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The brain age gap (BAG) has been shown to capture accelerated brain

aging patterns and might serve as a biomarker for several neurological

diseases. Moreover, it was also shown that it captures other biological

information related to modifiable cardiovascular risk factors. Previous studies

have explored statistical relationships between the BAG and cardiovascular

risk factors. However, none of those studies explored causal relationships

between the BAG and cardiovascular risk factors. In this work, we employ

causal structure discovery techniques and define a Bayesian network to

model the assumed causal relationships between the BAG, estimated using

morphometric T1-weighted magnetic resonance imaging brain features from

2025 adults, and several cardiovascular risk factors. This setup allows us to

not only assess observed conditional probability distributions of the BAG

given cardiovascular risk factors, but also to isolate the causal effect of each

cardiovascular risk factor on BAG using causal inference. Results demonstrate

the feasibility of the proposed causal analysis approach by illustrating intuitive

causal relationships between variables. For example, body-mass-index, waist-

to-hip ratio, smoking, and alcohol consumption were found to impact the

BAG, with the greatest impact for obesity markers resulting in higher chances

of developing accelerated brain aging. Moreover, the findings show that causal

effects differ from correlational effects, demonstrating the importance of

accounting for variable relationships and confounders when evaluating the

information captured by a biomarker. Our work demonstrates the feasibility

and advantages of using causal analyses instead of purely correlation-

based and univariate statistical analyses in the context of brain aging and

related problems.
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Introduction

The so-called brain age gap (BAG) has been recently
proposed as an imaging-derived early biomarker for several
neurodegenerative diseases (Baecker et al., 2021). Estimating
the BAG can be performed non-invasively and without ionizing
radiation, since it is usually based on magnetic resonance
imaging (MRI). This biomarker can capture abnormal brain
aging (e.g., accelerated brain atrophy) by calculating the
difference between the biological brain age, typically estimated
from MRI data using machine learning models, and the
chronological age. Within this context, it potentially allows a
wide-spread application for the early detection of dementia and
psychological disorders (Franke and Gaser, 2019).

In addition to being a reliable biomarker for
neurodegenerative diseases such as Alzheimer’s, it has also
been reported that the BAG is correlated with clinical and
life behavioral factors that are assumed to be related to
early aging. For example, cardiovascular risk factors such
as elevated blood pressure, waist-to-hip ratio, and cigarette
smoking (Cole, 2020; de Lange et al., 2020; Beck et al., 2021)
have been associated with an increased BAG. So far, these
associations have typically been analyzed independently
for each specific factor in a univariate way, sometimes
adjusting for the effects of age, sex, or image acquisition
parameters (Cole, 2020; de Lange et al., 2020). However,
such confounders are frequently determined only based on
intuition and employed confounding variable adjustment
schemes do not provide any information about causal
relationships. Moreover, it is well known that, for example,
cardiovascular risk factors interact with each other (e.g.,
body-mass-index, waist-to-hip ratio, and blood pressure),
which is often ignored in standard univariate correlational
analyses. We, therefore, argue that there is currently a
lack of models/studies that systematically investigate causal
relationships in brain aging.

In this work, we aim to (1) discover potential relationships
between cardiovascular risk factors and the BAG, (2) build a
mathematical model representing these interactions, and (3)
use this model to analyze these interactions by performing
causal inference.

Causal structure learning/discovery algorithms allow to
discover dependencies between variables from observational
data, and generate a directed acyclic graph representing the
relationships between these variables (Heinze-Deml et al.,
2018). In the graph, each variable of interest is a node
and (causal) interactions are represented through directed
edges between nodes. Once the directed acyclic graph is
known, Bayesian networks can be used to model conditional
probabilities. Bayesian networks are probabilistic graphical
models representing the joint probability distribution of a
set of random variables, where interactions between random

variables are defined through a directed acyclic graph. The
Bayesian network can be used to assess probability distributions
on the data using Bayesian inference (Larrañaga and Moral,
2011). Indeed, the probability distribution of a variable of
interest given other known variables can be observed within
the data and used to infer the values of the variable of
interest on new data. In the field of neuroimaging, Bayesian
networks have been used as predictive tools, for example,
for post-stroke outcome (Park et al., 2018), or as tools
to understand the mechanisms of a pathology and identify
reliable biomarkers, such as in mild cognitive impairment
and Alzheimer’s diseases (Jin et al., 2016; Khanna et al.,
2018).

Beyond Bayesian inference, which allows to evaluate
conditional probabilities on observational data, causal inference
allows to evaluate the effect of an independent variable
on another. Therefore, causal inference allows us to alter
the value of one variable of the Bayesian network (i.e.,
to intervene on the network) and to assess its causal
effects on other variables (Pearl, 2012). This property is
especially interesting in the context of cardiovascular risk
factors, as these are often modifiable. Therefore, if a factor
(e.g., smoking) is found to cause accelerated brain aging,
a specific change in lifestyle (e.g., quit smoking) could
help preventing negative effects. For these reasons, Bayesian
networks are well-suited to investigate the causal relations
between the brain age gap and cardiovascular risk factors
and, to the best of our knowledge, have not been used in
this context yet.

In this work, we used cross-sectional T1-weighted MRI
datasets and cardiovascular risk factors from 2025 adults.
First, brain tissue features were extracted from the T1-
weighted images, which were used to predict the biological
brain age using a trained multilayer perceptron regression
model. The BAG was then computed by calculating the
difference between the chronological and biological brain age.
A cross-validation scheme was employed to maximize the
data available while still allowing to train robust models.
Then, a causal structure learning/discovery algorithm was
used to determine a directed acyclic graph representing
the relationships between these variables. The graph was
further used to fit conditional probabilities to create a
Bayesian network, which gives a factorized probabilistic
description of the relationships between cardiovascular risk
factors and the BAG. Finally, causal inference was used
to evaluate the causal effect of each cardiovascular risk
factors on the BAG. The use of Bayesian networks as
a novel approach to study the BAG allows us to (1)
identify causal relationships between variables, (2) observe
conditional probability distributions of the variables, and (3)
intervene on the model to isolate the causal effect of each
variable on the BAG.
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Materials and methods

Clinical data

Cross-sectional T1-weighted MRI datasets and
cardiovascular risk factors data from the Study of Health
in Pomerania (SHIP) were used in this secondary study. The
goal of the SHIP study was to gather general population data by
randomly selecting participants within the region of Pomerania,
Germany (Völzke et al., 2011). The data sample used in this
secondary study includes 2025 participants (21–82 years old;
mean: 51 ± 14) with no known pathologies in brain MRI scans.
T1-weighted MRI data acquisition was performed using a
single 1.5T MRI scanner (Magnetom Avanto; Siemens Medical
Solutions, Erlangen, Germany) and the following acquisition
parameters: TR = 1,900 ms, TE = 3.4 ms, flip angle = 15◦,
spacing = 1.0 mm3

× 1.0 mm3
× 1.0 mm3. Cardiovascular risk

factors were assessed in a single session, at the time of imaging
data acquisition. The cardiovascular risk factors available for
this work include body-mass-index (BMI) [kg/m2], waist-
to-hip ratio (WHR), systolic blood pressure (BP) [mmHg],
smoking history (encoding the following information: smoker
versus non-smoker; past versus current smoker; regular versus
occasional smoker), and alcohol consumption (number of
glasses of alcohol per week) (see Table 1).

All participants provided written informed consent and the
SHIP study was approved by the local ethics commission of the
University of Greifswald (BB 39/08, 19.06.2008).

Brain age prediction

Morphometric features, including subcortical and cortical
structure volume, surface area, and cortical thickness, were
computed based on the T1-weighted MRI data using Fastsurfer
(Henschel et al., 2020). Briefly, Fastsurfer replicates the
Freesurfer pipeline (Fischl et al., 2002) but allows faster
computation by utilizing deep learning methods. Fastsurfer first
uses a deep learning-based model to segment 95 anatomical
structures, and then extracts morphological measurements

TABLE 1 Demographics and cardiovascular risk factors.

Mean (standard
deviation)

Sex F: 1050; M: 975

Age F: 50.9 (13.5); M: 50.6 (14.3)

Body-mass-index F: 26.90 (4.65); M: 28.02 (3.70)

Systolic blood pressure F: 120.6 (15.6); M: 133.6 (14.9)

Waist-to-hip-ratio F: 0.82 (0.062); M: 0.94 (0.07)

Smoking (0: non-smoker; 1: past
smoker; 2: current smoker)
(males%)

0: 803 (38%); 1: 729 (57%); 2: 493
(51%)

Alcohol drinking (0:
non-drinker; 1: ≤1 glass/week; 1:
>1 glass/week) (males%)

0: 150 (40%); 1: 547 (24%); 2:
1328 (59%)

through surface reconstruction. Using this approach, 223
features were extracted for each subject. All segmentation masks
resulting from the Fastsurfer pipeline were visually inspected
to ensure accurate segmentation. Datasets with suboptimal
segmentation results were not included in this work.

Brain age prediction was conducted using a multi-
layer perceptron (MLP) that uses the morphological features
extracted from the neuroimaging data as inputs. The MLP
architecture was optimized using 10-fold cross validation. MLP
architectures with one to four hidden layers, with the following
number of neurons per layer were tested: (256); (256, 128); (256,
128, 64); (256, 128, 64, 32). The best performing architecture
as defined by the lowest mean absolute error (MAE) when
comparing the chronological and predicted age for the test data
was then used to predict the brain age of each subject within a
10-folds cross validation approach. Within each cross-validation
iteration, nine folds were used for training and one fold was used
for testing. Within the data from the nine training folds, 15% of
the data were assigned to the validation set used to determine
the optimal number of training epochs. All data splits were
performed in an age stratified fashion.

Next, estimated brain age predictions were adjusted for age-
related bias, following (de Lange et al., 2020). It is well known
that brain age prediction models tend to overestimate the age of
younger subjects and underestimate the age of elderly subjects.
A likely reason for this is the regression toward the mean
phenomenon (Liang et al., 2019). To adjust for age-related bias,
the slope (α) and intercept (β) of the regression line for the
chronological vs. predicted age relation was estimated in each
cross-validation iteration using the validation data as follows:

PredictedAge = α× ChronologicalAge+ β

Then, correction was applied on the test data:

CorrectedPredictedAge = PredictedAge+

[ChronologicalAge− (ChronologicalAge× α+ β)]

Bayesian network

A Bayesian network is defined as a directed acyclic graph
with a set of edges and nodes representing random variablesX =
{X1,X2, . . . ,Xn}. In a Bayesian network, the joint probability
distribution is defined in a factorized way as:

P (X) =

n∏
i=1

P
(
Xi|parents (Xi)

)
,

where parents (Xi) are Xi’s parent nodes in the graph. In this
work, a Bayesian network was learned using the following
random variables: age, sex, five cardiovascular risk factors
(BMI, WHR, BP, smoking and alcohol drinking, as described
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in Table 1), and the age-adjusted BAG (estimated brain
age – chronological age). The CausalNex package (Welcome
to CausalNex’s API, 2020) was used for the model learning,
validation, and evaluation steps described in the following.

First, the structure of the directed acyclic graph was
automatically learned using the NO TEARS algorithm (Zheng
et al., 2018) implementation from the CausalNex package
(Welcome to CausalNex’s API, 2020). NO TEARS is a score-
based, state-of-the-art structure learning algorithm that has
been successfully used for other healthcare related problems
(Gencoglu and Gruber, 2020; Marchezini et al., 2022). A list of
forbidden edges was given to the algorithm as constraints:

1. None of the variables can affect age and sex;
2. BAG cannot affect any of the variables;
3. BMI, WHR, and BP cannot affect smoking and alcohol

drinking status.

Structure learning additionally requires a threshold to
discard the weaker edges from the structure. This threshold was
determined at the model validation step (see below).

Once the structure is learned, the conditional probability
distributions of the Bayesian network can be fitted. To do so,
the CausalNex package required the variables to be discretized.
Therefore, the following thresholds were chosen, following
common categorization schemes (Ashwell, 2011; Mancia et al.,
2014), for each cardiovascular risk factor: BMI: [<25, 25–30,
>30]; BP: [<120, 120–140, >140]; Males WHR: [<0.95, 0.95–1,
>1]; Females WHR: [<0.8, 0.8–0.85, >0.85]; Age: [<35, 35–
65, >65]. Smoking and alcohol drinking were categorized as
described in Table 1. The brain age gap was categorized as [<–
3, –3 to 3, >3], to generate three balanced classes representing
delayed brain aging, normal brain aging, and accelerated brain
aging, respectively. As all cardiovascular risk factors included
in the model were split into three categories, we further
refer to them as “low,” “normal” and “high” in the following
descriptions. Discretization of the continuous cardiovascular
risk factors resulted in the following percentage of males in each
category: BMI: [low: 33%, normal: 58%, high: 51%], BP: [low:
25%, normal: 56%, high: 72%]; WHR: [low: 58%, normal: 37%,
high: 65%]; Age: [low: 53%, normal: 47%, high: 50%]. Finally,
Bayesian parameter estimation was used to fit the probabilities.

The model was validated by computing the area under
the receiver operating characteristics curve (AUC) while
performing classification for each node of the directed acyclic
graph using Bayesian inference on the test data. Therefore,
for the random variable X1, P (X1|X2, . . . ,Xn) was computed
to determine the most probable value of X1 given all other
variables. 10-fold cross validation was used, whereas in each
iteration, nine folds were used to fit the conditional probabilities
and one fold to test the model. The 10-fold cross-validation was
repeated 10 times to ensure robustness of the results, and the
average AUCs are reported, for each node and for the whole
model. The evaluation stage was used to (1) ensure the model’s

quality and (2) determine the optimal threshold to discard
the weakest edges of the directed acyclic graph. Therefore, the
threshold was chosen to maximize both, the average AUC over
all the graph nodes and the BAG node AUC. After evaluating
the model using the cross-validation approach, the full database
was used to learn the final Bayesian network on which the
observation and intervention experiments were performed as
described below.

First, the conditional distributions from the trained model
were analyzed to learn more about the interactions directly
observable from the data. To do so, the probability distribution
of each node, conditioned on the value of one of its parent nodes
while marginalizing over the remaining ones, was evaluated.
Therefore, if X2 is a parent of X1, computing P(X1|X2 = x2)
answers the question “What is the probability distribution of
X1 given that we observe that X2 = x2?”. For instance, we
can evaluate the probability of having a high BAG given that
someone is smoking.

Then, interventions were used to evaluate causal inferences.
Such interventions, for instance, could simulate a world
in which some treatment of lifestyle changes would occur.
Therefore, interventions simulate conditions that would not be
applicable in the real world (such as a world in which everyone
smokes). Do-Calculus was used to perform causal inference after
intervening on the network (Pearl, 2012). The do( ) operator
indicates an intervention on one or several nodes of the directed
acyclic graph by fixing the value of the corresponding random
variable. P

(
X1|do (X2 = x2)

)
answers the following question:

“What would the probability distribution of X1 be if we would
intervene on the model and set X2 = x2?”. Thus, parents’ nodes
of X2 do not influence it anymore, and the confounding bias
free effects of X2 on X1 can be determined. For instance, let us
assume that sex is a parent node of smoking and both sex and
smoking are parents of the BAG node. Intervening on smoking
to evaluate its causal effect on the BAG would imply ignoring
the causal influence of sex on smoking, as intervening means
manually fixing the value. Do-Calculus allows to transform an
expression containing the do( ) operator into an expression
without the do( ) operator, which can be computed from the
observational data. In this work, intervention was applied on
the parents’ nodes of the BAG node, individually, to evaluate the
confounding bias free effect of each isolated risk factor on the
BAG. Intervention consisted of setting the distribution of each
risk factor category (low, normal, high) to 100% and the other
categories to 0% and evaluating the probability distribution of
the BAG. Identifying risk factors causing the most accelerated
brain aging can help evaluating the lifestyle changes required to
reduce accelerated brain aging.

Results

The best performing brain age prediction model architecture
had two hidden layers with 256 and 128 neurons, respectively.
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FIGURE 1

Bayesian network structure (directed acyclic graph), and
conditional probability distribution visualization. Red edge:
positive association. Blue edge: negative association. Dashed
edge: non-linear association. Sex: Male = 0, Female = 1; BAG,
brain age gap; BMI, body mass index; BP, blood pressure; WHR,
waist-to-hip ratio.

Brain age prediction resulted in an average MAE of 5.2 years
comparing the predicted and chronological age over the 10
folds. After age-bias correction, the average cross-validation
MAE decreased to 4.8 years. These results are comparable to
the ones observed in other studies using features extracted with
Freesurfer (Beck et al., 2021; Lombardi et al., 2021).

Figure 1 shows the learned Bayesian network’s directed
acyclic graph resulting from the analysis of the data available
for this work. The graph shows directed edges between
the nodes and the colors represent the directionality of the
relationship between each node and its children, evaluated by
observing conditional probabilities. Red edges indicate positive
associations: when the parent node value is high, the child node
value is more likely to be high. Blue edges indicate negative
associations: when the parent node value is high, the child
node value is more likely to be low. Therefore, Figure 1 shows
intuitive results such as BMI and BP being more likely to be
high when WHR is high, BAG being more likely to be high
(i.e., accelerated brain aging) when WHR, BMI, and smoking
are high. Males (sex = 0) are more likely to have higher BMI,
BP, and to drink and to smoke more. Dashed edges represent
non-linear associations. The results suggest that non-drinkers
and regular-drinkers are more likely to have a high BAG, BP,
or BMI compared to occasional drinkers. Overall, these results
support the validity of the graph given current knowledge.

Results of the model validation are reported in Table 2.
The average AUC over all the nodes and the repeated 10-folds
cross-validation is 0.629. All AUC values are above chance level
(>0.5), with the lowest AUC reported for the BAG (0.539), and
the highest for sex (0.757).

Figure 2 illustrates the conditional probability distribution
of the BAG when observing (plain lines) and intervening
(dashed lines) on the Bayesian network. For nodes without
parents in the graph (WHR and sex), observing and intervening
leads to the same results. For nodes that have parents that
also impact the BAG (BMI, smoking and drinking), observing
and intervening differs. Observing while conditioning on parent
nodes is equivalent to narrow the focus. Intervening means
modifying the model by manually fixing a variable value
(Glymour et al., 2016).

As expected, Figure 2 suggests that the causal effects of
BMI (dashed line: intervention) on the BAG are generally
different than the observed correlational effects of BMI (plain
line: observation). For instance, the observational distribution
P
(
BAG|BMI = high

)
is: {low BAG: 0.26, normal BAG: 0.37,

high BAG: 0.37} (plain red line), while the interventional
distribution P

(
BAG|do

(
BMI = high

))
is: {low BAG: 0.30,

normal BAG 0.38, high BAG: 0.32} (dashed red line). Similarly,
differences between conditional probability distribution for
observations or interventions are present for smoking and
drinking, although they are smaller. For example, the causal
effects of being a non-smoker or non-drinker (dashed blue
lines) on having delayed brain aging (negative BAG), are
slightly smaller than the observational effects (plain blue lines).
This suggests that causal structure matters as the observed
correlational effects differ from causal effects. While Figure 2
shows probability distribution conditioned on one variable
(the cardiovascular risk factor of interest), the model can also
be used to estimate probability distribution conditioned on
several variables (e.g., the cardiovascular risk factor of interest
and sex). Such results are shown in supplementary material
(Supplementary Figures 1, 2), which illustrate that probability
distributions differ with sex.

Discussion

In this work, it was shown that causal structure learning and
Bayesian networks enable us to (1) discover causal relationships
between the BAG and cardiovascular risk factors and (2) to
assess the causal impact of each cardiovascular risk factor on
the BAG while accounting for risk factor relationships (i.e.,
causal effects). Therefore, this work demonstrates the feasibility
and advantages of accounting for causal relationships between
cardiovascular risk factors, whereas the methods can be easily
translated to other clinical problems in neuroimaging.

First, the results demonstrate that causal associations
between variables can be discovered by combining a structure
learning algorithm and expert knowledge. Overall, the resulting
graph shows clinically meaningful and plausible relationships.
Data preprocessing steps that were applied, such as the
adjustment for age-related bias of the BAG and the use
of different threshold values for males and females when
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TABLE 2 Area under the ROC curve (AUC) for all model nodes.

BAG Age Sex BP BMI WHR Smoking Drinking Average of all
nodes

AUC CV average
(CV std)

0.539
(0.0034)

0.588
(0.0037)

0.757
(0.0029)

0.664
(0.0030)

0.688
(0.0023)

0.660
(0.0035)

0.546
(0.0038)

0.593
(0.0038)

0.629
(0.0017)

The AUC average and standard deviation (in brackets) are reported across the ten times repeated 10-fold cross validation (CV).
BAG, brain age gap; BMI, body mass index; BP, blood pressure; WHR, waist-to-hip ratio.

FIGURE 2

BAG distributions when observing (plain lines) or intervening (dashed lines) on the cardiovascular risk factors. BAG, brain age gap; BMI, body
mass index; WHR, waist-to-hip ratio.

discretizing WHR are reflected in the graph as no relationship
between BAG and age, and between sex and WHR is present.
Other edges such as the effects of sex on all other cardiovascular
risk factors, or the effects of all risk factors on BP are in line
with general clinical knowledge. The observed effects of sex,
WHR, BMI, smoking, and alcohol consumption on the BAG are
in line with previous literature in which many various factors
were shown to impact the BAG in simple correlation analyses
(Cole, 2020; de Lange et al., 2020; Beck et al., 2021; Dinsdale

et al., 2021). Mostly linear effects are observed in the graph
except for drinking, which has been reported in the past as
having non-linear effects on cardiovascular health in general
(O’Keefe et al., 2007).

The accuracy of the model’s predictions, evaluated using
AUC, are above chance level. This confirms the suitability
of the model although most AUC values are low. However,
it has to be pointed out that such results are expected due
to the small number of variables included in the model and
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the high loss of information caused by data discretization.
Furthermore, the focus of this work is to identify the causal
relationship between variables and the feasibility of using such
a causal analysis in the context of brain aging biomarkers rather
than training an accurate model that can predict BAG from
cardiovascular risk factors.

Observing the Bayesian network conditional probability
distributions allows us to assess the impact of cardiovascular
risk factors conditioned on other factors. On the other hand,
intervening on the Bayesian network allows us to investigate
the causal effects of cardiovascular risk factors. Therefore,
such a model allows us to estimate group-specific probability
distributions, when conditioning on different factors, and to
account for confounding variables in a systematic and justified
way. Indeed, dealing with confounding variables is crucial to
correctly assess associations between factors (Alfaro-Almagro
et al., 2021). It is necessary to identify the correct confounding
variables for a specific task in a first step and then to adjust other
variables for them, or to include them as covariates in the model.
In studies specifically investigating the effects of cardiovascular
risk factors on the BAG, different confounding variables and
adjustment methods have been used, making it difficult to
compare the findings. For example, Cole (2020) added age,
age2, sex, height, head size scaling, and mean task fMRI head
motion as predictors to their multiple linear regression model,
as they found that these variables are correlated with the
BAG. de Lange et al. (2020) corrected their cardiovascular
risk factors (blood pressure, alcohol intake and stroke risk)
for sex, educational level, and ethnic background prior to
modeling the relationships between each factor and the BAG,
while adding age as a covariate. Dinsdale et al. (2021) removed
the following confounding variables from their lifestyle factors
and physiological measurements before computing sex-specific
correlations between each variable and the BAG: sex, age, head
size, head motion, scanner table position, and imaging center.
These examples demonstrate discrepancies between studies in
terms of the choice of confounding variables and the adjustment
method being used. Therefore, the proposed approach provides
a unified way to (1) identify variables with true causal
relationships using a structure learning algorithm and (2) obtain
confounding bias free/causal associations between variables.
More generally, this work demonstrates the feasibility and
advantages of performing a causal analysis to improve the
understanding of causal effects between variables and can be
used in many diverse problems.

Although the approach shows promising and plausible first
results to study associations between variables, some limitations
remain. First, structure learning should be carefully used in
conjunction with expert knowledge to validate/correct the
graph. Indeed, many different structure learning algorithms
exist and can lead to diverging results, thus requiring expert
validation (Reisach et al., 2021). The use of discretized data
for Bayesian conditional probability fitting results in a loss

of information and the chosen thresholds might not be ideal.
Thus, more advanced methods for causal inference should be
investigated in the future, such as the framework proposed by
Pawlowski et al. (2020), which can handle imaging data directly.
On the clinical side, limitations related to the data includes the
cross-sectional aspect of the study, and the lack of longitudinal
information for the cardiovascular risk factors, which were only
measured at a single time point. Moreover, the inclusion of more
diverse life behavioral and clinical factors into the model would
contribute to make it more realistic and to improve its accuracy.

Conclusion

The present work introduces a proof-of-concept study using
tools from causal analysis to improve our understanding of the
BAG, which is a promising biomarker for neurodegeneration.
The causal relationships identified between the BAG and
cardiovascular risk factors illustrate the wide range of biological
information captured in the BAG, thus demonstrating its
complexity. Moreover, the advantages of the proposed approach
can be extended beyond the scope of brain aging for any
multivariable analysis comprising confounding variables.
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