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Abstract 

Background:  Viral diseases are highly widespread infections caused by viruses. These viruses are passing from one 
human to other humans through a certain medium. The medium might be mosquito, animal, reservoir and food, etc. 
Here, the population of both human and mosquito vectors are important.

Main body of the abstract:  The main objectives are here to introduce the historical perspective of mathematical 
modeling, enable the mathematical modeler to understand the basic mathematical theory behind this and present 
a systematic review on mathematical modeling for four vector-borne viral diseases using the deterministic approach. 
Furthermore, we also introduced other mathematical techniques to deal with vector-borne diseases. Mathematical 
models could help forecast the infectious population of humans and vectors during the outbreak.

Short conclusion:  This study will be helpful for mathematical modelers in vector-borne diseases and ready-made 
material in the review for future advancement in the subject. This study will not only benefit vector-borne conditions 
but will enable ideas for other illnesses.
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1 � Background
New types of viral diseases are arising day by day. Viral 
diseases are prevalent infections caused by viruses 
(microorganisms) worldwide. There are many types of 
viruses that lead to a variety of viral infections. A few 
of them are widespread viral diseases, such as COVID-
19, dengue fever, chickenpox, influenza, HIV/AIDS, 
measles, and rubella. Viral diseases are contagious and 
pass from one individual to another individual through 
a certain medium. There are several ways to transmit 
viral infection from one to another. Few viral diseases 
are transmitted by vectors known as vector-borne viral 
infections. Vector-borne diseases are human diseases 
caused by parasites, viruses, and bacteria that are trans-
mitted through the vector. Every year, more than 700,000 
people die from diseases such as malaria, dengue fever, 

Schistosomiasis, African trypanosomiasis, leishmaniasis, 
Chagas disease, yellow fever, Japanese encephalitis, and 
onchocerciasis. The burden of these diseases is highest in 
the tropics and subtropics and affects the poorest dispro-
portionately. Since 2014, dengue, malaria, chikungunya, 
yellow fever, and Zika have caused population declines, 
deaths, and overwhelming health care systems in many 
countries. Other illnesses, such as chikungunya fever, 
leishmaniasis, and lymphatic filariasis, cause chronic dis-
tress, lifelong morbidity, disability, and occasional stigma. 
Various types of vectors depend upon their transmission 
method. Some vectors are blood-sucking insects that 
become infected by disease-responsible microorgan-
isms during the blood-sucking process from the infected 
host and transmit it into a new normal host during the 
next blood-sucking process. Mosquitoes are well-known 
vectors for various infectious diseases. Mosquitoes are 
responsible for the transmission from one individual to 
another of serious diseases such as chikungunya, dengue 
fever, zika fever, yellow fever, West-Nile fever, and Rift 
Valley Fever (RVF) . Other than mosquitoes, there are 
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other vectors for several diseases; for example, fleas are 
responsible for plague in which fleas transmitted from rat 
to human, freshwater snails are responsible for Schisto-
somiasis, ticks are responsible for Lyme and Tularemia, 
bugs are responsible for Chagas disease, and there are 
many other types of vectors [1]. These viral diseases 
occur mainly in regions where the climate is tropical 
and sub-tropical, which are suitable for the production 
of mosquitoes. These diseases are also found normally 
in areas where drinking water is harmful and the sanita-
tion system is unsuitable. Although, these diseases are 
not limited to any specific region due to globalization of 
travelling, and climate change [1]. Antibiotics are ineffec-
tive for viral infection in contrast to bacterial infection in 
humans. However, the viral infection causes illness for a 
limited period, and then it resolves as the body’s immune 
system, which enables it to attack the viruses and recover 
from that infection. In some other cases, the infection 
may be dangerous and life-threatening. Some epidemics 
of infectious diseases occurred in 20th and 21th century 
are shown in Tables  1 and 2, respectively. Due to these 
epidemic/pandemic events, humankind faced a great loss 
in health and wealth.

These vector-borne viral infections propagate from 
one individual to another. If we want to do a non-
pharmaceutical intervention (such as quarantine, iso-
lation, social distancing and hygiene behaviors, social, 

physical, psychological, capacity, motivation, economic 
and demographic that impact on engagement) dur-
ing the progression of disease in the population. Non-
pharmaceutical intervention is due to the treatment 
of various viral diseases that have been still unknown. 
Then we must know the factors of propagation and 
dynamics of the infected population. Thus, mathemat-
ical modeling is a perfect tool to deal with this prob-
lem. Although it is very challenging to convert the real 
problem into a mathematical model in an ideal way, it 
may be constructed under certain constraints. The pre-
diction using a mathematical model will be helpful for 
the state to formulate policies and control over spread-
ing of disease. The mathematical model formulation 
process clarifies the infection’s assumptions, variables 
and parameters. Further, the model also provides con-
ceptual results such as thresholds, basic reproduction 
numbers, contact numbers, and replacement numbers 
for the transmission dynamics of diseases. Mathemati-
cal models can be utilized as useful experimental tools 
in understanding the transmission characteristics of 
infection in communities, regions, and countries that 
can lead to the formulation of appropriate control 
measures [13, 14]. In many countries, mathematical 
models are helpful in decision-making policies about 
epidemics/pandemics. Mathematical modeling is also 
a decision-making tool for intervention programs for 
infectious diseases. In recent times, the mathematical 
modeling of such viral infectious has many approaches, 
such as deterministic, stochastic, network-based, simu-
lation, and statistical. The selection of these techniques 
in a mathematical model depends on the characteristics 
of the diseases for which model is being created and for 
the model. In this chapter, we will focus on the deter-
ministic approach only.

To date, many mathematical models have been devel-
oped, and many models are underway, such as [15–19]. 
Although, several models have high significance for the 
society and government for policy making. During any 
epidemic or pandemic, we did not spend time reviewing 
all articles and identifying which model had the restric-
tion and criteria and which model was better or worse as 
per the situation. Hence, a notion came to mind that it 
would be good to have a systematic review of the math-
ematical model of the viral disease. We have picked here 
four vector-borne diseases: chikungunya, zika, dengue, 
and west-Nile infection. As we know that mathematical 
modeling of infectious disease is somehow similar strat-
egies to develop a deterministic model; however, the 
parameter and variable lying differential. In this survey 
article, we try to incorporate how one model variable and 
parameter are different from others and what is novel 
development and results in the existing surveyed model.

Table 1  Few major epidemic/pandemic of viral infections in 20th 
century

Viral infection Duration Location Death References

Plague 1910-1912 China 40,000 [2]

Influenza 1918-1920 World-wide 75,000,000 [3]

Influenza (Asian flu) 1957-1958 World-wide 2,000,000 [4]

Small pox 1974 India 15,000 [5]

Plague 1994 India 52 [2]

Table 2  Few major epidemic/pandemic of viral infections in 21st 
century

Viral infection Duration Location Death References

SARS 2002-2003 Asia, Canada 775 [6]

Dengue fever 2005 Singapore 19 [7]

Dengue fever 2006 India 50+ [8]

Influenza 2009 World-wide ≈15,000 [9]

Ebola virus 2013-16 West-Africa ≈12,000 [10]

Chikungunya 2013-15 America ≈200 [11]

Zika virus 2015-2017 World-wide – [11]

COVID-19 2019-2022 World-wide 6,289,371 (till 
01-06-2022)

[12]
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Thus, the organization of the survey follows historical 
perspectives of mathematical modeling and a systematic 
review of mathematical modeling on four vector-borne 
diseases (Dengue, Zika, Chikungunya, West-Nile) in Sec-
tion 2.1 and Section 2.2, respectively. After that, Section 2.3 
elaborates on basic numerical techniques for solving the 
SIR model and herd immunity and vaccination incorpora-
tion concept in the mathematical model. In the last Sec-
tion  2.4 described different techniques of mathematical 
modeling apart from deterministic. This survey will be a 
highly useful mathematical modeler in vector-borne dis-
eases. This survey is not only limited to use for a vector-
borne oriented researcher; however, this will also be useful 
for all mathematical developers, especially newly emerged 
viral infections.

2 � Main text
2.1 � Historical perspective of modeling for infectious 

diseases
The origin of mathematical modeling for vector-borne viral 
infection progression in humans is the modeling of infec-
tious diseases. Therefore, a historical perspective is needed 
to understand compartmental modeling for formulating 
the vector-borne infection model. In this section, we have 
described a historical perspective of mathematical mod-
eling for infectious diseases. Smallpox is a disease which 
emerged in the period before written records. By the end 
of the medieval period, this disease had become the main 
disease responsible for high child mortality in Asia and 
Europe. Although, the etiology of this disease could not 
be illuminated till 20th century. It was the first disease 
for which a specific intervention, immunization or vac-
cination was available in the history of infectious diseases. 
The mathematician Daniel Bernoulli is known for the first 
mathematical Model for "small pox." He submitted his 
work entitled An attempt at a new analysis of the mortal-
ity caused by smallpox and the advantages of inoculation 
to prevent it to the Academy of Sciences in Paris in 1760. 
He thought inoculation problem in a mathematical way for 
smallpox. The task was to compare the effect of inoculation 
with the normal conditions of infections. For this, he made 
some assumptions under which he developed the following 
equation using some basic calculus:

where S(x) :  Number of susceptible people at age x with-
out ever infected by small-pox (independent of age), 
P(x) :  Total number of alive people at age x, (1− p) : sur-
vival probability, q  :   infection probability per year per 
human. If S(x)P(x) = f (x) then Eq. 1) can be written as:

(1)
1

P

dS

dP
−

S

P2

dP

dx
= −q

S

P
+ pq

S

P

2

,

The solution of the similar Eq. (2) was known (given 
by Daniel’s uncle Jackob Bernoulli) several decades 
before. The final solution of Eq. (2) was given in the 
form f (x) = 1

p+(1−p)eqx  . On the basis of this solution he 
computed life table at different ages x. The number of 
deaths between age x and x + 1 was computed by 
pq

∫ x+1

x S(t)dt which is equal to pq [S(x)+S(x+1)]
2

 by Trap-
ezoid approximation.

The modern approach for the mathematical epide-
miological models was established by the P.D. En’ko 
between 1873 to 1894. P.D. En’ko presented his work 
[20] in the form of a mathematical model in 1889 in 
Russian in St. Petersburg. P.D. En’ko set some specific 
assumptions known as “first principles”. Based on “first 
principles”, he developed the iterative method, which is 
shown in the following system of iterative equations:

where Ct is the number of infected individuals, St is the 
number of susceptible and Nt is the total number of 
individuals during the time interval t, k is the parameter 
which determines the number of contacts of a suscepti-
ble [20]. In the model, the expression Ct

Nt−1
 represents the 

probability that a susceptible person comes in contact 
with an infected person. The model had two basic charac-
teristics (i) discreteness of time (ii) deterministic nature. 
He fitted his Model with the real data of measles and 
scarlet fever outbreaks in two boarding schools, namely 
the Imperial Education College for the Daughters of 
Nobility and the Alexander Institute in St. Petersburg 
during 1875-1888.

Another work in the history of mathematical modeling 
is done by British scientist Sir Ronald Ross who discussed 
the transmission of malaria between mosquito and 
human, and got the second noble prize in the medicine 
in 1902 [21]. Ross claimed that malaria can be prevented 
by simply reducing the number of mosquitoes in his book 
“The prevention on Malaria” published in 1911. He pre-
sented a mathematical model for his claim. His math-
ematical model was based on the system of two ordinary 
differential equations (ODE) in the following manner:

(2)
df

dx
= −qf + pqf 2.

(3)Ct+1 =St{1−

(

1−
Ct

Nt − 1

)kNt

},

(4)St+1 =St

(

1−
Ct

Nt − 1

)kNt

,

(5)Nt+1 =Nt − Ct ,
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where N  :   total human population, I(t)  :   number of 
infected human at time t, n :  total mosquito population, 
i(t) :  number of infected mosquitoes at time t, b :  biting 
rate of mosquito, p  :   transmission probability of infec-
tion from human to mosquito per unit bite, p′ : transmis-
sion probability of infection from human to mosquito per 
unit bite, a :  recovery rate of human from infection, and 
m :  mortality rate of mosquito. The terms bp′i N−I

N dt and 
−aIdt represents the number of new infected humans 
and number of recovered humans in small time period 
dt, respectively. Similarly, the terms bp(n− i) I

N dt and 
−mIdt denote the number of new infected mosquitoes 
and number of mosquitoes that die (assuming infection 
does not affect the mortality rate of mosquitoes) during 
the small time period dt, respectively. Ross discussed two 
steady state points (dI

dt
= 0 and di

dt
= 0) for his model: 

1	 I = 0 , i = 0 ; which always shows the absence of 
malaria.

2	 I = N
1−amN/(b2pp′n)
1+aN/(bp′n)  , i = n

1−amN/(b2pp′n)
1+m/(bp) .

Ross noticed that for I > 0 and i > 0 the number of 
mosquitoes (n) should be greater than a threshold value 
n∗ =

amN
b2pp′

.
The concrete work on the mathematical modeling for 

epidemiology was carried out by Sir Ross, R.A., W.H., 
W.H. Hammer, A.G. Mckendrick and W.O. Kermak dur-
ing 1900-1935 [22–24]. The work done by these scientists 
was based on the new approach known as compartment 
modeling whereas J. Brownlee did the work from a statis-
tical perspective.

The development of compartment model theory is 
the consequence of the three papers written by W.O. 
Kermack and A.G. Mckendrick in 1927, 1932, and 1933 
[22–24]. The well known and simple model for the 
transmission of infectious disease is the Susceptible-
Infected-Recovered (SIR) model given by Kermack and 
Mckendrick [24]. In basic SIR model whole popula-
tion is categorized into susceptible (S), infected (I), and 
recovered (R) with respect to the time t (normally in 
days). The following ordinary differential equations can 
represent the transmission of disease: 

(6)
dI

dt
= bp′i

N − I

N
− aI ,

(7)
di

dt
= bp(n− i)

I

N
−mI ,

(8a)
dS

dt
= −βSI ,

where dS
dt

 , dI
dt

 , dR
dt

 are the rates of change in the quantities 
S(t), I(t), R(t), respectively, and β is the transmission rate 
which is equal to the average number of infected indi-
viduals infected by an infectious individual, assuming 
that all contacts are susceptible to that individual. γ is the 
rate at which infected individuals recover. Therefore 1/γ 
is the average time an infected individual remains infec-
tious. The product βS(t)I(t) is the "total infection rate," 
which reflects the infected population fraction per unit 
time. The quantity β/γ is the average number of indi-
viduals infected by a single infectious individual treating 
the whole Population as susceptible. This fraction (β/γ ) 
is known as basic reproduction number (R0) and is an 
important index for invasion of the diseases in the given 
Population. Hethcote [25] defined the effective reproduc-
tion number (replacement number) as:

which provides the average number of secondary infec-
tions produced by the single infected individual during 
the infection. Further, there are two main key conclusions 
about disease transmission: 

1	 The threshold value: (a) If S(0)R0 < 1 then disease 
rapidly dies-out, i.e., there is no epidemic. (b) If 
S(0)R0 > 1 , the number of individuals will increase 
rapidly, i.e., epidemic will occur despite of small sus-
ceptible portion.

2	 The size: when an epidemic occurs, it does not 
depend on the initial number of infected individuals 
but only depends on the initial Population of suscep-
tible S(0) and the basic reproduction number (R0).

The basic (SIR) model is far from the reality due to 
the following assumptions:

•	 Well mixed and Homogeneously distributed Popu-
lation : During the construction of Model, it was 
assumed that the Population is well-mixed, i.e., 
every individual has the same probability of coming 
in contact with any other individual. This hypoth-
esis relaxes many factors, like that contact depends 
upon the geographical or social relationship. This is 
also implied that the Population is treated as homo-

(8b)
dI

dt
= βSI − γ I ,

(8c)
dR

dt
= γ I ,

(9)R =

β

γ
S(0),
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geneously distributed, i.e., each individual has an 
equal probability of transmitting the infection. This 
assumption ensures that the Model does not consider 
the level of susceptibility or infectiousness.

•	 Infection duration is exponentially distributive: 
Model assumes that an infected individual becomes 
infectious immediately and recovery per unit time of 
an individual is independent from the time that has 
passed since infection. Both these hypotheses are not 
realistic [26].

•	 Large-size population: During the construction of 
Model, it is assumed that the Population is very large 
(usually infinite). For a small population (for a small 
geographical region), another approach, such as sto-
chastic, is more appropriate [27].

Kermack and Mckendrick also discussed the role of 
lapsed time (τ ) since infection started in their model. 
Therefore the transmission of infection β(τ) and recov-
ery from infection γ (τ) depend on the lapsed time 
τ . In this case reproduction number is calculated as: 
R0 = N

∫

∞

0
β(τ)e−

∫ τ
0 γ (x)dxdτ (where N=total human 

population).

2.1.1 � Final size of epidemic
It can be shown that lim

t→∞

I(t) = I(∞) = 0 but lim
t→∞

S(t)

= S(∞)
 and lim

t→∞

R(t) = R(∞) are finite but their values 
depend upon the initial conditions. Final size of the 
total number of cases of the disease outbreak can be 
determined by the initial conditions and parameters β 
and γ . If R(0) = 0 then N (t) = S(t)+ I(t)+ R(t) 
implies that R(∞) will represent the final size of disease 
outbreak. The value of R(∞) could be determined by 
the two Eqs. (8a & 8b) such that 8b is divided by 8a fol-
lows as:

We get after simplification of Eq. (10):

Let us Integrating both sides Eq. (11) with respect to S, 
then we get:

where C is an arbitrary constant of integration. Let initial 
conditions are I(0) = 1 and R(0) = 0 then S(0) = N − 1 . 
Using the initial conditions the value of C can be 

(10)
dI

dS
=

dI/dt

dS/dt
=

βSI − γ I

−βSI
.

(11)
dI

dS
= −1+

γ

βS
.

(12)I = −S +

γ

β
ln(S)+ C ,

determined as N −
γ
β
ln(N − 1) . Therefore, we get the 

following expression for I(t):

As t → ∞ and using I(∞) = 0 yields:

Equation (14) provides the implicit solution for 
S(∞) . Thus, we can determine the final size of outbreak 
R(∞) = N − S(∞) . For example, if S(0) = 99, I(0) = 1,

R(0) = 0 then N = 100 and let β = 0.02, γ = 1 . Then 
S(∞) ≈ 19.9 therefore final size R(∞) = 80.1 for given 
parameter values and initial conditions.

2.2 � Systematic review for four different vector‑borne 
diseases

There are various techniques available to convert real 
problems into mathematical models. The compartmental 
mathematical modeling approach has novelty in all these 
techniques used to analyze the transmission characteris-
tics of infectious diseases. In this approach whole popula-
tion of individuals is divided into different classes based 
on the epidemiological state of individuals. The letters 
S, E, I, R (S-Susceptible, E-Exposed, I-Infected, R-Recov-
ered) are normally used to represent different epidemio-
logical classes in the compartment mathematical model. 
The selection of compartments in a mathematical model 
depends on the characteristics of the diseases for which 
the model is being created. Some classes may be omit-
ted from a model if they do not play a crucial role in 
the model. According to the presence of compartments, 
acronyms for different mathematical models can be used 
as SEIRS, SEIR, SIRS, SIR, SEIS, SEI, SIS, SI, etc.

Except above historical development of mathemati-
cal modeling, many researchers proposed their models 
with some more assumptions and restrictions to achieve 
the goal of continuous time intervals and provided the 
solution to real problems more accurately [28, 28, 29]. In 
the continuation of this series, some are described here. 
Hetcote [13] introduced the basic assumptions, nota-
tions, concepts and derivations of formulas for the epi-
demiological models. Classification of infectious diseases 
is done based on agent and mode of transmission, which 
is similar to the classification given by H. Dietz in 1974. 
He discussed three basic epidemiological models namely 
(SIS) model, (SIR) model without vital dynamics and 
(SIR) model with vital dynamics. He also talked about 
herd immunity and the vaccination concept. Hetcote and 
Ark [30] gave the model for heterogeneous population. 

(13)I(t) = −S(t)+
γ

β
ln(S)+ N −

γ

β
ln(N − 1).

(14)S(∞) =
γ

β
ln

[

S(∞)

N − 1

]

+ N .



Page 6 of 21Prasad et al. Beni-Suef Univ J Basic Appl Sci          (2022) 11:102 

They found contact matrices on the assumption of pro-
portionate mixing. They also estimated the parameter for 
the homogeneous and heterogeneous populations. They 
analyzed this model for three immunization programs 
and compared them. Fraser et al. [31] discussed two main 
factors in controlling the outbreak of an infectious dis-
ease in the absence of vaccination (i) isolation of sympto-
matic individuals (ii) contact tracing and quarantining of 
symptomatic individuals. They claim that these measures 
depend upon the symptoms of specific diseases. There-
fore the relative time for infectiousness and visibility 
of symptoms cab be estimated by the proposed math-
ematical model. Fan, Li and Wang [32] talked about the 
global stability of a (SEIS) model with constant recruit-
ment and varying total population. They showed that 
global stability is fully governed by R0 in such a way that 
if R0 ≤ 1 , then stability is global, and disease will die out, 
but if R0 > 1 , then a unique endemic equilibrium exists. 
McCallum et al. [33] discussed the facts about modeling 
pathogen transmission. They talked about mass-action 
assumptions and pointed out that models based on mass 
action have often been modeled incorrectly. Yusuf et al. 
developed a model for HIV using fractional order-based 
differential equation and logistic growth model, these 
fractional based techniques are emerging nowadays and 
provide us best fitted with actual outbreak data [34–40]. 
In their opinion, alternative models of transmission are 
available for better results.

In the past few years, viral diseases like Zika, dengue, 
chikungunya, West Nile and yellow fever have gained 
considerable attention. The threat of these viral infections 
is a broad area of concern. The ecological assessment of 
the pandemic threat of Zika virus (ZIKV) has been given 
by C. Carlson [41]. In 2010, the continuous global threat 
of dengue was presented in [42], concluding that the con-
trol measures like antiviral vaccines and drugs should be 
developed, which will make an important contribution 
to the upcoming dengue outbreak. In this respect, Math-
ematical modeling arises as a powerful tool to investigate 
the transmission and interior of various viral diseases to 
develop control measures [25, 43–55]. These are basically 
compartmental models which divides the population into 
different compartments comprising of different infec-
tious diseases. Different mathematical models have been 
proposed with some more assumptions and restrictions 
to achieve a goal by providing more accurate solutions to 
real problems. Here, some models have been described 
with more assumptions and solutions for different viral 
diseases.

2.2.1 � Mathematical modeling for dengue fever
Dengue infection is caused by the dengue virus (DENV), 
a mosquito-borne flavivirus. The symptoms of dengue 

infection are headache, vomiting, joint pains, high fever, 
skin rash, etc. These symptoms usually start from 3 to 14 
days after getting the infection. The recovery time from 
DENV ranges from 2 to 7 days. The severe complications 
due to DENV infection may be low blood platelets and 
blood plasma levels, low blood pressure, etc. A. Aegypti 
female mosquitoes are responsible for transmitting DENV 
infection from one individual to another through their 
bites. There are different serotypes of the DENV. Recently, 
a vaccine for DENV infection has been approved and is 
available in some countries. However, it is only recom-
mended for individuals who are not infected previously. 
Dengue infection has become a global issue since the sec-
ond world war. Nowadays, it is spread in more than 110 
countries, mainly in Asia and South America. It has been 
proven as the most increasing infection as the number 
of cases has increased 30 times in the last 50 years. The 
disease transmission has its highest rate in the season of 
rainfall and warmer temperatures [12].

Previously, several approaches have been used to 
investigate transmission dynamics of the Dengue virus 
(DENV) infection, but the mathematical approach is 
found to be more significant as the epidemiology of 
DENV infection comprises ecological characteristics and 
epidemiological determinants. An exhausting literature 
review is available to discuss, but only a few are being 
described here. Andraud et  al. [56] reviewed the epide-
miological models for dengue virus infection using a sys-
tematic structural approach. They searched the articles 
up to 2012 from standard databases, such as Pubmed and 
ISI Web of knowledge. They found 655 peer-reviewed 
articles related to Dengue Epidemic model after a sys-
tematic search. They excluded 16 non-English articles 
and then 389 duplicate articles. Thus, there were only 
373 articles for screening. Three hundred thirty-one arti-
cles were found irrelevant out of 373 articles. So finally, 
42 articles were finalized for qualitative analysis. In this 
series, Dietz [57] was the first who propose a determin-
istic compartmental model for DENV with vaccination 
presenting critical population size, analytic solution, spa-
tial heterogeneity, age structure and vaccination strat-
egy with the highest basic reproduction number (R0) 
equal to 27. Another model in 1992 was developed by 
Newton et  al. [58] to evaluate the impact of Ultra-Low 
Volume(ULV) Insecticide on dengue epidemics find-
ing that it has little impact on disease transmission. The 
dynamics of the DENV transmission were done using 
the SEIR-type model, including the incubation period for 
both the host and vector population. The model’s basic 
reproduction number, R0 set, was 1.9, which predicted an 
asymptotically stable endemic state of model reproduc-
ing epidemic transmission. Hence, decreasing the favora-
ble environmental conditions for mosquitoes and R0 is 
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very efficient in reducing virus transmission. A complete 
vector-host dynamics in a multiple strain epidemiologi-
cal system was developed in 1997 by Zhilan Feng [59]. 
Instead of including any exposed compartment, the 
model included the existence of a second co-circulating 
strain which causes secondary infections in susceptible or 
recovered individuals. The analysis shows the existence 
of an unstable endemic state which provides an environ-
ment where dengue serotypes co-circulate, resulting in 
the competitive exclusion of one strain. Hence, conclud-
ing that the existence of competitive exclusion in the 
model comprises host superinfection process and fre-
quency-dependent contact rates.

Next, the global stability of endemic equilibrium was 
concluded as one of the parameters in DENV dynamics 
given by Esteva [60] using a vector-host compartmental 
model. Various improvements in this model suggested 
that three threshold parameters exist which regulate the 
endemic equilibrium [61, 62]. In 1994, a simplified deter-
ministic compartmental model [63] was designed to esti-
mate DENV transmission and concluded that the dengue 
virus is the only moderately infectious in Brazil. With 
the increased dengue virus risk, researchers and math-
ematicians developed different models, including various 
parameters, to eliminate the disease. In 2003, a sim-
ple deterministic model was designed to determine the 
parameters to develop a dengue transmission model for 
Brazilian cities and analyzed how control measures are 
influenced by vector density spatial heterogeneity [64]. 
The model was parameterized using probability density 
functions in a range of probable values for each param-
eter and consists of an expression for basic reproduction 
number R0 that incorporates vector density spatial heter-
ogeneity. Hence, concluded that the main entomological 
parameters worth estimating in the model were mortality 
rate and the extrinsic incubation period, even in the pres-
ence of vector density spatial heterogeneity. In the end, 
suggesting that better approaches to measuring transmis-
sion dynamics should be made together by mathemati-
cians, epidemiologists and entomologists to decrease the 
risk of a DENV infection invasion in Rio de Janeiro.

The Dengue virus is found with four serotypes, DEN-
1, DEN-2, DEN-3 and DEN-4, and the interaction of any 
of the four serotypes with susceptible humans causes 
dengue. Aedes aegypti and Aedes albopictus are the two 
mosquitoes that are recognized dengue causing viruses. 
Dengue epidemic caused by only one virus or two viruses 
acting simultaneously [59] were considered using differ-
ent SEIRS models [58] and SIR models [60]. Therefore, a 
model is proposed where two different viruses acted on 
separate time intervals [65]-the paper deals with a suc-
cession of two dengue epidemics resultant of these two 
different viruses. In the proposed model, simulation for 

the different values of parameters was carried out, giving 
stability to equilibrium points. Overall the model helps to 
understand that prevention measures such as chemical 
methods or vector control through environmental man-
agement are insufficient to prevent the disease dynam-
ics as they only help delay outbreaks. It was found that 
the vaccination is only applicable for the short term as it 
works against the four serotypes simultaneously. Hence, 
researchers can investigate and concentrate on the search 
for a vaccine that focuses on each serotype instead of 
looking for a vaccine that targets the four serotypes 
simultaneously.

Since the period of 1950s, Bangkok was highly affected 
by four DENV serotypes, all of which had co-circulated 
occurring epidemic outbreaks every ten years [66]. Seek-
ing through the prevention of outbreak occurred, it was 
noticed that productive management of DENV can be 
possible by understanding the factors that drive epide-
miological patterns. The epidemiological theory with 
phylogeny data analysis contributes positively to under-
standing the infectious diseases at intra- and inter-host 
levels [67]. B. Adams [68] used such an approach con-
cluding that epidemic patterns in Bangkok may be the 
result of cross-protective immunity between serotypes. 
The phylogeny analysis of distinct epidemic patterns 
between four serotypes results that there is an immu-
nological reaction between the serotypes. Hence, the 
deterministic mathematical model was used to vary 
these interserotypic immune reactions, which concluded 
that moderate cross-protective immunity account for 
the alternating epidemic pattern of DENV circulating 
in Bangkok. Dengue Hemorrhagic Fever (DHF) con-
cerning Dengue Fever is significantly affecting tropical 
and subtropical areas across the world. In 2006, an SIR 
model of DENV transmission was designed with a severe 
DHF compartment aiming to find the control measures 
to decrease the number of DHF patients. Analyzing this 
model reports that there are four equilibrium points, 
one the disease-free, and the other three correspond to 
the presence of a single serotype and the coexistence 
of two serotypes. A large number of average-age DHF 
cases were also reported in Thailand without knowing 
the cause. With the decrease in the mosquito population 
and declining contact between humans and mosquitoes, 
it is found that demographic transition reduced dengue 
transmission and also increased the interval between 
large epidemics [69]. An age-specific deterministic model 
was designed which examine the impact of secular demo-
graphic transition. It is found that a reduction in mortal-
ity increases the longevity of immune individuals, which 
finally decreases the risk of DENV infection in suscepti-
ble individuals. The reduction in the birth rate decreases 
a large number of susceptible individuals, reducing the 
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risk of infection. Hence concluding that demographic 
transition has a broad impact on dengue transmission 
dynamics in Thailand and many more countries in South-
east Asia [70–72]. Vertical transmission in mosquitoes 
has a role in the persistence of dengue as described in 
[73]. Using a deterministic model, they concluded that 
vertical transmission at low infection rates is not a key 
factor for long-term DENV persistence. They also con-
cluded that vertical transmission had no major effect on 
DENV persistence. In 2011, Johansson reviewed the dif-
ferent mathematical approaches to study dengue trans-
mission dynamics, focusing on estimation methods for 
basic reproduction number and their consequence on the 
impact of vaccination [74]. Another review done in 2012 
by Andraud et al. [56] includes all the research articles on 
deterministic models of DENV transmission in humans, 
linking the model structures with the assumptions based 
on entomological and epidemiological studies. The key 
finding of this review mentions that the inclusion of vec-
tor components in a four-serotypes model is very impor-
tant to find the best combination between vector-control 
measures and vaccination strategies in dengue-prone 
areas.

One more recent compartmental model was given by 
Guanghu Zhu [75] mentioning the effects of tempera-
ture, mosquito control and human mobility on DENV 
transmission in the 2014 dengue outbreak in the Pearl 
River Delta (PRD) in China. These multi-scale factors 
were introduced to clarify DENV spatiotemporal trans-
mission’s hidden dynamics and capture its internal mech-
anism. The results show that 1) Human mobility is one 
of the factors which leads to disease spread across differ-
ent cities, 2) The suitable temperature conditions were 
responsible for a disease outbreak in the PRD and 3) The 
mosquito control measures have a significant role in den-
gue reduction. This study also reflects that modeling for 
dengue in population dynamics is one kind of set exam-
ple for many model deployments in the field of vector-
borne viral infection modeling.

2.2.2 � Mathematical modeling for Zika virus
Zika virus (ZIKV) infection is emerging disease and it is 
known since 1952 and was originally identified in Africa 
[76]. The first largely ZIKV infected human reported 
as an outbreak in Yap, Micronesia during April - July, 
2007 [77], followed by an outbreak in French Polynesia 
between October 2013 and April 2014 [78], and cases 
in other Pacific countries. Another outbreak occurred 
in South America in 2015 due to quick mutation in 
ZIKV [79]. Aedes aegypti is known as main carrier in 
the human population for ZIKV infection. Therefore, 
ZIKV is likely to be capable of sustained transmission in 
other tropical areas. There are several other routes that 

has been observed such as sexual contact, blood trans-
mission, and mother to her fetus. In case of mosquito as 
vector, the transmission is bidirectional, i.e., an infected 
mosquito can infect the healthy human and a mosquito 
may be infected by an infected mosquito. Symptoms of 
ZIKV infection are headache, joint pain, arthritis, skin 
rash, nausea, wild fever, etc. Some serious complications 
due to this infection has been identified as neurologi-
cal disorder in new born babies (Microcephaly) and in 
adults (GB syndrome). Additionally, this infection may 
be responsible for severe thrombolytic, miscarriage, still 
birth, etc. There is no vaccine is available against Zika 
parthenogenesis. Therefore prevention plays the crucial 
role in the progression dynamics of this infection.

It is interesting to draw an attention to mathematician 
that to quantify the factors of zika infection and predic-
tion at different conditions. Dynamics of infection during 
2013-14 Zika outbreak in French Polynesia was analyzed 
using a mathematical model [80] and a fractional order 
network model for Zika is also studied in [81]. In-spite 
of this a lot more admirable studies has been done con-
tributing to the Zika virus analysis [82]. Many research-
ers have introduced deterministic models for ZIKV that 
take into account the transmission by vector species only. 
There are some evidences that sexual transmission is also 
responsible for disease transmission [83]. But this trans-
mission process was not given that importance as very 
small number of cases were confirmed in comparison 
to that of mosquito bites. In 2015, the major transmis-
sion by mosquito bites was reported in South America 
since 1950, due to the favoring temperature conditions. 
Climate conditions like temperature and rainfall seem 
to be responsible for the highest biting rate increasing 
the growth of mosquitoes. In 2015, over South Ameri-
can continents, the warm climate in association with 
El-Nino exceptionally contribute in ZIKV transmission. 
Therefore, in 2016 Caminade, Cyril, et al. [84] developed 
a global mathematical model considering vectors only 
for transmission risk of ZIKV revealing the role of El-
Nino 2015. Further, Tunner et al. [85] extended the pre-
viously developed two-vector mathematical framework 
for an animal vector borne disease (VBD) to ZIKV. The 
extended model includes one host: human and two vec-
tor species: Aedes aegypti and Aedes albopictus, where 
former is highly active transmitter of human virus and 
the later one is less frequent in transmitting and acquir-
ing human virus [86, 87]. The result confirmed that Aedes 
aegypti is a larger threat than Aedes albopictus worldwide 
for ZIKV transmission. But, the threat caused by Aedes 
albopictus should not be ignored especially during the 
warm climate conditions in temperate regions. Also, 
the seasonal estimates of basic reproduction number R0 
was derived using historical climate data for the period 
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1950-2015 as it seems to be highly sensitive to climate 
conditions [88]. Hence, The results found that the over-
lapping of both the vector species produces the highest 
R0 value.

In an another interesting study, Gao, Daozhou, et  al. 
[89] designed a mathematical model to study the effect 
of sexual transmission and mosquito-borne on the 
spread, control and prevention of ZIKV. As many cases 
examined for ZIKV, it was found that virus is transmit-
ted in humans by the bites of Aedes mosquitoes. Few of 
these cases indicates that ZIKV can also be transmitted 
through sexual contact of humans. Hence, a determin-
istic model of Zika disease transmission was introduced 
that consider both mosquito-borne and sexual transmis-
sion mode for the reported cases in Brazil, Colombia and 
El Salvador. To understand the transmission mechanism, 
SEIR-type model for human was used which is divided 
into six classes: Susceptible, Exposed, Symptomatically 
infected, Convalescent, Asymptomatic-ally infected 
and Recovered and SEI-type model for mosquito which 
is divided into three classes: Susceptible, Exposed and 
Infectious. Common parameter values were shared by 
three of the countries except the initial conditions and 
population size. Three additional assumptions were made 
for the proposed mathematical model as follows:

•	 ZIKV infected humans can not infect mosquitoes 
asymptomatic-ally

•	 The sexual ratio is 1:1 for male and female assumed 
to be subjected to almost same epidemiological fac-
tors

•	 The end of viremic period accompany the escape of 
symptoms in symptomatically infected human

In continuation, sexual transmission is not mainly 
responsible for the epidemic outbreak but only increases 
the risk of infection in humans. The study indicated that 
the transmission occurred by sexual activity was less than 
that of the total transmission contributing a percentage 
of 3.044. The basic reproduction number (R0) was esti-
mated 2.055 for given data. The overall analysis of model 
indicates basic reproduction number (R0) is more sensi-
tive to the mortality and biting rate of mosquitoes while 
transmission through sexual contact just add to the risk 
of infection and epidemic size. Only homogeneous mix-
ing human population was assumed while the heteroge-
neity such as religion, culture and gender which is most 
difficult to analyze and formulate should be further 
investigated.

Further, zika has also been reported to be linked with 
neural defects and congenital anomalies such as micro-
cephaly. In December 2015, the European Centre for Dis-
ease Prevention and Control expressed some possibility 

that ZIKV, congenital microcephaly and Guillian-Barre 
are associated with each other [90]. A total 2782 cases 
of microcephaly were reported in Brazil where-as only 
147 cases and 167 cases were reported two year prior 
to ZIKV introduction [91]. Data from French Poyne-
sia also covered a usually large number of cases where 
babies were born with neural defects during ZIKV out-
break [92]. Hence, a new deterministic mathematical 
model was developed which considered human vertical 
transmission of ZIKV, i.e., new born babies with micro-
cephaly and asymptomatically infected individuals [93]. 
The model consists of new system of ordinary differen-
tial equations where two human population: adults, new 
born babies and one vector population were considered. 
Few theoretical findings by the model analysis were:

•	 The most important parameters for ZIKV spread 
were found mosquito biting rate, mosquitoes death 
rate, mosquitoes recruitment rate, adult recovery rate 
and the transmission probability per contact to adult 
humans and mosquitoes.

•	 Personal protections were found more effective in 
reducing the infectious disease as compared to mos-
quito-reduction strategy by numerical simulations 
using mosquito control.

•	 Combined strategy of personal protection and mos-
quito control is most effective to prevent ZIKV trans-
mission and reduce microcephaly.

•	 The rate of infections from asymptomatic individuals 
to mosquitoes increase with the level of infection.

•	 The model is globally and locally asymptotically sta-
ble when R0 is less than or equal to 1 and unstable 
when greater than 1.

Many more compartmental mathematical models have 
been developed to gain understanding of control and 
transmission of infectious diseases, which can further 
be used to address serious issues. Different strategies 
for prevention and control of Zika virus were concluded 
by Ding et  al. in their study [94]. It was accomplished 
by constructing a compartmental mathematical model, 
which describes the ZIKV transmission dynamics. The 
following prevention and control measures were con-
cluded: decreasing contact rate of humans and mos-
quitoes by using mosquito nets, windows and clothes, 
increasing the autoimmunity to reduce the transmission 
rate from mosquitoes to humans, rising the death rate 
of mosquitoes by using insecticide. As different control 
parameters were introduced in mathematical models to 
reduce ZIKV transmission, the impact of media is one 
of the recently included parameter [95]. The mathemati-
cal model formulated by inclusion of impact of media 
consider SIR-type model for host (human) and SI-type 
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model for vector (mosquito) population by involv-
ing the possible routes of ZIKV transmission: mosquito 
borne and sexual transmission. Computed value of basic 
reproduction number depicted that the model is locally 
asymptotically stable when R0 < 1 but occurrence of 
some backward bifurcation indicated that decreasing the 
value of R0 below one is not enough to prevent the ZIKV. 
Therefore, model was further extended by introducing 
the following two types of control parameters: 

1	 Usage of mosquito repelling creams, electronic 
devices and the bed nets to reduce the biting rate of 
mosquitoes.

2	 Usage of effective medicines to treat infectious 
humans.

The results also depicted that efficacy and importance 
of the role of media in the proposed epidemic model and 
concluded that the rate of transmission through sexual 
contact and mosquito biting rate are the key parameters 
in transmission dynamics of ZIKV.

In this way, there are several factors quantified by the 
modeling of ZIKV, the quantification of disease factors 
were further used as the strategies and enabled to envade 
the disease at several states of the world.

2.2.3 � Mathematical modeling for Chikungunya virus
Chikungunya infection is also a viral infection caused 
by the genus alphavirus. Chikungunya virus (CHIKV) is 
transmitted by the Aedes aegypti and Aedes albopictus 
from an infected individual to healthy individual by their 
bites. Although, Aedes albopictus is recognized as the 
principal vector for virus transmission, and also known 
as the Asian tiger mosquito. The symptoms of CHIKV 
appear from 4 to 7 days after being bitten by an infected 
mosquito. The symptoms include headache, muscle 
pain, high fever, skin rash, fatigue, and joint pain (lower 
back, ankle, knees, wrist, etc). CHIKV infection shares 
some symptoms and clinical signs and may be misdiag-
nosed where dengue is common or diagnosis facility is 
not proper. This infection may be detected by serological 
tests. The recovery from infection develops the long-life 
immunity against the virus. Chikungunya virus was first 
appeared in Tanzania from 1952 to 1953 epidemic [96] 
and continued to be active until 1970s, and almost dis-
appeared after that. Africa and Asia are two continents 
where Chikungunya epidemic occurred frequently. In 
present time, the number of countries at risk for CHIKV 
infection is more than 40 in which recent outbreaks have 
occurred.

To control chikungunya outbreak across the world, 
mathematical compartmental modeling has become an 
important tool to study how the vector-borne diseases 

actually evolve. Upto date, several deterministic mod-
els have been designed for Dengue and Zika, but only a 
limited were proposed for Chikungunya. We will discuss 
here the different models developed to analyze and con-
trol several epidemic outbreak occurred. The study of 
mathematical modeling of CHIKV infection was started 
in 1970 [97]. After that, no significant study was done in 
the field of modeling for this disease epidemic. As the 
disease re-emerged in 2007, the study of Chikungunya 
model started again. After 1970s the virus started to re-
appear in Thailand in 1988 making it one the country 
which is highly affected by chikungunya reporting about 
400 cases per week at the end of 2008 [98]. In Thailand, 
as the existence of mosquitoes is mostly dependent on 
the temperature and the season, P. Pongsumpun [99] 
formulated and analyzed a compartmental model for 
Chikungunya by including the effect of season which 
makes impact on the vector population. Here, the disease 
transmission in vector-human transmission is studied 
through dynamical model analysis, concluding that the 
higher rate of transmission from human to vector leads 
to the higher individual vector proportions. Hence, the 
outbreak of disease can be eliminated by reducing the 
transmission rate of the disease. A prominent attempt for 
compartmental modeling of chikungunya was done by 
Nicolas Bacaer concerning fluctuation in vector popula-
tion for the epidemic outbreak in La Reunion in March 
2005 [100]. The idea of this temporal model was taken 
from the first model developed for Malaria by Ron-
ald Ross in 1911 [101]. The study concerned with SEIR 
type model for human population (constant) and SEI 
type model for vector population (periodic). The major 
purpose of including such compartmental models was 
to give an approximate formula for basic reproduction 
number (R0) for the 2005-06 chikungunya epidemic in 
La Reunion considering vector population as fluctuating. 
This developed approximation formula can be further 
used for many other different epidemic models.

Another approximation of (R0) was presented for the 
cities of Reunion Island in 2008 by Dumont et al. [102]. 
Chikungunya virus infection emerged on Reunion Island 
in 2005, reporting the first case in January 2005, and 
affecting almost one-third population at the end of May 
2006. A new temporal mathematical model was devel-
oped to investigate the link between the period of 2005 
and the outbreak of 2006. In the model, human popula-
tion was classified into four compartments: Suscepti-
ble ( Sh ), Exposed ( Eh ), Infected ( Ih ), and Recovered ( Rh ) 
considering human population to be constant and vector 
population is also classified into four classes: Suscepti-
ble ( Sm ), Exposed ( Em ), Infectious ( Im ), and Larval ( Lm ). 
They included Egg, larva, and pupa stages in larval class. 
They also concluded that for the value of R0 less than 1 
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there exists a locally asymptotically stable disease-free 
equilibrium. It was also observed that (R0) varied from 
place to place on Reunion Island, suggesting that fast 
and attentive measures such as destruction of breeding 
sites would be very efficient in controlling the spread of 
chikungunya. Further, this model was extended in 2010 
by incorporating two new parameters: average lifespan 
of exposed mosquitoes and average adult lifespan for 
the infected mosquitoes[8]. The study mainly compares 
various mosquito control tools, finding that follow-
ing are some elements contributing to stop the disease 
spread/transmission with a minimum impact on the 
environment:

•	 Life-span of infected mosquitoes;
•	 The adulticide-mechanical control combination, i.e., 

combining mechanical control, adulticide and larvi-
cide;

•	 Starting date and duration of the treatment;
•	 Mechanical control like destruction of breeding sites;

In addition, this study suggested that immature stages 
of mosquito population should be split into three differ-
ential equations for the eggs, pupae and larvae for better 
understanding of the epidemic and also mentioned that 
doing this would make the model complex by creating 
mathematical difficulty.

The temperate climate country Italy has experienced 
the first largest CHIKV outbreak in 2007 during sum-
mer. A study was done that gives an estimate of trans-
mission potential of CHIKV virus for Italy outbreak 
using a new model comprising the temporal dynamics 
of Aedes albopictus suggested by Dumont et  al. [103]. 
The model stimulated the vector abundance in four life 
stages: eggs, larvae, pupae, and female adults. The main 
aim of modeling the dynamics of the vector is to find an 
appropriate value of the ratio of vectors to human by 
giving an estimate of mosquito abundance during the 
outbreak which is further used to calculate the impor-
tant parameters and rates of epidemic and for control-
ling purpose. The results confirm that vector-borne 
diseases have higher risk in temperate climate coun-
tries and the disease spread can be controlled by timely 
intervention even though the transmission potential of 
virus is quite high. The first model to consider CHIKV 
transmission in USA was developed in 2012 [104]. The 
model comprises of climate-based mosquito popula-
tion dynamics with an epidemiological model to see 
the effect of temperature on outbreak risk. The SEIR 
type model was designed for human population and 
SEI type model was designed for adult vector popu-
lation while the immature vector stages are divided 
into four compartments: eggs, larvae, pupae, and eggs 

undergoing dispause. The results suggest that the 
regions where temperature supports mosquito growth 
have higher risk of outbreak, so such regions should 
be identified to plan various intervention measures. 
Results also suggested that decreasing the host expo-
sure to infected mosquitoes and reducing vector popu-
lation could be very efficient in minimizing the risk of 
disease outbreak.

A few mathematical models were designed for Chikun-
gunya dynamics and control for Reunion Island epidemic 
over the period of 2005-2006 [102, 103]. These models 
neglected some biological components which were fur-
ther included in a model developed in 2013 [105]. Two 
new independent influential parameters included in the 
model were the rate of symptoms arrival and the rate 
at which humans become infectious. The model mainly 
described the robust influence of latent period and pre-
latent period of infection in human by using sensitiv-
ity analysis using Monte Carlo simulation. The result 
demonstrated that distinguishing these two parameters 
highly contributed to accurate model fitting and to ini-
tially inform to control. A new mathematical determin-
istic model was developed to study three age-structured 
transmission dynamics of CHIKV infection [106]. The 
age groups are divided as: juveniles, adults and seniors. 
Three different strategies to control and reduce chikun-
gunya cases were also implemented, i.e., personal-protec-
tion, mosquito reduction and universal strategy in order 
to reduce the chikungunya cases. The paper contributed 
in various theoretical and epidemiological findings men-
tioned as follows:

•	 The three age-structure model was both locally and 
globally stable when the associated basic reproduc-
tion number (R0) is less than 1 and unstable when 
greater than 1.

•	 Quantitative dynamics with respect to the local and 
global stability and backward bifurcation properties 
were not influenced by inclusion of age structure.

•	 The sensitivity demonstrate the dominant parame-
ters: death rate of mosquitoes, mosquito recruitment 
rate, mosquito biting rate, and transmission probabil-
ity per contact in humans as well as in mosquitoes.

•	 The dominance and sensitivity of these parameters 
did not alter by incorporating age structure in chi-
kungunya model.

•	 It was found by the help of numerical simulations 
that eliminating age structure shows that the age dis-
tribution is not necessary for effective control strat-
egy.

•	 The numerical simulations also suggested that among 
the different control strategies the mosquito-reduc-
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tion strategy is more effective as compared to per-
sonal-protection strategy.

Further, the dynamics of CHIKV infection during 
2015 outbreak in Colombia have been analyzed through 
deterministic mathematical modeling [107]. The newly 
designed model included a chronic sub-population, 
which was not included in any other previously pro-
posed model. In chronic sub-population, human cannot 
transmit disease but had some type of chronic rheumatic 
symptoms. The model was formulated in order to inves-
tigate the importance of specific parameters conclud-
ing that decreasing the transmission parameters would 
reduce the diffusion of CHIKV infection. The results 
showed that reducing the basic reproduction number 
R0 to less than 1 helps in disease disappearing. Results 
also concluded that decreasing the number of infected 
mosquitoes will affect R0 , i.e., the value of R0 decreases 
by increasing the mortality of vector population. Finally, 
they concluded that the health policy should be imple-
mented to increase the mortality rate to reduce the num-
ber of chikungunya cases in considered population. It is 
also implied that CHIKV outbreak did not occurred from 
last several years and did not find sufficient literature on 
mathematical modeling since 2015.

2.2.4 � Mathematical modeling for West‑Nile virus
West-Nile virus (WNV) infection is caused by a mos-
quito-borne zoonotic arbovirus which is a neuropatho-
gen for humans, horses, birds and belongs to the family 
Flaviviridae. West-Nile virus (WNV) is named so as it 
was first isolated from a woman in the West Nile, a dis-
trict of Uganda in 1937 [108]. WNV mostly infects birds 
as compared to humans by the bite of female mosqui-
toes which in turn infected by feeding from the blood of 
infected birds. WNV transmission via blood transfusion, 
tissue transplant, and mother-to-child is not reported 
[109]. Further, humans and other mammals are consid-
ered as dead-end host for WNV infection [110, 111]. The 
main symptoms noted are headache, fever, body aches, 
nausea, swelling, and inflammation of the spinal cord and 
in human’s brain [12].

The viremia in infected birds remains for the period 
from 1 to 7 days depending upon the species of birds. 
During this time infected birds can transmit the virus to 
the susceptible mosquitoes and recovered from infection 
acquiring the life-time immunity against the WNV infec-
tion [112]. Birds can be classified into two categories on 
the basis of duration of viremia: highly competent hosts 
(HCH) and mildly competent hosts (MCH) [113, 114].

First outbreak of WNV infection was in New York 
state in 1999 [115, 116]. In 2000, this infection expanded 
in 12 states of Columbia district [116]. Currently, WNV 

infection has been exhausted throughout the North 
America in many avian and mosquito species [117]. 
Moreover, more than 2.5 million individuals has been 
infected with WNV infection during 1999–2010 and 
more than 1300 deaths [118].

There are less studies related to the field of mathemat-
ical modeling of the transmission of WNV. As far as we 
know, Thomas and Urena [119] gave first time a math-
ematical model based on difference equation to study 
the transmission dynamics of WNV. The main purpose 
of the model was to target the effects of WNV on New 
York City, and in turn calculate the amount of spraying 
needed to get rid of the virus. Wonham et al. [120] used 
a single-season ordinary differential equation model 
for WNV transmission targeting mosquito-bird popu-
lation which shows that if mosquito control decreases 
outbreak threshold or WNV, bird control increases. 
Seeking the above two models, in 2005 a single-season 
ordinary differential equation model was formulated 
targeting mosquito-bird-human community for trans-
mission dynamics of WNV [121]. The model examined 
the temporal dynamics of the mosquito-bird-human 
population where mosquito population was classified 
as uninfected female mosquitoes Mu(t) , infected female 
mosquitoes Mi(t) , bird population is classified as unin-
fected birds Bu(t) , infected birds Bi(t) , and human 
population is classified as susceptible humans S(t) , 
asymptomatically infected humans E(t) , symptomati-
cally infected humans I(t) , hospitalized WNV-infected 
humans H(t) and recovered humans R(t) . The main aim 
of this paper is to use mathematical modeling to ana-
lyze the WNV transmission dynamics and to assess 
two main WNV preventive strategies namely: mos-
quito reduction strategies and personal protection. Jang 
et al. [122] proposed their mode for West Nile epidemic 
model in discrete-time. The model comprised of vector 
and avian population, where the vector population is 
classified as susceptible or infective class and the avian 
population was classified into susceptible, infective, and 
recovered classes. The study concluded that the dis-
ease-free equilibrium is locally asymptotically stable if 
(R0 < 1) and possesses a unique endemic equilibrium if 
(R0 > 1) . Hence, they showed that the disease can per-
sist in the populations if (R0 > 1) . Blayneh et  al. [123] 
revealed the existence of the phenomenon of backward 
bifurcation in WNV transmission dynamics in their 
study. In a recent study, Abdelrazec et  al. [124] estab-
lished a compartmental model to study the dynamics 
of transmission of WNV in mosquito-bird cycle and 
humans. The model was formulated into three steps. 
Firstly, model was established and then studied with-
out seasonality and proved the existence of the back-
ward bifurcation of the model. Secondly, the model was 
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extended to include the seasonal variations to examine 
the effect of seasonal changes on virus transmission. 
Further, the model was extended to assess the impact of 
some anti-WNV control measures.

2.3 � Numerical solution, herd immunity and vaccination 
in basic SIR model

The basic SIR model  (As shown in Fig.  1) given by the 
system of ordinary differential Eqs. (8a–8c) are nonlinear 
and coupled in nature. Therefore it is not an easy task to 
solve this model analytically. This issue can be resolved 
by solving the given system of ordinary differential equa-
tions numerically. There are several methods available to 
solve these equations. For demonstration purpose, we 
solve given SIR model using ode45 function in MAT-
LAB which is based on Runga-Kutta method of 4th order. 
To solve given SIR model numerically, we are required 
parameter values and initial conditions for state variables 
S,  I and R. We have chosen these values randomly and 
simulated the solution curves which are shown in Fig. 2.

Solution curves depict that susceptible population 
reduces and recovered population increases with respect 
to the time. Whereas infected population increase up-to 
a limit and starts decreasing after attaining a peak. From 
Fig. 4, it is also depicted that all three population reach at 
a constant level.

2.3.1 � Endemic situation
Endemic situation refers the stage in which infection per-
sists in the population at each time interval. In result, the 
outbreaks of infection occur time to time in the consid-
ered population. There are several childhood infections 
which show this type of characteristics such as measles and 
chickenpox. This type of model is normally used to study 
the dynamics of infection at larger population size such as 
a city or a country. For endemic case we are required to 
consider the natural birth and death in the basic SIR model. 
Such model is used to explain endemic situation as shown 
in Fig. 3 and equivalent mathematical framework is given 
by the system of Eqs. (15a–15a): 

(15a)
dS

dt
= bN − βSI − dS,

(15b)
dI

dt
= βSI − γ I − dI ,

(15c)
dR

dt
= γ I − dR,

Fig. 1  Compartmental structure of basic SIR model
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Fig. 3  Compartmental structure of SIR model with vital dynamics
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 where β and γ are infection rate and recovery rate, 
respectively, same as described in basic SIR model (8a-
8c). The total population size is given by N = S + I + R . 
The parameters b and d are natural birth rate per capita 
and death rate in the given population, respectively. If we 
add all three Eqs. 15a–15c, we get the following differen-
tial equation:

If b = d then dN
dt

= 0 =⇒ N = constant. This is the 
hypothesis under which the total population remains 
constant over the time. Numerical solution curves for 
state variable S, I, R are shown in Fig. 4 at choosen values 
of parameters and initial values of state variables. More 
specifically, solution curve for infected population (I) 
is shown in Fig. 5. In the initial phase of time it is simi-
lar to the basic SIR model but after some time infected 
individual rebounds instead of dying out. In this case, 
we get damping oscillations for the infected population 
and finally it tends to a steady state. Therefore infection 
always persists in the given population.

To know the behavior of solution without solving the 
given system equilibrium point and phase-plane analysis 
are two important key points. Phase plane trajectory in 
SI − plane for basic SIR model and SIR model with vital 
dynamics are shown in Figs.  6 and 7, respectively. Fig-
ure  6 confirm the behavior of infected population with 
respect time to shown in Fig. 2 as it dies out after reach-
ing at the maximum level. The spiral curve present in 
Fig. 7 also confirms the damping oscillatory behavior of 
infected population which is shown in Fig. 5.

(16)
dN

dt
= (b− d)N .

2.3.2 � Herd immunity and vaccination in SIR model
Susceptible population can be reduced through the vac-
cination process. Although, vaccination to all 100% sus-
ceptible population is very expensive and practically a 
tedious process. On the other hand, everyone cannot 
take the vaccine as some individuals may have serious 
allergy and some may have sensitive immune system. In 
such cases the effect of vaccination may be more adverse 
than disease or infection. Although, there exists a theo-
retical threshold proportion of the susceptible individuals 
by which the epidemic can be prevented by vaccination 
to this susceptible fraction. This phenomena is known as 
the herd immunity against a specific infection in a given 
population. In other words, it refers to the stage in which 
a given population proportion acquire the immunity 
against the infection in such a way that infection will not 
invade the population if it is introduced into it at any ran-
dom point [13, 25, 125].

Let vaccine be 100% effective and ρ represents the pro-
portion of vaccinated population of susceptible individu-
als. Then ρS(0) is the number of susceptible individuals 
which is removed from the susceptible population and 
effective susceptible population will be (1− ρ)S(0) . To 
prevent the disease propagation it is mandatory that 
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effective reproduction number Re < 1 =⇒
β
γ
(1− ρ)

S(0) < 1 =⇒ ρ > ρc
 where, ρc = 1− 1

Re
 is known as 

critical vaccination threshold. A population will acquire 
the herd immunity if vaccinated population proportion is 
above this critical vaccination threshold. For example: if 
values of basic reproduction number (R0) for a specific 
infection is 1.5 then approximate value of critical vaccina-
tion threshold for this infection will be 33%. This compu-
tation is for 100% effective vaccination but if effectiveness 
of a vaccine is p% (say) then effective critical vaccination 
threshold value will be ρc

p
× 100% =

33

60×100% = 55%.

2.4 � Others mathematical modeling techniques for viral 
infection

So far, we have discussed the compartmental determin-
istic mathematical modeling in detail, whereas, there 
are several different other approaches to investigate the 
dynamics of viral infections. The types and sub-types 
of these techniques are shown in Fig.  8. Time-to-time 
several researchers have worked on the basics of these 
techniques in the area of mathematical modeling of 
viral infections, which have been briefly described in 
the following paragraphs:

Fig. 8  Different techniques used in mathematical modeling of viral infections/diseases
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2.4.1 � Statistical‑technique based models
Regression techniques [126–131] are very popular 
among the researchers working in the area of viral 
infections for predicting and surveillance. These tech-
niques are also used by the Centers for Disease Con-
trol in many countries including US, Australia, France 
and Italy for the investigation of transmission of influ-
enza [132]. Several researchers prefer to use time series 
analysis based on auto-regressive techniques. Auto-
regressive Integrated Moving Average (ARIMA) model, 
Seasonal Auto-regressive Integrated Moving Average 
(SARIMA), Neural Network (NN) and Support Vector 
Machine (SVM) are some examples of auto-regressive 
techniques [133–137]. Statistical process control meth-
ods are also common approach to formulate the math-
ematical model of viral infections. Two main tools of 
this techniques are cumulative sum (CUSUM) charts 
[138–143] and exponentially weighted moving average 
(EWMA) [144, 145]. CUSUM technique uses a meas-
ure of cumulative performance over the time. Whereas, 
EWMA control chart technique is based on a recursive 
statistical estimator. Other statistical techniques also 
lie under this category, such as: temporal scan statistics 
[146–148]. Hidden Markov models (HMM) [149, 150] 
are normally used to examine the correlation between 
time series. These methodologies are useful when we 
do not know the characteristics of the disease explicitly 
but able to identify some indicators for the transmission 
of that particular disease [149, 151]. Spatial models are 
used to investigate and predict more accurately diseases 
outbreaks in different locations [152–158]. Spatial mod-
els require multivariate methods which are extension of 
standard uni-variate methods [159]. Abstract techniques 
like principal component analysis (PCA) is an emerging 
technique to do this type of analysis. For example Cohen 
et  al. [160] used PCA technique to know the spatial 
trends of malaria in India. Many other researchers have 
developed models based on spatial technique to achieve 
their goals [146, 148, 161–163].

2.4.2 � Mathematical analysis based models
Mathematical analysis based models can be classified 
broadly into four categories: deterministic, stochas-
tic, network-based and agent-based. The major differ-
ence between deterministic and stochastic modeling is 
that deterministic models are based on the hypothesis 
of the mean field approximations whereas in stochas-
tic approach these hypothesis are relaxed. In stochastic 
modeling approach randomness of individuals has been 
taken into account. Therefore, in deterministic approach 
model output is fully determined by the parameter val-
ues and initial conditions whereas in stochastic mod-
eling approach same set of parameter values and initial 

conditions may produce different output for every simu-
lation. Stochastic models may use discrete or continuous-
time individual based Markov-chain models [164–166]. 
More detailed comparison between these two approach 
is available in Allen et. al. [167]. Time to time different 
mathematical models for viral infection transmission has 
been formulated based on stochastic approach. In this 
series, Lekone et  al. [168] formulated the model based 
SEIR-stochastic modeling for the transmission charac-
teristic of Ebola outbreak in the Democratic Republic of 
Congo during 1995 . Bishai et al. [169] formulated a SIR 
stochastic model for transmission dynamics of measles 
in Uganda. They also estimated the economic burden 
to eradicate the disease by control policies. Wang et  al. 
[170] used SIR-stochastic model to know the multi-peri-
odic pattern from avian-flu outbreak in North America.

Homogeneous Markov process belonging to the cate-
gory of Stochastic modeling usually assumed homogene-
ous and instantaneous interaction between individuals. 
In complex network models [171–173] these assump-
tions are relaxed. Dealing with heterogeneity in the 
contact network is a challenging task in this approach. 
Heterogeneity in the population exists due to geographi-
cal, demo-graphical and economical factors. Therefore 
topology of the social networks play a significant role in 
the investigation of the infectious disease transmission 
in a given human population. In the last two decades, 
many researchers tried to explain the progression of the 
diseases on topologically different networks. Kuperman 
et al. [174] and Reppas et al. [175] used small-world net-
work to explain the dynamics of a simple disease model. 
Hwang et  al. [176] used scale-free network to simulate 
the disease transmission on it. They tried to find the 
effect of clustering coefficient and average path length on 
the disease outbreak. Shirley and Rushton (2005) tried to 
simulate the disease spreading in different four network 
structures: Erdős-Rényi, regular lattices, small-world, and 
scale-free [177]. In this context, many researchers worked 
on real networks for instance: Read et al. [178] used diary 
based survey of 3528 individuals for the spread of infec-
tious disease, Christakis and Fowler [179] used 744 stu-
dents’ contact network at Harvard University to study 
the influenza outbreak in 2009, Salathé et al. [180] used 
wireless sensor to construct interaction network among 
students at an American high school, Kelling et al. [181] 
used meta-population networks on the basis of 10000 
wards in the Great Britan. Rocha et  al. [182] used SIR 
structure on networks to find out the sexual transmitted 
infection of 50,185 individuals based on data extracted 
from 12 cities from Brazilian Internet Community.

In agent-based approach, the action and interaction of 
autonomous individuals or groups (known as agents) is 
considered. The interaction in complex network may be 
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based on several factors like: transportation facilities in 
that geographical area, demographic factors, emigration/
migration of the individuals and different aspects of trans-
mission between host and pathogens. Many researchers 
developed their models based on this approach in real-
time scenario. In this context, Ferguson et al. (2005) simu-
lated the results for the transmission of H5N1 influenza in 
southeast Asia [183]. They included the 85 million resid-
ing in Thailand and adjoining countries as agents. They 
also included the demographic parameters and mobility of 
the individuals in their study. Burke et al. [184] developed 
an agent-based model for small-pox for a hypothetical 
township considering 6000–50000 agents. They consid-
ered the infrastructure according to US demographic 
conditions. They also measured the efficiency of vari-
ous control strategies such as vaccination. Several other 
researchers developed their simulation tools for these 
types of modeling such as Episims developed by Eubank 
et al. [185], GLEam developed by Balcan et al. [186].

2.4.3 � Machine learning based models
Machine learning based model is a recent technique 
in which the large data available on Internet or other 
resources are used to extract the information or trend for 
prediction perspective. The use of this technique in the 
analysis of infection dynamics is recent and advanced. In 
this context, Ginsberg et  al. [187] tried for early detec-
tion of influenza through Google search queries. They 
used about 50 million queries for the symptoms of the 
influenza infection during 2003–2008 for their study. 
Hulth et al. [188] also worked on influenza (from 2005 to 
2007) and data collected via web queries through a spe-
cific website. One attempt by Chan et al. [189] has been 
made to study the transmission dynamics of dengue 
through the data collected via web queries between 2003 
to 2010. The authors collected data from Bolivia, Brazil, 
India, Indonesia, and Singapore for their study. Policy 
makers around the world use such mathematical models 
described here so far to evaluate or develop the interven-
tion policies for existing or emerging infectious disease 
outbreaks.

3 � Conclusions
Several studies have shown that mosquitoes transmitted 
infections have a large percentage in the human popula-
tion. Therefore it is essential to study the transmission 
characteristics of mosquitoes transmitted infections. Math-
ematical modeling is the perfect tool to analyze the situa-
tion with minimum resources and time to understand these 
characteristics. In the article presented above, we reviewed 
the work done by several researchers/scientists about four 
viral infections (Dengue, Zika, Chikungunya, and West-
Nile). We also discussed the basic concept of mathematical 

modeling, starting with its origin. The basic SIR model has 
been discussed in detail. More extended models have also 
been explained and analyzed. Numerical solution tech-
niques to solve these models also have been discussed.

This article provides a piece of sufficient basic knowledge 
about the mathematical modeling for mosquito-transmit-
ted viral infections (in particular CHIKV, DENV, ZIKV and 
WNV) for the researchers who wish to start or are working 
in this field. Moreover, this survey also introduced to mod-
eler for emerging viral infections.
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