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scCAD: Cluster decomposition-based
anomaly detection for rare cell identification
in single-cell expression data

Yunpei Xu1,2,3,6, Shaokai Wang4,6, Qilong Feng1,2,3, Jiazhi Xia1,3, Yaohang Li 5,
Hong-Dong Li 1,2,3 & Jianxin Wang 1,2,3

Single-cell RNA sequencing (scRNA-seq) technologies have become essential
tools for characterizing cellular landscapeswithin complex tissues. Large-scale
single-cell transcriptomics holds great potential for identifying rare cell types
critical to the pathogenesis of diseases and biological processes. Existing
methods for identifying rare cell types often rely on one-time clustering using
partial or global gene expression. However, these rare cell types may be
overlooked during the clustering phase, posing challenges for their accurate
identification. In this paper, we propose a Cluster decomposition-based
Anomaly Detection method (scCAD), which iteratively decomposes clusters
based on the most differential signals in each cluster to effectively separate
rare cell types and achieve accurate identification.We benchmark scCADon 25
real-world scRNA-seq datasets, demonstrating its superior performance
compared to 10 state-of-the-art methods. In-depth case studies across diverse
datasets, including mouse airway, brain, intestine, human pancreas, immu-
nology data, and clear cell renal cell carcinoma, showcase scCAD’s efficiency in
identifying rare cell types in complex biological scenarios. Furthermore,
scCAD can correct the annotation of rare cell types and identify immune cell
subtypes associated with disease, thereby offering valuable insights into
disease progression.

Single-cell RNA sequencing (scRNA-seq) technologies have enabled
researchers to analyze gene expression patterns at the single-cell
level1, thereby dissecting cellular heterogeneity2, while providing new
insights into understanding the composition and function of cell types
within complex tissues3. With the advancement of sequencing tech-
nology, larger datasets become available4, enabling not only char-
acterizing the major cell types but also capturing low-frequency cell
types5–7. These rare cell types exhibit low abundance and have been
extensively validated for their significant roles in disease pathogenesis
and biological processes such as angiogenesis and immune response

mediation. For example, circulating tumor cells (CTCs) are indeed very
rare in peripheral blood but their metastasis is closely associated with
cancer-related death. It is estimated that CTCs account for 1 or fewer
cells in every 105–106 peripheral blood mononuclear cells (PBMCs)8.
This limited presence of CTCs poses a substantial challenge to their
detection and characterization in cancer research9,10. Therefore, in
addition to commonly used tools like Seurat11 that comprehensively
identify major cell types, developing specialized methods to accu-
rately and effectively identify and characterize these rare cell types has
become a major challenge in single-cell research.
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Prominent algorithms used in recent years for the identification
and analysis of rare cell types include Finder of Rare Entities (FiRE)12,
CellSIUS13, Ensemble method for simultaneous Dimensionality reduc-
tion and feature Gene Extraction (EDGE)14, GapClust15, GiniClust series
methods16–18, RaceID series methods19,20, SCISSORS21, CIARA22, and
surprisal component analysis (SCA)23. These methods identify rare
cells from four main perspectives. The first perspective involves pro-
posing amethod formeasuring cell rarity in highly variablegene space.
FiRE employs an efficient Sketching process that assigns each cell a
hash codemultiple times, with the number of a hash bucket serving as
an indicator of the rareness of its resident cells. It then assigns a con-
sensus rareness score for each cell, identifying cells with scores above
a threshold as rare. GapClust identifies rare cell types by assessing
variations in Euclidean distance between cells and their k-nearest
neighbors (KNN) within a principal component analysis (PCA) trans-
formed subspace. The second perspective focuses on proposing a
feature selection process. GiniClust introduces a novel gene selection
method to identify high Gini genes specific to rare cell types and then
uses a density-based clustering algorithm to cluster cells. The CIARA
algorithm, utilizing KNN, identifies potentially rare cells by examining
highly locally expressed genes and then applies the Louvain algorithm
to cluster with the selected genes. The third perspective is based on
clustering results and proposes a method tailored to identify rare sub-
clusters. CellSIUS identifies candidate marker genes with a bimodal
distribution of expression values within each cluster, then further
divides cells into sub-clusters by performing one-dimensional k-means
clustering based on the mean expression of each gene set with cor-
related expression patterns. RaceID identifies outlier cells within
clusters by evaluating the transcript count variability of every gene
across all cells and then reassigns each cell to the most highly corre-
lated cluster. SCISSORS employs silhouette scoring for the estimation
of heterogeneity of clusters and identifies rare cells in heterogeneous
clusters by a multi-step semi-supervised reclustering process. The last
perspective involves proposing dimensionality reduction methods for
discriminating rare cells, such as EDGE and SCA. Furthermore, the
integration of multi-omics data has emerged as a promising approach.
For example, MarsGT24 combines scRNA-seq and scATAC-seq data,
using probabilistic heterogeneous graph transformers for rare cell
identification.

Although certain successes have been achieved, these algorithms
have limitations in terms of both accuracy and robustness. Methods
relying on highly variable genes may overlook specific signals crucial
for distinguishing rare cell types, thus being sensitive to the number of
differentially expressed genes. When identifying rare cell subpopula-
tions, feature selection-based methods ignore the potential depen-
dence between different genes. Cluster-based methods may require
further analysis of the genes used to distinguish rare types within each
cluster. Dimensionality reduction methods may lose important infor-
mation during processing or be susceptible to noise and interference,
thereby complicating the accurate identification of rare cells. The
method integrating multi-omics data needs to account for potential
noise from batch effects and other sources of variation25, which could
complicate the identification of rare cell types.

To overcome these limitations, we propose scCAD, a Cluster
decomposition-based Anomaly Detection method to effectively iden-
tify rare cell types. In contrast to the existing algorithms, scCAD offers
an ensemble feature selection method aimed at maximizing the pre-
servation of differential signals of rare cell types. During cluster
decomposition, scCAD applies iterative clustering based on the most
differential signals in each cluster to effectively distinguish rare types
or subtypes that are initially challenging todifferentiate. Finally, scCAD
provides the user with several potentially rare cell clusters.

We benchmark scCAD on twenty-five real scRNA-seq datasets,
showcasing its superior capability to identify rare cell types. In the
majority of these datasets, scCAD exhibits higher identification

accuracy compared to other state-of-the-art methods. In case studies
across diverse biological scenarios, including mouse airway, brain,
intestine, human peripheral blood mononuclear (PBMC), and pan-
creas, scCAD accurately identifies rare cell types reported in previous
studies, showcasing its robustness and accuracy. In clear cell renal cell
carcinoma data, scCAD corrects rare cell annotation mistakes and
identifies disease-associated immune cell subtypes, providing valuable
insights into disease progression. Moreover, the analysis of the results
on two large-scale immunology datasets highlights the excellent scal-
ability of scCAD.

Results
Overview of scCAD
Single-cell RNA sequencing data often consist of a diverse range of cell
types, each characterized by specific functions and significant varia-
tions in cell counts. This can complicate the identification of rare cell
types during initial clustering, as they may be indistinguishable from
major cell types based partial or on global gene expression.

To tackle this challenge, scCAD employs an ensemble feature
selection method to effectively preserve differentially expressed (DE)
genes in rare cell types. Similar to GiniClust and CIARA, scCAD
emphasizes the importance of the feature selection procedure, which
plays a crucial role in clustering. In contrast to traditional approaches
that rely solely on the most variable genes for analysis, scCAD com-
bines the most important genes by utilizing initial clustering labels of
cells based on global gene expression and a random forest model26,27.
Then, scCAD proposes an innovative approach by decomposing the
major clusters in the initial clustering through iterative clustering
based on themost differential signals within each cluster. After cluster
decomposition, clusters serve as the fundamental units rather than
individual cells. We define the dominant cell type of a cluster as the
type to which the majority of cells in the cluster belong. The rarity of
specific cell types is reflected in the number of clusters they dominate.
The number of clusters dominated by rare cell types is significantly
lower than those dominated by major cell types. For improved com-
putational efficiency, scCAD reduces the number of clusters by mer-
ging some of the nearest clusters. This is accomplished by merging
clusters with the closest Euclidean distance between their centers. The
set of clusters obtained from the initial clustering, cluster decom-
position, and cluster merging are respectively defined as I-clusters
(initial clusters), D-clusters (decomposed clusters), and M-clusters
(merged clusters). For each cluster in M-clusters, scCAD utilizes dif-
ferential expression analysis to identify a specific list of candidate DE
genes. Due to limited quantity, rare cell types exhibit a higher degree
of independence in the corresponding DE gene list of their respective
cluster. scCAD employs an isolation forestmodel28 using the candidate
DE gene list to calculate the anomaly score of all cells. An indepen-
dence score is computed by assessing the overlap between highly
abnormal cells and those within the cluster, serving as a measure of
each cluster’s rarity. Figure 1 shows a schematic pipeline of scCAD, and
the “Methods” section provides a comprehensive explanation of the
step-by-step process in scCAD.

Benchmarking scCAD in real datasets
To comprehensively evaluate scCAD, we compare it with ten state-of-
the-art methods designed for identifying rare cell types across twenty-
five real scRNA-seq datasets representing diverse biological scenarios.
The specifics of these datasets can be found in Supplementary Table 1.
The evaluation of differentmethods is conducted using the F1 score for
rare cell types, which effectively captures the trade-off between pre-
cision and sensitivity (Supplementary Table 2 and Fig. 2a). As shown in
Fig. 2a and Supplementary Table 2, scCAD achieves the overall highest
performance (F1 score = 0.4172) and exhibits performance improve-
ments of 24% and 48% compared to the second and third-ranked
methods (SCA: 0.3359, CellSIUS: 0.2812), respectively.
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In addition to the F1 score, we employ four other measurements:
the accuracy of identifying rare cell types, G-mean (geometricmean of
precision and recall), Cohen’s Kappa, and Matthews correlation coef-
ficient (MCC). The accuracy of identifying rare cell types is defined as
ACCrare cell type =

TRC
IC , where TRC represents the number of correctly

identified rare cells and IC represents the total number of cells pre-
dicted as rare cell types. Since rare cell identification methods do not
provide prediction probabilities, we do not use AUC as an evaluation
metric. Supplementary Fig. 1 shows the distribution of the perfor-
mance measured by using these four metrics across all datasets. The
detailed data is provided in Supplementary Tables 3, 4, 5, and 6,
respectively. As shown in Supplementary Fig. 1, scCAD demonstrates
the overall highest performance (Accuracy = 0.4156, G-mean=0.4412,
Kappa =0.3933, and MCC=0.4162) and exhibits performance
improvements of 28%, 19%, 26%, and 21% compared to the second-
ranked method (SCA: Accuracy = 0.3239, G-mean= 0.3704, Kappa =
0.3128, MCC=0.3449), respectively.

Furthermore, we showcase the distribution of rankings for dif-
ferent methods across five measurements, including the F1 score, on
eachdataset (Supplementary Fig. 2). As shown inSupplementary Fig. 2,
scCAD is oneof the top three algorithmson 16 (MCCandKappa) and 17
(Accuracy, F1 score, and G-mean) of the 25 datasets.

During the testing process, we observed that several methods are
not sufficiently adaptable to all datasets representing diverse scenar-
ios. For example, the seriesmethods ofGiniClustmay introduce errors
by failing to identify high Gini genes29. Furthermore, certain methods
(such as RaceID) may encounter challenges in generating results for
datasets containingmore cells due to lower computational efficiency12.
In contrast, scCAD, EDGE, FiRE, SCA, and SCISSORS can run effectively
on all datasets, showcasing their greater suitability for data analysis
across a wide range of biological scenarios.

To further evaluate the performance of these algorithms, we
count the total number of datasets in which eachmethod successfully
identifies at least one rare cell type (Fig. 2b). Let Spre be the set of rare
cells identified by one method and St be the set of cells for rare type t.

|S| denotes the size of the set S. if Spre\St
St

���
��� is larger than30%,we consider

that thismethod can successfully identify cell type t. The setting of this
approach is inspired by certain cell annotation methods30, which
suggest that accurately annotating a cell type can be achieved based
on the information from 30% of cells belonging to that type. The total
number of rare cell types successfully identified by different methods
across all datasets is shown in Supplementary Table 7. As illustrated in
Fig. 2b and Supplementary Table 7, scCAD demonstrates advantages
by successfully identifying rare types in 20 datasets. Meanwhile, we
further compare scCAD with four other methods (CellSIUS: 16, EDGE:
16, GapClust: 12, and SCA: 18). By combining Supplementary
Tables 2 and 7, we calculate the average F1 score of these five methods
on the corresponding datasets where they successfully identified rare
cell types. scCAD also demonstrates an advantage (F1 score = 0.5208)
compared to the other methods (CellSIUS: 0.3339, EDGE: 0.3954,
GapClust: 0.2940, and SCA: 0.4661).

We observe significant variation in the number of rare cell types
across different datasets in Supplementary Table 7, in which there are
11 datasets with two or more rare cell types and 14 datasets with only
one rare cell type. As shown in Supplementary Table 7, scCAD can
identify the rare cell type in, 10 of the 14 datasets and also identify 2 or
more rare cell types in 8 of the 11 datasets. In summary, scCADexcels at
identifying rare cell types in diverse biological scenarios.

Feature selection effectively preserves the rare cell type-
specific genes
Feature selection is crucial for identifying rare cell types, as it aids in
extracting and preserving key features specific to these types, thereby
reducing noise and redundant information, and improving the ability
to identify and distinguish these types. Most current methods for
identifying rare cell types rely on a specific set of highly variable genes
(HVG)12,13,15, which exhibit significant expression changes across cells,
thus potentially providing more information. Our previous study illu-
strated that highly important genes (HIG) based on random forests
have been demonstrated to enhance clustering performance27. The
gene selection strategy of scCAD involves merging and removing
duplicates from the top 2000 HVG and the top 2000 HIG.

Fig. 1 | Overview of scCAD. scCAD employs an ensemble feature selection
approach, combining the benefits of highly variable genes (HVG) and highly
important genes (HIG). It then decomposes themajor clusters in I-clusters through
iterative clustering. To enhance computational efficiency, certain nearest clusters

are merged. For each cluster in M-clusters, scCAD conducts anomaly detection by
analyzing the corresponding differentially expressed (DE) genes, assigning an
independence score to each cluster. Finally, scCAD provides the user with several
potential rare cell clusters according to the independence score.
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To demonstrate the effectiveness of this strategy, we assess whe-
ther the genes selected by scCAD encompass genes specific to rare cell
types. Specifically, we first applyWilcoxon’s rank sum test to identify the
top 50 differentially expressed (DE) genes for each rare cell type in the
dataset, which are commonly utilized to indicate the type’s differential
signals31,32. Then we collect these genes to form a reference gene set Sref,
which is regarded as having rare cell type-specific signals. Assume that
Sselect is the selected gene set, we define three overlap rates: OR1, OR2,

and OR3, using the following formulas: OR1 = jSref \Sselect j
jSref j × 100%,

OR2 =
jSref \Sselect j
jSref ∪ Sselect j × 100%, OR3=

jSref\Sselect j
jSselect j × 100%. A higher overlap rate

indicates a stronger presence of rare cell differences in the selected
features. We simultaneously compare scCAD with two individual stra-
tegies across all datasets (Supplementary Table 8). To maintain fairness,
we keep the number of features for highly variable genes (HVG) and
highly informative genes (HIG) the same as the number of features
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Fig. 2 | Evaluating scCAD against ten state-of-the-art methods for identifying
single-cell rare types on twenty-five real datasets. a Comparing the distribution
of F1 scores across all datasets (n = 25 datasets) in identifying rare cell types. Boxes
extend from the first to the third quartile (Q1–Q3) with a line in the middle that
represents the median. Lines extending from both ends of the box indicate

variability outside Q1 and Q3. The minimum/maximum whisker values are calcu-
lated as Q1=Q3� =+ 1:5 × IQR. b Comparison of the total number of datasets in
which each method successfully identifies at least one rare cell type. Source data
are provided as a Source Data file.
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ultimately selected by scCAD. Supplementary Table 8 shows the overlap
rates OR1, OR2, andOR3 between the reference gene set and the results
of three gene selection strategies across all datasets. Supplementary
Fig. 3a shows the distribution of the overlap rate OR1 between genes
selected by three strategies and the reference genes of rare cell types
across all datasets.

As shown in Supplementary Table 8 and Supplementary Fig. 3a,
the overlap rate OR1 reveals that, on average, 86.75% of genes in the
reference gene set are present in the genes selected by scCAD, while
the corresponding average rates for HVG and HIG are 67.80% and
80.20%, respectively. This indicates that when selecting the same
number of genes, scCAD can effectively preserve the majority of
rare cell type-specific genes. Due to the significant difference in the
number of genes between Sref and Sselect, the values of OR2 and
OR3 show low relative to that ofOR1. For the metricOR2, the average
values for HVG, HIG, and scCAD are 2.34%, 2.74%, and 2.99%,
respectively. For the metric OR3, the average values for HVG, HIG,
and scCAD are 2.39%, 2.77%, and 3.02%, respectively. These results
further illustrate that the gene set selected by scCAD contains a
sufficient presence of reference genes.

To further analyze the potential impact of clustering accuracy on
the reliability of genes selected by the random forest model, we first
investigated the Adjusted Rand Index (ARI) of clustering results used
for themodel (Supplementary Fig. 4). In Supplementary Fig. 4, we find
that the clustering results by Louvain indeed exhibit lower accuracy in
some datasets, with ARIs around 0.2.

By combining Supplementary Fig. 4 and Supplementary Table 8,
we find that the accuracy of the clustering results has a minor impact

on the genes selected by scCAD. Using the Chung dataset as an
example, even though the ARI is only 0.16, the genes selected by both
the RFmodel and scCAD still encompass over 75% of the rare cell type-
specific DE genes. This observation can be attributed to the inherent
tendency of most rare cells of the same type to cluster together.
Additionally, compared to the sole utilization of the RF model, scCAD
demonstrates better robustness due to its combination of two feature
selection strategies. Using theGoolamdataset as an example, while the
genes selected by the RF model cover only 28% of the rare cell type-
specific DE genes, scCAD’s selection encompasses 61% of these
DE genes.

Decomposition effectively isolates clusters dominated by rare
cell types
Clusters are commonly annotated based on the primary gene
expression patterns of their containing cells, which represent the
characteristicsof themostdominant cell type. For eachcluster,wefirst
count the number of cells of different cell types contained in the
cluster based on the annotation information. Then, we identify the cell
type with the highest cell count as the dominant type within the
cluster. The occupy rate of the dominant cell type in cluster i is defined

as follows:Pi =
maxðNi,1 ,Ni,2 ,...,Ni,t Þ

Ni
, whereNi,j is the number of cells of type j

in cluster i, t is the total number of cell types contained in cluster i, and
Ni is the total number of cells in the cluster i. A higher rate serves as an
indicator of increased cluster purity, implying that more cells within
the cluster belong to the same cell type. For one cell type j in one
dataset, the proportion of cell type can be calculated as
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meanðPj,1,Pj,2, . . . ,Pj,lj
Þ, where Pj,x is the occupy rate of the cell type j in

the dominated cluster x and lj is the number of clusters dominated by
cell type j. Subsequently, for each dataset, we separately average
proportions of all cell types and rare cell types. To demonstrate the
improvement, we compare the average proportions of the clusters
from M-clusters with those from I-clusters across all datasets (Sup-
plementary Table 9). For a more intuitive representation, we visually
present the comparison results of rare types and all types across all
datasets (Supplementary Fig. 3b and Supplementary Fig. 5),
respectively.

After cluster decomposition andmerging, it becomes evident that
the average proportion of cell types within their dominant clusters has
significantly increased, especially for rare types, with an average
increase from 0.283 to 0.704. Notably, in almost half of the datasets,
the initial clustering process fails to identify any rare cell types. In
addition, in Supplementary Fig. 3b and Supplementary Table 9, we
observe that the average proportions of rare cell types and all cell
types in M-clusters are almost higher than those in I-clusters. But we
can find from Supplementary Fig. 3b that neither I-clusters nor
M-clusters contain clusters dominated by the unique rare cell type
present in the data in the Pollen dataset. The reason for the poor
results may be due to the poor separability of this type and almost all
methods can not identify the rare cell type in the dataset, which can be
found in Supplementary Table 2.

To further explore the reliability of cluster decomposition, we
investigate the distribution of cells from rare cell types acrossmultiple
clusters identified by scCAD. Specifically, using annotation informa-
tion from theoriginal studies of thedatasets, we assess thedistribution
of cells from all involved rare cell types across clusters at both the
initial stage (I-Clusters) and the final stage (M-Clusters).

For I-Clusters containing m-clusters, we first calculate the pro-
portionpt,i of cells of the rare cell type t in cluster i relative to all cells of
type t as follows: pt,i =

ni
t

nt
× 100%, where ni

t is the number of cells for
type t in cluster i, and nt is the total number of cells for type t in the
dataset. It is clear that

Pm
i= 1pt,i = 100%, where m is the number of

clusters in I-Clusters. Then, we calculate the proportion qt,i of cells of
the rare cell type t in cluster i relative to all cells in cluster i as follows:
qt,i =

ni
t

ni
× 100%, where ni

t is the number of cells for type t in cluster i,
and ni is the total number of cells in cluster i. We also calculate these
two proportions, pt,i and qt,i, in each cluster from M-Clusters.

We sort the proportions pt,1,pt,2, . . . ,pt,m

� �
in descending order

and select the top ten clusters. Then, we conduct a joint analysis of
the pt,i and qt,i of these selected clusters. Supplementary Figs. (6–10)
shows the comparison of pt,i and qt,i across the selected clusters
from I-Clusters and M-Clusters. As shown in Supplementary Figs.
(6–10), the majority of cells (the average of pt,i is 88%) from rare cell
types are found in the same cluster obtained by Louvain at the first
stage (I-Clusters) across almost all datasets. Moreover, distinguishing
rare cell types from other types during the initial clustering proves to
be relatively challenging, with a lower median proportion relative to
clusters (I-Clusters, the median of qt,i is 18%). After decomposition
and merging, the majority of cells (M-Clusters, the average of pt,i is
79%) from rare cell types remain in the same cluster. Simultaneously,
the proportion of cells for the same rare type relative to clusters
significantly increases (M-Clusters, the median of qt,i is 81%). Using
the analysis results of the Cao dataset as an example (Supplementary
Fig. 6), we find that the cells of the rare cell type are distributed
across six clusters. Approximately 69% of these cells of rare type are
concentrated in the first cluster. The remaining 31% of rare cells are
distributed across the other five clusters. After decomposition and
merging, the proportion of rare cells in the first cluster is slightly
reduced to about 56%, but this cluster exclusively comprises cells of
this type (qt,i = 100%).

Overall, although rare cell types may be distributed across mul-
tiple clusters, scCAD can effectively isolate the majority of cells for
almost all rare cell types in one cluster, which lays the foundation for
the subsequent identification of rare cell clusters.

Evaluation of robustness and sensitivity of scCAD
To analyze the robustness and sensitivity of scCAD with respect to the
number of differentially expressed (DE) genes,We conduct tests using
an artificial scRNA-seq dataset and a Jurkat scRNA-seq dataset. The
artificial scRNA-seq dataset comprises 2500 cells and two cell types,
with the minor cell type representing approximately 1% of the total
population. Further details regarding the generationof this dataset can
be found in the “Methods” section. The Jurkat dataset consists of an
equal-proportion in vitro mixture of 293T and Jurkat cells33. This
dataset has been utilized in several previous studies12–15,34 to simulate
the rare cell phenomenon by adjusting the proportion of Jurkat cells.
We generate a subsampled dataset by adjusting the proportion of
Jurkat cells to 1%. For both datasets, we set aside the pre-identified
differentially expressed (DE) genes which are selected through a
stringent criterion, and retain all the non-DE genes in the dataset.
Additional details about the identification of DE genes and non-DE
genes in both datasets can be found in the “Methods” section.

Based on the computational efficiency of the algorithm, we
compare scCAD with three rare cell detection algorithms: FiRE, Gap-
Clust, and GiniClust3. During each iteration of the experiment, an
equivalent number of non-DE genes are substituted with randomly
selected pre-identified DE genes. This process is repeated 10 times for
each number of DE genes. The average F1 score across iterations of
different methods is compared for each count of DE genes (Supple-
mentary Fig. 11).

As shown in Supplementary Fig. 11, all methods struggled to
detect the rare cell type with only a few DE genes, consistent with
previous studies12,15. However, scCAD progressively segregates cells of
rare types from clusters through iterative clustering, thereby reducing
its reliance on differential genes and potentially capturing rare cell
types with low signals more effectively. As a result, with the intro-
duction of more DE genes, scCAD’s performance improved sig-
nificantly, enabling more precise identification of rare cell types
compared to its competitors, especially. FiRE and GapClust require
more DE genes to achieve a similar stable prediction result. Among
them, only GapClust can achieve the identification accuracy of scCAD
when an adequate number of DE genes are utilized. GiniClust3
achieves stability with a similar number of DE genes as scCAD in the
Jurkat dataset. However, compared to scCAD, its predictive perfor-
mance is lower, with an F1 score of approximately 0.6. Additionally, its
performance on simulated data is poor. In summary, scCAD excels
even in scenarios with weak differential expression signals among cell
types, enabling precise identification of rare cell types andhighlighting
its robustness.

scCAD enables the identification of rare airway epithelial
cell types
The airways of the lungs are a prominent site for diseases such as
asthma, where rare cells play pivotal roles in maintaining airway
function35. Montoro et al.36 utilized scRNA-seq to examine the cellular
composition and hierarchy of mouse tracheal epithelium, providing
the expression profile of 7193 cells. They discovered seven cell types,
including two rare ones: the Foxi1+ lung Ionocyte and Goblet cells. The
rare Ionocyte in human bronchi they detected using RNA fluorescent
in situ hybridization

We apply scCAD to identify rare airway epithelial cell types.
t-distributed Stochastic Neighbor Embedding (t-SNE) serves as a
visualization tool for observing the distribution of the cells from var-
ious annotated cell types and the distribution of rare cells predicted by
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scCAD (Fig. 3a, b). The visualization result of Uniform Manifold
Approximation and Projection (UMAP)37 is shown in Supplemen-
tary Fig. 24.

scCAD identifies a total of three rare cell clusters, denoted as R1
(0.42%), R2 (0.26%), and R3 (0.57%) (Fig. 3b). To verify the true identity
of these identified clusters, we first obtain the rare cell type annotation
information fromMontoro et al.‘s original study. Then, we compare the
expression of differentially up-regulated genes in the annotated rare cell
types with those in the identified cell clusters. Specifically, we use Wil-
coxon’s rank sum test to identify differentially up-regulated genes with
an FDR cutoff of 0.05 and an inter-group fold-change cutoff of 1.5 for
each cluster and each annotated cell type, separately. Assume that Si is
the set consisting of differentially up-regulated genes in identified
cluster i, and Sj is the set consisting of differentially up-regulated genes
in annotated cell type j. The Jaccard similarity coefficient between these

two gene sets can be calculated as Ji,j =
Si\Sj
�� ��
jSi ∪ Sj j. We calculated the simi-

larity between all identified clusters and annotated cell types (Supple-
mentary Table 10). For better visualization, we use the top 10
differentially up-regulated genes for each cluster and compare the
identified rare cell clusters with annotated cell types based on the
expression distribution of these genes (Fig. 3c). As shown in Supple-
mentary Table 10 and Fig. 3c, clusters R2 and R3 correspond to Iono-
cytes and Goblet cells, respectively. These two cell types, as indicated in
Montoro et al.‘s annotation, encompass only 0.90% and 0.36% of cells
in the dataset, respectively. The top 50 differentially up-regulated genes
in each cluster are detailed in Supplementary Data 1, and we discover
that cells within the R2 cluster exhibit classic Ionocyte markers, such as
the transgenic Foxi1-EGFP, the V-ATPase-subunit gene Atp6v0d2, the
cystic fibrosis transmembrane conductance regulator (Cftr) gene, the
transcription factor Ascl3, and Smbd1 (formerly known as Gm933)36,38.
Cells within the R3 cluster exhibit classic markers associated with
Goblet-1, a subset of Goblet cells as given in Ref. 34. This cluster is
enriched for the expression of genes encoding the key mucosal protein
(Tff1) and secretory regulator (e.g., Lman1l). The visualization results
and analysis of other methods are given in Supplementary Fig. 12 and
Supplementary Note 1, demonstrating that only scCAD can accurately
and simultaneously identify Ionocyte and Goblet cells.

In contrast to the other two clusters, cluster R1, which consists
of 30 cells annotated as Club cells, does not have a corresponding
annotated cell type. We visualize the expression of all genes that are
specifically up-regulated in cluster R1 across both cluster R1 and all
other cell types (Fig. 3d). As shown in Fig. 3d, these genes do not
show significant expression in other cell types. Interestingly, we
note that R1 shares striking similarities with the “hillock” cells
identified by Montoro et al. in their analysis of cell differentiation
trajectories. These rare transitional cells connect Basal to Club cells
through the unique expression of Krt13 and Krt439. Deprez et al.
described a population of Krt13+ cells in the turbinates, indicating
that hillock cells may also exist in other regions of the human
respiratory tract40,41.

scCAD identifies Foxi1+ pulmonary ionocytes, hillock cells, and
goblet-1 cells, all of which are confirmed by Montoro et al.36 through
immunostaining. Specifically, they confirm that ionocytes are a newly
identified cell population in vivo using transgenic Foxi1-EGFP reporter
mice and Foxi1 immunoreactivity. They observe immunofluorescence
on epithelial tissues, infer trajectories of cell differentiation, and vali-
date the existence of hillock cells. They identify unique Tff2+ goblet-1
cells by immunostaining.

scCAD identifies various rare cell subpopulations within the
mouse brain
In general, the identification of rare cell types becomes more chal-
lenging as the dataset encompasses a larger number of cell types,
particularly in datasets with multiple cell subtypes7. To demonstrate

the effectiveness of scCAD in identifying rare cell subtypes in such
datasets, we utilize an existing scRNA-seq dataset including
20,921 cells located in and around the hypothalamic arcuate-median
eminence complex (Arc-ME)42. This dataset, as indicated in the original
annotation, encompasses 36 cell subtypes, with 20 of them being
considered rare cell subtypes, accounting for proportions ranging
from0.038% to 0.884%. t-SNE is applied to visualize the distribution of
the cells (Fig. 4a). The visualization result of UMAP is shown in Sup-
plementary Fig. 24. For a more intuitive comparison, the cells
belonging to rare cell subtypes are color-coded to represent their
respective identities in the t-SNE-based 2D embedding (Fig. 4b). scCAD
identifies a total of seven rare cell clusters, denoted as R1 (0.87%), R2
(0.63%), R3 (0.40%), R4 (0.50%), R5 (0.12%), R6 (0.11%), and R7 (0.17%)
(Fig. 4c). Due to the small number of significantly differentially
expressed genes identified in this dataset, we utilize all differentially
expressed genes rather than just the up-regulated ones. The Jaccard
similarity coefficients between the sets of differentially expressed
genes for each cell cluster and each cell type are shown in Supple-
mentary Table 11. For better visualization, we select the top 3 differ-
entially expressed genes for each cluster and compare the identified
rare cell clusters with annotated cell subtypes based on the expression
distribution of these genes (Fig. 4d). As shown in Supplementary
Table 11 and Fig. 4d, clusters R1~R7 identified by scCAD are highly
similar to the sevenminor cell subtypes reported by the original study,
respectively. Among them, cells within the R1 cluster exhibit gene
expression patterns similar to the rare cell subtype annotated as
s27.oligodendrocyte642. The differentially expressed genes in each
cluster are detailed in Supplementary Data 2, and we discover that the
expression of several characteristic markers in R1 is associated with a
subtype of oligodendrocyte known as NFO (newly formed
oligodendrocytes)43. NFO represents a distinct stage of oligoden-
drocyte differentiation. Cluster R1 shows characteristic markers
including Fyn. Additionally, it shows high expression ofGpr17 44, which
is involved in oligodendrocyte differentiation, and epigenetic factors
such as Sirt2, which are also highly transcribed in NFO. Clusters R2 and
R7, which include markers such as Dcn, Sparc, and Igfbp745–47, show a
high degree of similarity to two distinct fibroblast subtypes. Cluster
R3 shows a high degree of similarity to Astrocytes, including markers
Sparcl1, Slc1a3, Slc1a2, Slc6a11, Glul, and Apoe48,49. Cluster R4 shows a
high degree of similarity to a subtype of pars tuberalis type 1C,
including marker Cyp2f2. Cluster R5 shows a high degree of similarity
to mural cells, including markers myosin light polypeptide 9 reg-
ulatory (Myl9), and myosin light polypeptide kinase (Mylk)50. Cluster
R6 closelymatches a subtype of neurons from the retrochiasmatic area
that highly expresses the Oxt gene. Additionally, the visualization
results and analysis of other methods are given in Supplementary
Fig. 13 and Supplementary Note 2, showing that only scCAD can
accurately identify the greatest number of rare cell subtypes without
any misidentifications.

scCAD identifies various rare cell types in the crypts of the
irradiated mouse intestine
The intestinal epithelium contains various rare cell types, including
tuft cells and enteroendocrine cells51. Ayyaz et al. conducted scRNA-
seq to profile the regenerating mouse intestine and discovered a dis-
tinct quiescent cell type called revival stem cell (revSC)52, which is
induced by tissue damage. They validate the rarity of this cell type by
using single-molecule fluorescence in situ hybridization (smFISH) for
Clu expression in non-irradiated small intestines.Whether it is possible
to concurrently detect rare cell types, radiation-induced cell types, and
revSCs in enriched crypts after irradiation (IR) is an interesting pro-
blem. To solve this problem, we utilize scCAD to analyze an existing
scRNA-seq dataset containing 6644 single-cell transcriptomes of iso-
lated crypts52. Ayyaz et al. reported a total of 19 cell clusters. Among
them, the 9th and 10th clusters correspond to Enteroendocrine cells,
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the 18th cluster corresponds to newly discovered revSC, and the 19th
cluster corresponds to Tuft cells.

scCAD identifies a total of six rare cell clusters, denoted as R1
(0.90%), R2 (0.50%), R3 (0.63%), R4 (0.56%), R5 (0.21%), andR6 (0.69%)
(Fig. 5a). Ayyaz et al. did not annotate the real cell types in this dataset
and only provided the most differentially expressed genes for each
cluster they reported. Therefore, we calculate the Jaccard similarity
coefficient between the set of differentially expressed genes for each
identified cell cluster (R1~R6) and each reported cluster (Clus-
ter1~Cluster19) as provided by Ayyaz et al. (Supplementary Table 12).
For better visualization, we use the top 10 differentially up-regulated
genes for each reported cluster and compare the identified rare cell
clusters with reported clusters on the expression distribution of these
genes (Fig. 5b).

As shown in Supplementary Table 12 and Fig. 5b, we find that
Cluster R3, R5, and R6 identified by scCAD are similar to the 9th and
10th clusters, corresponding to Enteroendocrine cells. Clusters R1 and
R4 are similar to the 19th and 18th clusters, corresponding to Tuft cells
and revSC, respectively. The top 50differentially up-regulatedgenes in
each cluster we identified are detailed in Supplementary Data 3. We
discover that corresponding cell type markers, such as Dclk1, Trpm5,
Rgs1353, and Chga54, are differentially up-regulated in cells within the
R1, R3, R5, and R6 clusters. Cluster R4 exhibits gene expression char-
acteristics similar to revSCs, indicating its potential classification as a
rare subtype.Notably, we cannotfind any clusters reportedbyAyyaz et
al. that are similar to cluster R2. Consequently, we conduct a more in-
depth analysis of the expression of differentially up-regulated genes in
cluster R2 across all cells (Fig. 5c).

As shown in Fig. 5c, these genes do not show significant expres-
sion in other cells. By querying the PanglaoDB55 database for cell type

markers, we get that a substantial portion (21%) of the differentially up-
regulated genes in cluster R2 corresponded to macrophage markers,
including CD14 and CD6856. Given the potential association of these
rare macrophages with radiation exposure, we conduct additional
analysis on other differentially expressed genes and identify NCF2,
NCF4, CYBB, and CYBA among them. These genes have been observed
to exhibit differential expression in the lungs of mice following expo-
sure to IR57. They play a crucial role in macrophage activation and
polarization towards the M2 subtype. Furthermore, the presence of
thesemacrophages indicates alterations in the inflammatory profile of
the irradiated lung tissue58.

scCAD identifies various rare cell types in the human pancreas
The human pancreas comprises various rare cell types such as Epsilon
cells59. To evaluate the performance of scCAD, we conduct tests on a
dataset of 8569 cells from the human pancreas60. This dataset
encompasses 14 cell types annotated in the original study, with 5 of
them being considered rare cell types, accounting for proportions
ranging from 0.082% to 0.642%. t-SNE is applied to visualize the dis-
tribution of the cells (Fig. 6a). The visualization result of UMAP is
shown in Supplementary Fig. 24. The cells belonging to rare cell types
are color-coded to represent their respective identities (Fig. 6b).
scCAD identifies a total of four rare cell clusters, denoted asR1 (0.56%),
R2 (0.16%), R3 (0.18%), and R4 (0.33%) (Fig. 6c). The Jaccard similarity
coefficients between the sets of differentially up-regulated genes for
each cell cluster and each cell type are shown in Supplementary
Table 13. For better visualization, we select the top 10 significantly
differentially up-regulated genes for each cluster and compare the
identified rare cell clusters with annotated cell types based on the
expression distribution of these genes (Fig. 6d).
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Fig. 4 | Visualization analysis of scCAD’s results in mouse brain. a The t-SNE-
based 2D embedding of the cells with color-coded identities. b The t-SNE-based 2D
embedding of the cells. The cells in rare cell subtypes are color-coded to indicate
their identities. c The seven rare cell clusters identified by scCAD are visually dis-
tinguishedusingdifferent colors.dViolinplots showing the expressiondistribution
of the most differentially expressed genes in each identified cell cluster.

Additionally, 36 annotated cell types reported by Campbell et al. are used for
comparison. Genes within the same cell cluster are indicated with the same color.
Cell clusters that have been identified, along with their corresponding cell sub-
types, are marked with an asterisk of the same color. Source data are provided as a
Source Data file.
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As shown in Supplementary Table 13 and Fig. 6d, we find that
clusters R2, R3, and R4 correspond to Epsilon cells, Schwann cells, and
Mast cells, respectively. The top 50 differentially up-regulated genes in
each cluster are detailed in Supplementary Data 4. We identified dis-
tinctive markers associated with these rare cell types within the dif-
ferentially up-regulated genes, including GHRL61, NGFR, SOX1062, KIT,
andHDC63. In contrast to these clusters, cluster R1, which consists of 48
cells annotated as Beta cells, does not have a corresponding annotated
cell type. By further examination, we observe differential up-regulated
genes within R1 and compare these cells with other cells belonging to
the Beta cell type (Fig. 6e).

As shown in Fig. 6e, these genes do not show significant expres-
sion in other Beta cells. We find that the cells in R1 represent a variant
of theBeta cells describedbyBaron et al.60 This variant is characterized
by variable expressionofgenes associatedwith Beta cell function, such
as HERPUD1, HSPA5, and DDIT364, which are involved in endoplasmic
reticulum stress response. Baron et al. pointed out that further work is
required to characterize this beta cell variant. The visualization results

and analysis of other methods are given in Supplementary Fig. 14 and
Supplementary Note 3. The visualization results clearly show that only
scCAD can identify the rare Epsilon cells.

scCAD can identify known rare cell types in large-scale immu-
nological single-cell datasets
To assess scCAD’s ability to detect rare cell types and subtypes in
larger single-cell datasets, we collect two immunological datasets
separately. One dataset contains 73,259T cells from8 human donors65,
and the other contains 39,563 gastrointestinal immune cells from 10
Crohn’s disease patients66. Both of them arewell-annotated by original
studies and comprehensive,making the identification results of scCAD
more interpretable. We use t-SNE to visualize cell distribution for both
datasets (Fig. 7a, b), with color-coding cell subtypes to show their
identities. The visualization result of UMAP is shown in Supplementary
Fig. 24. To visualize the rare cell types in both datasets, we highlight
cell types containing less than 1% of the cells in the T cell dataset
(Fig. 7c) and immune cell dataset (Fig. 7d).
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scCAD identifies two rare cell clusters in the T cell dataset (Fig. 7e):
R1 (0.21%) and R2 (0.22%). R1 primarily consists of two types of pro-
liferating cells, CD4 and CD8, with very few annotations in the dataset
(0.15% and 0.12% respectively). R1 is mainly composed of double-
negative T cells (dnT), which are relatively rare in humans and mice
(1~5% of all T cells)67. In the immune cell dataset, scCAD identifies four
rare cell clusters (Fig. 7f): R1 (0.29%), R2 (0.26%), R3 (0.27%), and
R4 (0.07%).

Cluster R1 predominantly consists ofmast cells, R2 predominantly
consists of pericytes and smooth muscle cells, R3 predominantly
consists of lymphocytes, and R4 predominantly consists of glial cells.
It’s worth noting that these cell types are the top five rarest annotated
in this data.

scCAD identifies various unannotated rare cell subtypes in the
clear cell renal cell carcinoma dataset
Renal cell carcinomas (RCCs) are a diverse group of malignancies
believed to originate from kidney tubular epithelial cells. Various RCC
subtypes exhibit a broad range of histomorphology, proteogenomic
alterations, immune cell infiltration patterns, and clinical behaviors.
The most prevalent subtype is clear cell renal cell carcinoma (ccRCC).
We collected a total of 6046 cells annotated into 26 cell clusters from
benign adjacent kidney tissues (6 samples from 5 patients) and a total
of 20,748 cells annotated into 13 cell types from 7 ccRCC samples68.
Both of them are utilized to assess the effectiveness of scCAD in the
complex tumor microenvironment. The cell type annotation infor-
mation originates from their original studies. As the visualization
results of t-SNE are less discriminative for cell types in these two
datasets, we visualize the datasets and their respective annotated rare
cell types using the 2D UMAP embedding results (Fig. 8a, b, d, e). The
visualization results of t-SNE are shown in Supplementary 20.

In the benign kidney data, scCAD identifies a total of 12 rare cell
clusters (0.26%~0.86%) (Fig. 8c). Upon comparing the detailed anno-
tation information, we discover that the dominant cell types of these

clusters encompass multiple rare cell types. For instance, cluster R5
primarily consists of B cells, while R9 ismainly composed ofmesangial
cells. Notably, scCAD identifies two rare proximal tubule (PT) cell
subtypes reported by previous studies68,69, namely PT-B (R12) and PT-C
(R1). Zhang et al. confirmed the presenceof these two subtypes of cells
using RNA in situ hybridization (RNA-ISH) on independent benign
kidney tissue samples with select markers.

In the ccRCC data, scCAD identifies a total of 7 cell clusters (0.10%
~0.56%) (Fig. 8f). In addition to CD8+ T cells (R1, R6), mast cells (R2),
and plasma cells (R3) annotated as rare cell types, scCADalso identifies
three rare cell clusters (R4, R5, and R7). By further examination, we
observed differential up-regulated genes within these clusters and
compared these cells to other cells of the same annotated type
(Fig. 8g–i).

Cluster R4 is annotated as T cells. The top 50 differentially up-
regulated genes in these three cell clusters are detailed in Supple-
mentaryData 5.Wefind that cells in R4 should belong to a rare subtype
of effector CD4+ T, named CD4+ effector-GNLY, characterized by high
expression of genes associated with cytotoxicity, including NKG7,
GZMB, GZMH, and GNLY, as given in a previous study70.

Cluster R5 cells are initially annotated as macrophages. However,
we identify multiple markers for dendritic cells, such as CD1C, CD207,
and FCER1A71. Interestingly, Kaplan-Meier analyses of the top 10 dif-
ferentially expressed genes in R5 reveal an association between high
expression levels and increasedoverall survival in ccRCC (TCGA-KIRC).
As shown in Supplementary Fig. 15, high expression of these genes is a
positive survival indicator, suggesting that the rare cluster identified
by scCAD may provide valuable prognostic information for ccRCC
patients.

Cluster R7 comprises 81 cells from the 239 cells annotated as “ua”
(Unanalyzed). However, we observe that its differentially expressed
genes are all related to hemoglobin, includingAHSP,HBD, andHEMGN,
indicating that this rare cell cluster may be related to hemoglobin
synthesis or related biological processes. From the list of highly
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Fig. 6 | Visualizationanalysis of scCAD’s results in humanpancreas. aThe t-SNE-
based 2D embedding of the cells is presented, with color-coded identities indi-
cating cell types.bCells belonging to rare cell types are also color-coded. cThe rare
cell clusters identified by scCAD are visually distinguished using four distinct col-
ors. d Violin plots showing the expression distribution of the most differentially

expressed genes for the four identified cell clusters. Genes within the same cell
cluster are indicated with the same color. e The expression of differentially up-
regulated genes in beta cells and cells belonging to cluster R1. Source data are
provided as a Source Data file.
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expressed genes (in reads per kilobasepermillion transcripts) for each
stage of erythroid differentiation72, we conclude that cells in cluster R7
are likely in the polychromatic erythroblast stage. Supplementary
Fig. 16 illustrates individual cells color-coded on a 2D embedding plot
derived from UMAP, reflecting the RNA expression levels of different
marker genes. Overall, scCAD not only accurately identifies rare cell
subtypes but also proves useful in correcting rare cell type annotation
mistakes. Furthermore, it has the great potential to identify disease-
related immune cell subtypes, providing insights into disease
progression.

Comparative performance of scCAD against multi-omics
approach
The advancement in sequencing technology facilitates the integrative
analyses of different types of single-cell omics data, providing insights

that are more comprehensive than those from a single type of single-
cell omics data73. This has the potential to enhance downstream ana-
lysis performance. However, this progress also presents challenges,
including the introduction of noise due to batch effects among dif-
ferent omics data74. We conduct a comparison between scCAD solely
based on scRNA-seq data, andMarsGT24, which integrates both scRNA-
seq data and single-cell ATAC sequencing (scATAC-seq) data.

Specifically, we first conduct a comparison between scCAD and
MarsGT on four real datasets (PBMC-bench-1, 2, 3, and PBMC-test)
obtained from human peripheral blood mononuclear cells, which
coincide with the datasets used by MarsGT. scCAD solely utilizes the
scRNA-seq data in each dataset, and the specific details of these
datasets can be found in Supplementary Table 1. We present the per-
formance of scCAD and MarsGT in identifying rare cell types on these
datasets, as measured by F1 score, precision, and recall
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Fig. 7 | Visualization analysis of scCAD’s results in two large-scale immunolo-
gical single-cell datasets. a The t-SNE-based 2D cell embedding with color-coded
identities for cell types in the T cell dataset. CTL cytotoxic T cells, TCM T Central
Memory, TEMTEffectorMemory, dnTdouble-negativeT, gdTgamma-delta T,Treg
regulatory T. b The t-SNE-based 2D cell embedding with color-coded identities for
cell types in the immune cell dataset. DC Dendritic Cell, ILC innate lymphoid cells,
T(gd) gamma-delta T, TFH T follicular helper, Tregs regulatory T cells, TRM tissue-

resident memory T cells. c Cell types comprising less than 1% of cells in the T cell
dataset are color-coded. dCell types comprising less than 1% of cells in the immune
cell dataset are color-coded. e The rare cell clusters identified by scCAD are visually
distinguished using two and four distinct colors on the T cell dataset. f The rare cell
clusters identified by scCAD are visually distinguished using two and four distinct
colors on the immune cell dataset. Source data are provided as a Source Data file.
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(Supplementary Table 14). As shown in Supplementary Table 14,
scCAD demonstrates slightly superior performance compared to
MarsGT in terms of F1 score and recall, particularly noticeable in the
independent test dataset (PBMC-test), which is the dataset primarily
used by MarsGT to illustrate its performance. Upon re-examination of
these four datasets, we ascertain that they originate from a common
dataset totaling 69,249 cells, with each dataset representing a distinct
batch and displaying remarkably similar cell type distributions. In
Supplementary Table 14, scCAD exhibits greater stability (F1 score

standard deviation of 0.1101) compared to MarsGT (0.1747). This dif-
ference may result from the effects of technical variations and noise
often encountered in the integrative analyses of diverse single-cell
omics data types. Further analysis of the identification results of scCAD
on these four PBMC datasets can be found in Supplementary Note 4.
The visualization analyses of scCAD’s results in these PBMC datasets
are shown in Supplementary Figs. 17–20. Jaccard similarity coefficients
between the sets of differentially up-regulated genes for each identi-
fied cell cluster and each real cell type in these datasets are detailed in

Fig. 8 | Visualizationanalysis of scCAD’s results in clearcell renal cell carcinoma
dataset. a UMAP-based 2D visualization depicts cells from the benign kidney, with
distinct cell types represented bydifferent color codes.bCell types comprising less
than 1% of cells are color-coded. c The rare cell clusters identified by scCAD are
visually distinguished using twelve distinct colors. d UMAP-based 2D visualization
depicts cells from the ccRCC, with distinct cell types represented by different color
codes. e Cell types comprising less than 1% of cells are color-coded. f The rare cell
clusters identified by scCAD are visually distinguished using seven distinct colors.
g–i Comparing the expression of differentially expressed genes in the identified

rarecell cluster andother cells annotated as the same type, from left to right: R4 (g),
R5 (h), R7 (i). AEA-DVR afferent/efferent arterioles/descending vasa recta, AVR
ascending vasa recta, CNT connecting duct, DCT distal convoluted tubule, DL
descending limb, GC glomerular capillaries, IC intercalated cells, PC principal cells,
Macromacrophages, Monomonocytes, NK natural killer cells, Peri pericytes, Podo
podocytes, PT Proximal tubule, tAL thin ascending limb, TAL thick ascending limb,
ua unanalyzed, UC uncharacterized, vSMC vascular smooth muscle cells, Endo
endothelial. Source data are provided as a Source Data file.
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Supplementary Tables 17–20. The genes that are differentially up-
regulated in the identified cell clusters across these datasets are
detailed in Supplementary Data 7–10. According to the cell type
annotation information from their original studies, we find that scCAD
not only identifies diverse minor cell types but also uncovers unan-
notated subtypes. Furthermore, scCAD consistently identifies the
same minor cell types across datasets, showcasing its potential for
analyzing multiple batches of datasets.

Then, we test whether scCAD, using solely scRNA-seq data, could
identify rare cell types in the two single-cell Multi-omics datasets
employed in MarsGT’s case studies. The two datasets consist of 9383
cells from themouse retina75 (Retina dataset) and 14,148 cells obtained
from a flash-frozen intra-abdominal lymph node tumor (B_lymphoma
dataset) (Supplementary Table 1).

In the Retina dataset, MarsGT reported 12 rare cell clusters,
comprising one amacrine cell (AC) cluster, seven bipolar cells (BC)
clusters, one horizontal cell (HC) cluster, two Müller glia cell (MG)
clusters, and one Rod cell cluster. In contrast, scCAD identifies more
rare cell clusters (R1~R19, totaling 19 clusters). According to the
annotations provided in [75], these clusters correspond to two AC
clusters (R10, R13), one HC cluster (R8), four Rod cell clusters (R7, R9,
R17, R18), six BC clusters (R1, R3, R11, R12, R14, R16), and six retinal
ganglion cell (RGC) clusters (R2, R4, R5, R6, R15, R19). Given that BC
populations are known to encompass numerous rare populations, we
further investigated six clusters associated with BC. We visualize the
expression of marker genes specific to the BC subpopulation across
the six BC clusters (R1, R3, R11, R12, R14, R16) and the 10 BC subtypes
annotated in [75] (Fig. 9a).

For better visualization, we compute the Pearson correlation
coefficients between the six BC clusters and the 10 BC subtypes based
on the average expression values of these marker genes and present
them in a heatmap (Fig. 9b). As shown in Fig. 9a, b, we observe that
these clusters correspond to distinct BC subtypes, particularly R3,
which represents the rarest BC subtype (BC10), accounting for only 3%
of all BCs75, and was not identified by MarsGT. Additionally, RGCs also
exhibit multiple subtypes76, prompting us to further analyze the six
RGC clusters identified by scCAD.

Rheaume et al.77 classify RGCs into 40 subtypes and validate the
markers of these subtypes in purified RGCs by fluorescent in situ
hybridization (FISH) and immunostaining. We compile a total of 115
uniquely enriched marker genes from 40 RGC subtypes reported by
Rheaume et al. (Supplementary Table 15). We visualize the expression
of these enrichedmarker genes across all RGC-related clusters (R2, R4,
R5, R6, R15, R19) in Fig. 9c, and we find that these clusters represent
various RGC subtypes. Notably, MarsGT only identified a major RGC
cluster.

In theB_lymphomadataset,MarsGT reported a rare state namedB
lymphoma-state-1. t-SNE is utilized to visualize the cell distribution in
the lymphomadataset (Fig. 9d). scCAD identifies a total offive rare cell
clusters (R1~R5) (Fig. 9e). The Jaccard similarity coefficients between
the sets of differentially up-regulated genes for each cell cluster
identified by scCAD and each cell type annotated by 10XGenomics are
presented in Supplementary Table 16. According to Supplementary
Table 16, these clusters include one Mono/T mix cluster (R2, 0.27%),
one plasmacytoid dendritic cells (pDC) cluster (R3, 0.29%), and one
Stromal cell cluster (R5, 0.74%). The top 50 differentially up-regulated
genes in each cluster are detailed in Supplementary Data 6. We iden-
tified distinctive markers associated with these rare cell types within
the differentially up-regulated genes, including CD16378, IL3RA79, and
CALD180. Unlike the other clusters, neither cluster R1 (0.35%) nor
cluster R4 (0.13%) has a corresponding annotated cell type. Through
the analysis of their differentially expressed genes in Supplementary
Data 6, we conclude that they likely correspond to gamma-delta T cells
and mucosal-associated invariant T (MAIT) cells, as indicated by the
up-regulated expression of marker genes CENPF81 and KLRB182,

respectively. In contrast to scCAD, MarsGT did not identify these rare
cell types.

Moreover, scRNA-seq data is more readily accessible, thereby
streamlining the data acquisition and processing workflow and redu-
cing experimental costs. In summary, scCAD holds advantages in
performance, stability, and cost-effectiveness.

scCAD effectively identifies well-validated dendritic cell
subtypes
Dendritic cells (DCs) play a central role in pathogen sensing, phago-
cytosis, and antigen presentation. DCs are one of the rarest types of
immune cells, constituting only 1–2%of peripheral bloodmononuclear
cells (PBMCs)83. Villani et al.79 identified six distinct subtypes of den-
dritic cells (DCs) by analyzing their expression profiles using
fluorescence-activated cell sorting (FACS). They validated the exis-
tence of these subtypes by flow cytometry.

To further test the reliability of the rare clusters identified by
scCAD, we apply scCAD to the widely used ~68k PBMC dataset and
investigate whether any dendritic cell subtypes not captured in the
original annotation could be identified. This dataset encompasses 11
cell types annotated in the original study, accounting for proportions
ranging from 0.14% to 30.29%. t-SNE is applied to visualize the dis-
tribution of the cells (Fig. 10a).

scCAD identifies a total of four rare cell clusters, denoted as R1
(0.50%), R2 (0.24%), R3 (0.13%), and R4 (0.12%) (Fig. 10b). Upon com-
paring the original annotation, we find that R2 consists of mega-
karyocytes, a type that makes up only 0.4% of the entire dataset.
Additionally, R1 and R4mainly consist of DCs annotated in the original
study, while R3 mainly consists of CD19+ B cells. The top 50 differen-
tially up-regulated genes in these three cell clusters are detailed in
Supplementary Data 11.

To explore the true identities of these twoDCclusters (R1 andR4),
we calculate the correlation between their average expression and that
of all well-validatedDC subtypes on the samemarker gene set. First, we
construct a gene set using the top 50 markers for each DC subtype
reported by Villani et al.79 Due to differences between datasets, the
filtered gene set consists of 245 markers. Next, we calculate the aver-
age expression of this gene set for each DC subtype in the Villani et al.
dataset. Simultaneously, we calculate the average expression of this
gene set for R1, R4, and all DCs in the ~68k PBMC dataset. Finally, we
compute the Pearson correlation coefficient between them (Fig. 10c).

As shown in Fig. 10c, we observe that between the two datasets,
clusters R1 and R4 show the highest similarities to DC subtypes DC1
and DC6 (pDC), with similarities of 0.8 and 0.74, respectively, sig-
nificantly higher than thoseof other subtypes. Violin plots illustrate the
expression distribution of the topmarkers for each DC subtype across
R1, R4, and all DCs (Fig. 10d). Clusters R1 and R4 exhibit significant
expression of topmarkers belonging to DC subtypes DC1 and DC6. By
combining Fig. 10c, d, we can confidently determine cluster R1 map-
ping to CLEC9A+ DCs and cluster R4 to pDCs. By further examination,
we observed differential up-regulated genes within R1 and R4 and
compared these cells with other DCs (Supplementary Fig. 21a). This
highlights their rarity in the dataset.

Cluster R3 cells are initially annotated as CD19+ B cells. Supple-
mentary Fig. 21b compares the expression of differentially up-
regulated genes in R3 with other B cells. However, we identify multi-
ple markers for plasma cells, such as CD27 (TNFRSF17), MZB1, DERL3,
ITM2C, and IGLL584. Furthermore, other studies85,86 have also reported
the rarity of plasma cells in this dataset, thus validating our findings.

Discussion
scCAD offers an ensemble feature selection method to maximize the
preservation of differential signals of rare cell types, thereby enabling
the accurate identification of rare cells. During cluster decomposition,
scCAD applies iterative clustering based on the most differential
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signals within clusters to effectively distinguish rare types or subtypes
that are initially challenging todifferentiate.With the applicationof the
anomaly detection algorithm, scCAD can identify clusters dominated
by rare cell types within the cluster decomposition results. Extensive
experiment results show that scCAD demonstrates performance
advantages across diverse biological scenarios.

Several computational methods have been developed specifically
for identifying rare cell types, broadly categorized into four groups
based on their methodological characteristics: feature selection,
clustering, dimensionality reduction, and rarity measurement. How-
ever, single-cell data often arise from diverse and complex biological
scenarios, and the performance of many methods is limited due to
imperfect assumptions. In contrast, scCAD adeptly addresses these
challenges and offers corresponding solutions.

Indeed, several studies have underscored the pivotal role of fea-
ture selection in downstream single-cell data analysis87–89. It is com-
monly acknowledged that the efficient selection of marker genes
capable of distinguishing rare cells is crucial for their accurate identi-
fication. Extensive testing across various scRNA-seq datasets reveals
that highly variable genes often do not fulfill this objective well.
However, as shown in Supplementary Table 8, rare cell type-specific
genes identified by scCAD accounted for over 86% on average among
the selected genes.

Given that single-cell data often contain multiple cell types that
differ significantly in number and function, it is difficult for initial
clustering to distinguish rare types. To overcome this challenge,
scCAD conducts cluster decomposition by iteratively clustering based
on the most differential signals in each cluster for the first time. The
substantial average proportion of dominant rare types within the
clusters after decomposition underscores the effectiveness of this
approach in isolating rare cell types.

Clusters in M-clusters dominated by rare cell types exhibit
stronger rare signals than individual cells. scCAD utilizes an anomaly
detection algorithm in the space of cluster-specifically expressed
genes. It calculates an independence score based on the overlap of
cells in the cluster with highly abnormal cells to determine the rarity.
Essentially, the features of rare clusters exhibit higher independence,
leading to a clear distinction of cells within them from cells belonging
to the major cluster in this feature space.

In the benchmark on 25 real-world datasets, scCAD outperforms
10 other state-of-the-art methods in accuracy, successfully identifying
rare cell types in 20 of them. In-depth case studies across various
complex biological scenarios, including mouse airway epithelium,
hypothalamic arcuate-median eminence complex (Arc-ME), irradiated
mouse intestinal crypts, human pancreas, and large-scale human
immunology cells, demonstrate scCAD’s capability in accurately
identifying rare cell types and subtypes. This holds even in cases
involving radiation and multiple subtypes. Furthermore, in the clear
cell renal cell carcinoma (ccRCC) dataset, scCAD not only rectifies the
annotation of rare cell types but also identifies rare subtypes not dis-
covered in the original article. Importantly, in diverse datasets con-
taining immune cells, scCAD identifies multiple immune cell subtypes
associated with disease, potentially providing valuable insights into
disease progression.

In summary, scCAD has demonstrated its effectiveness as a tool
for identifying rare cells, showcasing its high accuracy, sensitivity, and
robust generalization capabilities across various biological scenarios.

Methods
Data preprocessing
We preprocess the gene expression matrix as follows. First, we filter
out genes with low expression rates, which may not provide effective

Fig. 9 | Visualization analysis of scCAD’s results in mouse retina dataset and
human lymphoma dataset. a Violin plots showing the expression distribution of
the knownmarker genes related toBC subtypes across the six identifiedBCclusters
and annotated 10 BC subtypes. b The Pearson correlation heatmap between the 6
identified BC clusters and the 10 BC subtypes, is calculated based on the average
expression values of BC marker genes. c The expression of enriched marker genes

from 40 RGC subtypes is examined across all RGC-related clusters (R2, R4, R5, R6,
R15, R19). d The t-SNE-based 2D embedding of the cells with color-coded identities
in the lymphomadataset. eThe five rare cell clusters detectedby scCADare visually
distinguished using different colors. BC bipolar cells, GEX gene expression, Mono
monocytes, NK natural killer Cells, NKT natural killer T Cells, pDC plasmacytoid
dendritic cells, Treg regulatory T. Source data are provided as a Source Data file.
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information. Specifically, genes that are expressed in at least three cells
are retained for downstream analysis. Each scRNA-seq dataset is nor-
malized by using the log-normalization procedure including the cal-
culation of cell-specific size factor based on the sequencing depths,
and normalization. The normalized matrix is then log2-transformed
after adding 1 as a pseudo-count.

Rapid clustering module for single-cell analysis
scCAD utilizes this rapid single-cell clustering module multiple times
to assign cluster labels to all or a subset of cells. Similar to previous
works90,91, scCAD first applies PCA to obtain the top 40 principal
components (PCs) that represent the most differential signals in the
data. Then, the cell undirected graph is constructed using Euclidean
distance and theKNNalgorithmwith the nearest neighbor parameter k
set to 15. Finally, the graph-based community detection algorithm,
such as Louvain92, is used to assign cluster labels to cells.

The procedure of scCAD method
scCAD integrates an ensemble feature selection method and a cluster
decomposition-based anomaly detection score step. Specifically,
scCAD involves the following detailed procedures after data
preprocessing.
1. The ensemble feature selection process involves selecting highly

variable genes11 and highly discriminative genes27. Specifically,
scCAD calculates the mean and a dispersion measure (variance/
mean) for each gene across all single cells, selecting the top 2000
most variable genes that exhibit high variability compared to
geneswith similar average expression. At the same time, a random
forest model is trained using the preprocessed gene expression
matrix and cluster labels, and the importance of each gene is
calculated based on the Gini impurity obtained from a set of
decision trees26. Next, scCAD selects the top 2,000 genes with the
highest importance. Finally, the combined set of genes from both
selections is retained for subsequent analysis.

2. Using the preprocessed expression matrix with selected genes,
scCAD performs cell clustering and initially partitions n cells into
several clusters. The set of clusters obtained from the initial
clustering is defined as I-clusters (initial clusters). Then, scCAD
iteratively decomposes each cluster containing more than R = 1%
of the total number of cells (R *n) through clustering until no new
clusters are generated by using the Louvain method, or until all
clusters become smaller than R *n. The set of clusters obtained
fromcluster decomposition is defined as D-clusters (decomposed
clusters). Subsequently, clusters in D-clusters will be merged
based on a threshold to form the final clusters set (M-clusters).
Specifically, scCAD first determines the centers for each cluster.
The center of cluster i is calculated as:
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i
j,2, . . . ,

1
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i
j,g , where Vi is a vector

with a magnitude of g, g is the number of selected genes, Ni

represents the number of cells in cluster i, and xi
j,k represents the

expression value of gene k in cell j belonging to cluster i. Then,
scCAD calculates the Euclidean distance between all cluster

centers: D Vi,Vj

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVi � VjÞ2

q
, where Vi and Vj represent the

centers of cluster i and j, respectively. Finally, scCAD determines
the threshold of merging, THM =medianðd1,d2, . . . , dmÞ, where
di is the Euclidean distance between cluster i and its nearest
neighboring cluster, m is the number of clusters in D-clusters. If

D Vi,Vj

� �
<THM, clusters i and j aremerged. The resultingmerged

clusters form M-clusters (Merged clusters): C1,C2, . . . ,Cm0
� �

.
I-clusters, D-clusters, and M-clusters consist of clusters obtained
from initial clustering, clusters derived after decomposition, and
clusters formed after merging, respectively.

3. For each gene in cluster i in M-clusters, scCAD calculates the dif-
ference between the median of the gene expressions of all cells
within cluster i and the median of those outside of cluster i93.

Assume that Xk
Ci

represents the vector composed of gene k

Fig. 10 | Visualization analysis of scCAD’s results in ~68k PBMC dataset. a The t-
SNE-based 2D embedding of the cells is presented, with color-coded identities
indicating cell types. Reg regulatory, NK natural killer Cells. b The rare cell clusters
identified by scCAD are visually distinguished using four distinct colors. c The
Pearson correlation heatmap compares the two identified dendritic cell (DC)

clusters, all annotated DCs, and six validated DC subtypes, based on the average
expression values of common DC marker genes across the two datasets. d The
expression distribution of the top marker genes related to six DC subtypes across
the two DC clusters and all annotated DCs. Source data are provided as a Source
Data file.
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expression values for all cells in cluster i, Xk
C0
i
represents the vector

composed of gene k expression values for all cells outside of
cluster i, the median difference of gene k is calculated as:

dk = jmedian Xk
Ci

� �
�median Xk

C0
i

� �
j. Finally, scCAD selects the

top 20 genes with the largest differences to generate the candi-
date gene set Si for cluster i.

4. Thegene expressionmatrix,whichcontains the genes in Si, is then
fed into an isolation forest model28 to calculate an anomaly score
for each cell. The isolation forest model builds a collection of
isolation trees where each tree is constructed by randomly
selecting a subset of cells and recursively partitioning them into
smaller subsets based on their expression in randomly selected
candidate genes. This process continues until each cell is isolated
in its leaf node. The anomaly score is computed by normalizing
the average path length for each cell, achieved by comparing it to
the average path length of a randomly generated cell from the
same dataset. The resulting score represents the degree of
abnormality exhibited by each cell with the candidate genes. As
described in28, the ensemble anomaly score of cell j based on the
candidate genes in Si is calculated with:

ASSij =2�
EðhðjÞÞ
cðnÞ ð1Þ

where hðjÞ is the path length of cell j in an isolation tree, which is
the number of edges traversed in an isolation tree from the root
node to the node containing cell i. EðhðjÞÞ is the average of hðjÞ
across all the isolation trees in the isolation forest model. cðnÞ
represents the average path length when the total number of cells
is n, and its formula is as follows28:

c nð Þ=
2H n� 1ð Þ � 2 n�1ð Þ

n n>2

1 n=2

0 otherwise

8><
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ð2Þ

where Hðn� 1Þ is the harmonic number that can be estimated by
lnðn� 1Þ+0:5772156649 (Euler’s constant)28.

5. scCAD assigns an independence score to cluster i in M-clusters
based on the list composed of the corresponding anomaly scores
of all cells: fASSi1 ,AS

Si
2 , . . . ,AS

Si
n g. The independence score (IS) of

cluster i is defined as follows:

ISi =
jTNi

\ Cij
Ni

ð3Þ

whereNi is the number of cells in cluster i, TNi
is the set of the top

Ni cells with the highest anomaly scores, and Ci is cluster i in
M-clusters. A higher independence score indicates that the
differentially expressed genes of the corresponding cluster
effectively distinguish and characterize its encompassing cells.

6. scCAD executes steps 3~5 for each cluster in M-clusters until
obtaining the independence score for all clusters: fIS1, IS2, . . . , ISm0 g.
Finally, clusters with an independence score exceeding the thresh-
old I (default is 0.7) (fCi 2 M� clustersjscorei > Ig) are predicted as
rare cell types and are outputted, along with the corresponding
candidate genes.

Parameter value selection in scCAD
Clusters containing more than R *n cells are considered for decom-
position through iterative clustering. Based on a comprehensive
review of previous studies18,94,95 defining the size of rare cell types, we
set this parameter to 1% on all larger datasets. For smaller datasets,
especially when the total number of cells is below 3000, we set the
threshold to 30

n to prevent the generation of excessively small clusters,

thereby enhancing the interpretability and reliability of clustering
outcomes.

After cluster decomposition, scCAD merges clusters if their
distance is smaller than the threshold THM, which is denoted as
THM =medianðd1,d2, . . . ,dmÞ, where di is the Euclidean distance
between cluster i and its nearest neighboring cluster. We test the
number of clusters generated after merging and the average pro-
portions of all cell types and rare cell types in their dominant
clusters by using different THM values in the Arc-ME dataset
(Supplementary Fig. 22). As shown in Supplementary Fig. 22, lower
THM values (such as zero and the lower quartile) may incur higher
computational overhead due to a larger number of analyzed clus-
ters, while higher THM values (such as the upper quartile and the
90th percentile) may significantly increase the likelihood of mer-
ging clusters dominated by rare cell types, potentially diminishing
the effectiveness of the decomposition step. To enhance efficiency
and reduce the number of analyzed clusters, we use the median as
the default parameter across all datasets.

scCAD identifies a cluster as rare when its independence score
exceeds a threshold value, I. We display the distribution of indepen-
dence scores calculated by scCAD for each cluster on four datasets in
Supplementary Fig. 23. As shown in Supplementary Fig. 23, clusters
dominated by rare cell types exhibit significantly higher independence
scores compared to other clusters, and using the default threshold can
effectively distinguish them. It is important to note that reducing this
threshold may result in the identification of multiple clusters domi-
nated by larger cell types. We default to applying I =0:7 across all
datasets.

In Supplementary Note 5 and Supplementary Table 21, we provide
an estimation of the runtime for each step in the scCAD workflow.

Usage of comparative methods
To evaluate the performance of scCAD for identifying rare cells, we
conduct a benchmark analysis comparing scCAD with other methods.
The CellSIUS package is obtained from GitHub (Novartis/CellSIUS).
The initialmajor cell types aredetermined using a single-cell clustering
workflow in the Seurat package11. The CellSIUS algorithm provides the
results of sub-clusters assigned to each cell. The CIARA package is
obtained from GitHub (ScialdoneLab/CIARA). The CIARA algorithm
merges the clustering results obtained by the standard algorithm
(Louvain) based on the HVG and identified genes, especially labeling
rare cell types. The EDGE package is obtained fromGitHub (shawnstat/
EDGE). For eachdataset, weutilize thedatamatrix preprocessedby the
Seurat package11 as the input for this method. Based on the
2-dimensional embedding results generated by EDGE, we construct a
k-nearest neighbor graph and apply the Louvain algorithm to obtain
the global clustering results. The FiRE package is obtained from
GitHub (princethewinner/FiRE, R version). FiRE assigns a score to each
cell andoutputs predicted rare cells thatmeet the thresholding criteria
based on the interquartile range (IQR). The GapClust package is
obtained fromGitHub (fabotao/GapClust). Similar to scCAD, GapClust
generates multiple sets of predicted rare cells as output. The Gini-
Clust2 and GiniClust3 packages are obtained from GitHub (dtsoucas/
GiniClust2, rdong08/GiniClust3), respectively. Both of them return
global consensus clustering results. The RaceID3 package is obtained
fromGitHub (dgrun/RaceID3_StemID2_package). RaceID3 returns a list
containing predicted rare cells. SCA is implemented in Python, and the
latest version is obtained from GitHub (bendemeo/shannonca). Fol-
lowing their previous recommendations, we construct a 15-nearest
Euclidean neighbor graph in the 50-dimensional space of SCA and use
Leiden clustering with the default resolution of 1.0 to obtain the final
clustering results. The SCISSORS package is obtained fromGitHub (jr-
leary7/SCISSORS). We reclustering the clusters with an average sil-
houette coefficient calculated by SCISSORS smaller than the overall
average, resulting in the final clustering results.
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For each algorithm, all parameters are set to their default values.
For algorithms that directly output sets of predicted rare cells, such as
scCAD,GapClust, FiRE, andRaceID3,we combine all thepredicted cells
from the result to obtain the final binary prediction outcome. For
algorithms that return global clustering results, such as CellSIUS,
CIARA, EDGE, GiniClust2, GiniClust3, SCA, and SCISSORS, clusters with
a cell population smaller than the corresponding threshold (1% or 5%)
are identified as rare clusters. We combine all the cells from the pre-
dicted rare clusters to obtain the final binary prediction outcome.

Generation and description of simulation data
To analyze the sensitivity of scCAD to rare cell type identity, we gen-
erate artificial scRNA-seq data using the splatter R package96. The fol-
lowing command is used to generate these data:

splatSimulate(group.prob = c(0.99, 0.01), method = ‘groups’, ver-
bose = F, batchCells = 2500, de.prob = c(0.4, 0.4), out.prob =0, de.fa-
cLoc =0.4, de.facScale =0.8, nGenes = 5000, seed = 2023)

Thedataset consists of 2500cells, each containing 5000genes.Of
these cells, 2476 represent the major cell type, while 24 define the
minor type.

After data preprocessing, we use Wilcoxon’s rank sum test to
identify DE genes with an FDR cutoff of 0.05 and an inter-group
absolute fold-change cutoff of 1.5. Assume that the set of these DE
genes is SDEGs. We remove the DE genes obtained from the randomly
permuted labels from the set SDEGs. This step is repeated ten times. The
final 220 DE genes are removed from the data and preserved as a
separate set. Additionally, 3226 genes with a p-value exceeding 0.05
are retained as a distinct set of non-differential genes.

The subsampled Jurkat dataset consists of 1556 cells, each con-
taining 32,738 genes. Of these cells, 1540 represent themajor 293T cell
type, while 16 define theminor Jurkat cell type. To increase the number
of DE genes for analysis, the inter-group absolute fold-change cutoff is
adjusted to 1. The final 108 DE genes are removed from the data and
preserved as a separate set. Additionally, 30,479 genes with a p-value
exceeding 0.05 are retained as a distinct set of non-differential genes.

Statistics and reproducibility
Differentially expressed genes were identified using the FindMarkers
function from the Seurat R package (version 4.5.0). This analysis
employed a two-sided Wilcoxon rank sum test, with a false discovery
rate (FDR) cutoff of 0.05 and an inter-group absolute fold-change
cutoff of 1.5. Fold-change values were calculated based on the mean
expression levels of each gene between groups.P-valueswere adjusted
using Bonferroni correction, accounting for the total number of genes
in the dataset. In box plot representations, the horizontal line denotes
the median value, the lower and upper quartiles represent the 25th
(Q1) and 75th percentiles (Q3), respectively. The interquartile range
(IQR) is defined as the range between Q1 and Q3, and the whisker
values calculated as Q1=Q3� =+ 1:5 × IQR as indicated in figure
legends.

No statistical method was used to pre-determine sample size. No
data were excluded from the analysis, all genes in datasets were used
throughout all analyses. The selection of pre-identified differentially
expressed genes was randomized, all other experiments were not
randomized. The investigators were blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The details of the datasets used in this study are reported in Supple-
mentaryTable 1. All describeddatasets areobtained fromvariouspublic
websites under accession codes provided in Supplementary Table 1,

including NCBI Gene Expression Omnibus (GEO) [https://www.ncbi.
nlm.nih.gov/geo/], ArrayExpress [https://www.ebi.ac.uk/arrayexpress/],
Sequence Read Archive (SRA) [https://www.ncbi.nlm.nih.gov/sra]. 10X
PBMC is obtained at Github [https://github.com/ttgump/
scDeepCluster/blob/master/scRNA-seq%20data/10X_PBMC.h5]. 68k
PBMC and Jurkat datasets are obtained from the website of 10X geno-
mics ([https://www.10xgenomics.com/datasets/fresh-68-k-pbm-cs-
donor-a-1-standard-1-1-0], [https://www.10xgenomics.com/datasets/50-
percent-50-percent-jurkat-293-t-cell-mixture-1-standard-1-1-0]). The
wormneuron cells dataset Cao is sampled fromadataset obtained from
the sci-RNA-seq platform (single-cell combinatorial indexing RNA
sequencing) [http://atlas.gs.washington.edu/worm-rna/docs/]. The
preprocessed human tonsil data, named Tonsil, and Crohn data are
available from Broad Institute Single Cell Portal ([https://singlecell.
broadinstitute.org/single_cell/study/SCP2169/slide-tags-snrna-seq-on-
human-tonsil], [https://singlecell.broadinstitute.org/single_cell/study/
SCP359/ica-ileum-lamina-propria-immunocytes-sinai]). The mouse
retina data and B_ lymphoma data are available at Github [https://
github.com/OSU-BMBL/marsgt/tree/main/Data]. Source data are pro-
vided with this paper.

Code availability
scCAD is publicly available at GitHub [https://github.com/xuyp-csu/
scCAD] and Zenodo97.
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