiltration characteristics. Immune 
cell infiltration has become a new research focus because immune cells are a major component of the TME, 
and many studies have reported the critical role of the TME in tumor progression, response to therapeutics, 
and prognosis of BC. CD8+ T cells are important immune cells in the antitumor response. Numerous studies 
have reported that CD8+ T cells can directly mediate tumor lysis in vitro, and their increased abundance is 
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closely associated with better survival outcomes in patients with BC34,35. B cells are also important immune 
cells in the antitumor response and have been reported to generate humoral immune responses and promote 
effective antitumor immunity at the BC tumor site, thereby improving the clinical outcomes36. NK cells also 
play an important role in antitumor immunity. These cells can autonomously kill target cells and serve as the 
main innate immune effector cells against cancer37–39. Our analyses showed that m5C cluster B and m5C gene 
cluster B had abundant immune cell infiltration. More importantly, the m5Cscore was significantly correlated 
with the infiltration of most immune cells and was positively associated with the infiltration of CD8+ T cells, B 
cells, and NK cells. In addition, we analyzed the association between classical immune genes, such as immune 
checkpoint molecules, HLA family genes, and IL family genes, and the m5Cscore. Our data revealed that the 
m5Cscore was significantly correlated with the expression of multiple immune genes, including TNFRSF14, 
HLA-DPB1, IL-5 and IL-33, and their expression among m5C clusters and m5C gene clusters were significantly 
different. Because the roles of these immune genes in BC have not been reported, these results provide new 
directions for further research. Furthermore, previous evidence demonstrated that activated IFN signaling plays 
an important role in antitumor immunity by modulating immune surveillance, which could regulate either 
tumor cells to exert direct antitumor effects or immune cells to exert indirect antitumor effects40,41. We found 
a significant positive association between the m5Cscore and type II IFN response, which could be one of the 
reasons for the better prognosis of patients with a high m5Cscore. These findings suggest that patients with BC 
exhibiting a higher m5Cscore have more abundant antitumor immune cell infiltration, higher expression of 
immune genes, stronger antitumor immunity, and a better prognosis. Overall, the m5Cscore is a potential tool 
for comprehensive assessment of individual tumor m5C modification patterns and further determination of 
TME infiltration patterns.

We further investigated the relationship between the m5Cscore and pharmacotherapy response. The m5Cscore 
was significantly correlated with predictors of the immune response, such as the TIDE score, indicating that m5C 
modification impacts the therapeutic effect of immunotherapy and that it can be used to improve personalized 
treatment of patients with BC. Additionally, a higher m5Cscore was significantly correlated to higher TIDE, 
higher immune dysfunction scores, and immune exclusion scores; immune dysfunction and immune exclusion 
may have been the key reasons for a higher TIDE score. Patients with a higher TIDE score tend to have greater 
immune dysfunction and immune exclusion and decreased ability to kill cancer cells, which could explain why 
they have a worse response rate to ICB42. Conversely, although patients with a low m5Cscore had lower TIDE 
scores and a worse prognosis, they were predicted to be more likely to benefit from ICB treatment. Therefore, 
patients with a low m5Cscore could have prolonged survival through ICB therapy. Moreover, the m5Cscore 
was also able to predict the response to pharmacotherapy. These results suggest the m5Cscore could be used 
to develop individualized treatment plans for patients with BC. Multiple anti-PD-1/PD-L1 antibodies such as 
pembrolizumab have entered clinical trials for BC and have been shown to induce a durable clinical response 
in certain patients with metastatic BC43. However, our results need to be verified in future clinical trials of 
immunotherapy.

Our study also revealed that the m5Cscore based on m5C modifications was closely associated with the main 
clinical characteristics of BC, including pathologic stage, HER2 expression, and survival status, and could be used 
to assess the clinical characteristics and predict prognosis in patients with BC. To complement the theoretical 
and computational analyses conducted in our study, we reinforced our findings with empirical validation 
through RT-qPCR and IHC. The RT-qPCR results clearly indicated that the expression levels of the m5C-related 
genes were significantly increased in BC as compared to the corresponding normal tissue controls. This certain 
amount of molecular evidence provides strong confirmation of our bioinformatics prediction, confirming the 
differential expression of m5C related genes in cancerous tissues and healthy mammary gland tissues. Moreover, 
the application of IHC once again confirmed our molecular findings. IHC staining showed a significant increase 
in the positive rate of m5C-related gene expression in tumor tissues, and these qualitative data, combined with 
quantitative RT-qPCR results, help to strengthen the validity of our theoretical study.

In summary, we used single-cell and bulk-RNA sequencing data to identify the m5Cscore can act as an 
independent prognostic biomarker in clinical practice for predicting patient survival and may be used to 
comprehensively evaluate m5C modification patterns and their corresponding immune cell infiltration 
characteristics within individual patients with BC and assess their clinicopathological features. More importantly, 
we could also predict the efficacy of pharmacotherapy and the patients’ clinical response to ICB through the 
m5Cscore, which can guide more effective clinical practice.

Materials and methods
Single-cell RNA sequencing
Study design and data collection
Single-cell RNA sequence (scRNA-seq) data from 5 breast cancer (BC) patients and 5 control patient samples 
in the Gene Expression Omnibus (GEO) (GSE161529) dataset were collected to analyze the landscape of m5C 
regulators. scRNA-seq data from 5 breast cancer (BC) patients and 5 control patient samples in the Gene 
Expression Omnibus (GEO) (GSM5354517) dataset were collected to validated the landscape of m5C regulators. 
Full data was downloaded in the GEO database (www.ncbi.nlm.nih.gov/geo), the clinical characteristics of 
single-cell samples are listed in Table S3. All data generated or analyzed during this study are freely available in 
previous publications or the public domain.

Analysis of scRNA-seq data
Gene expression data for both control and BC tissues were analyzed using R software (version 4.2.2). The data 
was converted into Seurat objects using the Seurat R package (version 4.3.0.1). Only cells expressing 200 to 7500 
genes (including mitochondrial content less than 15%) were retained. The expression data for control and breast 
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tissues were integrated using the “FindIntegrationAnchors” and “IntegrateData” functions in the Seurat package. 
The count data were normalized after quality control. To reduce the computational burden and noise in the data, 
principal component analysis (PCA) was used for initial dimensionality reduction. K nearest neighbour graphs 
were constructed using the FindNeighbors function based on the Euclidean distance in the PCA space, whereas 
cells were clustered using the Louvain algorithm. The annotated information for each cell in the dataset reported 
in a previous article was visualized using t-Distributed Stochastic Neighbor Embedding (TSNE).

Differential gene expression analysis
The difference in m5C regulators expression between cells was analyzed using the “FindMarkers” function 
(Wilcoxon rank-sum test) in the Seurat package (version 4.2.0). Significant expression was based on |Log2FC| > 
0.25 at statistical significance of p < 0.05.

Construction of metacell maps
The MetaCell method useed the K-nn graph algorithm to divide the scRNA-seq dataset into unconnected and 
uniform cell groups (metacells) for epithelial and myeloid cells, respectively. Based on the gene count matrix, 
feature genes with scaling variance (variance/mean of the down-sampled matrices) exceeding 0.08 were selected, 
and the similarity between cells was calculated using Pearson correlation. Based on the inter-cell similarity 
matrices, the equilibrium K-nn similarity maps of two different cells are constructed with K as the parameter 
(the number of neighbors per cell is limited to K, K = 40). Perform the resampling process (resampling 75% 
of the cells per iteration, 500 iterations) and construct co-clustering graph (minimum cluster size was 50). A 
graphic of metacells (and the cells belonging to them) were projected onto a two-dimensional space to explore 
the similarities between cells and metacells.

Single-cell consensus weighted gene co-expression network analysis
We constructed metacells in which the software applied a bootstrapped aggregation process to the single-
nucleus transcriptome. After the computation, cells of the same cell type and within the same sample will retain 
the new metacell for high-dimensional weighted gene coexpression network analysis (hdWGCNA). Modules 
were defined according gene expression in the metacell. The first principal component of the module, called the 
module eigengene, to correlate with diagnosis and other variables. Hub genes were defined using intra-modular 
connectivity (kME) parameters. Gene-set enrichment analysis was done using EnrichR.

Functional enrichment analysis of differential expression of genes (DEGs)
To explore functions and pathways of DEGs, the DEGs were loaded into the cluster profile package for GO(Gene 
Ontology) enrichment analysis. The adjusted p value of < 0.05.

Definition of m5C-related genes score
AddModuleScore and AUCell score are used to evaluate the strength of various cellular phenotypes or biological 
processes based on gene sets corresponding to each signature and gene expression data. For m5C scores, m5C 
regulators were identified between epithelial cells, lymphocytes, fibroblasts, endothelial and myeloid cells.

Bulk-RNA sequencing
Data sources and preprocessing
We used publicly available gene expression data and full clinical annotation of patients with BC in The Cancer 
Genome Atlas (TCGA) database. Patients with BC that lacked survival information were excluded; 1089 eligible 
tumor samples from the TCGA-Breast Invasive Carcinoma (BRCA) cohort were included for further analysis. 
RNA sequencing data (FPKM value) were downloaded from the Genomic Data Commons  (   h t t p s : / / p o r t a l . g 
d c . c a n c e r . g o v /     ) , and the R package TCGAbiolinks, which is a software package developed for Genomic Data 
Commons data analysis, was used for integrative analysis44. Somatic mutation data were also acquired from 
TCGA and analyzed using R (version 4.1.2) and R Bioconductor. For an external testing dataset, we identified 
datasets related to BC in the Gene Expression Omnibus database (GSE7390 and GSE103091 cohorts) that were 
applied to validate the prognostic value of m5C modification signature.

Unsupervised clustering analysis for 17 m5C regulators
We selected 17 m5C methylation regulators that had expression data in TCGA. To classify patients for further 
analysis, we applied unsupervised cluster analysis to identify different m5C modification patterns based on 
the expression of 17 m5C regulators. The number and stability of clusters were determined by the consistent 
clustering algorithm. The “ConsensusClusterPlus” package was used for clustering45. In order to ensure the 
stability of the classification, we performed 1000-times cycle computation.

Gene set variation analysis and functional annotation
We performed gene set variation analysis (GSVA) using the “GSVA” R package to investigate differences in 
the enriched biological processes between different m5C modification patterns. GSVA, a non-parametric and 
unsupervised method, is commonly employed to estimate variations in pathway and biological process activity 
using RNA-Seq data46. The “c2.cp.kegg.v6.2.symbols” gene sets were used to run the GSVA; these gene sets were 
downloaded from the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb). A corrected 
P-value of less than 0.005 was considered statistically significant. The “clusterProfiler” R package was used to 
annotate the functions of m5C-related genes, with a critical false discovery rate (FDR) of less than 0.05.
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Comparison of cell infiltration abundance in tumor microenvironment based on m5C patterns
To compare the infiltration of immune cells among samples with different m5C modification patterns, we used 
single-sample gene set enrichment analysis (ssGSEA) to quantify the relative abundance of each cell type in 
the breast TME and applied the gene set obtained from the study by Charorntong for ssGSEA47. The relative 
abundance of each immune cell in each sample was assessed using the enrichment scores calculated by ssGSEA. 
We also calculated the tumor purity, stromal, immune, and ESTIMATE scores in each sample using the 
ESTIMATE algorithm to evaluate the tumor component48. The “limma” package in R was used to analyze the 
scores between different subgroups.

DEGs identification of different m5C modification modes
According to the expression of 17 m5C regulatory factors, the tumor samples were divided into three different 
m5C modification modes. The empirical Bayesian method was used to identify DEGs in three groups49. 
The significance criterion of deg was adjusted to P < 0.05,and | log2(FC)| > 1.0. Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes were used to enrich pathways associated with DEGs.

Generation of an m5C gene signature
Owing to the heterogeneity and complexity of m5C modifications, we constructed a scoring systems to quantify 
the m5C modification pattern of individual patients with BC. This gave rise to the m5C gene signature, which 
we termed the m5Cscore. We extracted overlapping DEGs in different m5C clusters from all BC samples and 
analyzed the extracted DEGs using unsupervised clustering. The number and stability of gene clusters were 
determined by consensus clustering algorithm. The univariate Cox regression model was used to analyze the 
relationship between prognosis and overlapping DEG, and m5C gene markers were constructed by principal 
component analysis of genes with significant prognostic differences. Principal component 1 and principal 
component 2 were selected as signature scores. Finally, we defined the m5C score using a method similar to the 
Genome Grading Index50,51, as follows:

m5Cscore =
∑

(PC1i + PC2i)
where i is the expression of m5C phenotype-related genes.
We evaluated the constructed m5C modification signature in both the training (TCGA-BRCA cohort) and 

testing (GSE7390 and GSE103091 cohorts) datasets as described above.

Assessing the response to immunotherapy and drug sensitivity
Tumor Immune Dysfunction and Exclusion (TIDE) is a computational method that models tumor immune 
evasion41. We used TIDE to predict the response to immune checkpoint blockade (ICB) in different m5Cscore 
groups (http://tide.dfci.harvard.edu/). The R package “limma” was used to calculate TIDE scores in different 
m5Cscore groups, and the R package “pRRophetic” was used to examine the expression profile of the TCGA-
BRCA cohort for a drug sensitivity analysis52.

RT‑qPCR
Patients were selected from BC screening of eligible women who were residents in Shanxi province (Table S4). 
Invasive breast cancer was diagnosed by histopathology, while the control group consisted of normal breast 
cells. Three cases each of BC tissue and normal breast tissue were included in the experiment. Participants were 
excluded based on the following criteria: (1) lactating women, (2) patients with a history of mastectomy, (3) 
patients with a history of treatment for breast lesions, (4) patients with other malignant tumors, and (5) patients 
with blood and digestive system diseases. There was no statistically significant difference in age between the two 
groups of patients (P > 0.05). All patients with BC underwent histopathology. For BC tissue, histopathology was 
performed by a pathologist with more than two years of experience. To limit the deviation of routine pathological 
diagnosis for BC, forceps were used to remove two additional pieces of tissue (approximately 5 mm each). Then, 
the tissue was washed with physiological saline and placed in a solution containing RNA preservation and tissue 
fixation. The samples used for RT qPCR were stored overnight in a 4 ℃ refrigerator and then transferred to a -20 
℃ refrigerator for storage at room temperature for hematoxylin and eosin samples.

Total RNA was extracted from normal and malignant breast tissue using TRIzol reagent (Invitrogen) 
according to the manufacturer’s instructions. The primers were synthesized by Sangon Biotech (Shanghai, 
China). The housekeeping gene GADPH was used as an internal control. The primers used are listed in Table S5.

All reactions were conducted on Roche LightCycler 96 PCR Machine (Roche, Mannheim, Germany) using 
the following cycling parameters: step 1: denaturation at 94 °C for 30 s; step 2: 40 cycles of 94 °C for 5 s and 
60 °C for 30 s. Gene expression was calculated using the ΔΔCt method. All data represent the average of three 
replicates.

Statistical analysis
One-way ANOVA and the Kruskal–Wallis test were used to compare differences among three or more groups53. 
Spearman and distance correlation analyses were used to calculate the correlation coefficient between the 
expression of m5C regulators and infiltrating immune cells. The “survminer” R software package was used to 
determine the optimal cutoff point of the m5Cscore for predicting prognosis, and patients were divided into high 
and low m5Cscore groups. Survival curves were generated using the Kaplan–Meier method, and log-rank tests 
were used to identify the significance of differences. A univariate Cox regression model was used to calculate 
hazard ratios for m5C regulators and m5C phenotype-related genes. Multivariate Cox regression analysis was 
used to evaluate independent prognostic factors. Waterfall plots representing the mutation landscapes of the 
high and low m5Cscore groups were created using the waterfall function of the R software “maftools” package54. 
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All tests were bilateral, and P < 0.05 was considered statistically significant. and the Benjamini-Hochberg method 
was applied to control the false discovery rate (FDR) for multiple hypothesis testing55.

Data availability
Publicly available datasets were analyzed in this study. The data for this study can be found in the Cancer Ge-
nome Atlas database (https://portal.gdc.cancer.gov/), the Gene Expression Omnibus database  (   h t t p s : / / w w w . n c 
b i . n l m . n i h . g o v / g e o /     ) . And the Immunohistochemical samples’ data from the Human Protein Atlas  (   h t t p s : / / w w 
w . p r o t e i n a t l a s . o r g /     ) .  
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