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ABSTRACT

Background: Studies in experimental models of allergic asthma have shown that 
mesenchymal stem cells (MSCs) have therapeutic potential for T-helper 2 (TH2) cell-mediated 
inflammation. However, the mechanisms underlying these therapeutic effects are not fully 
understood and their safety has not been confirmed.
Methods: Using a mouse model of experimental allergic asthma, we investigated the efficacy 
of human adipose-derived mesenchymal stem cells (hADSCs) or human bone marrow-
derived mesenchymal stem cells (hBMSCs) according to treatment frequency and timing.
Results: Ovalbumin (OVA)-sensitized and -challenged mice exhibited airway 
hyperresponsiveness (AHR), airway inflammation, and significant increases in TH2 
cytokine levels. Both double and single human mesenchymal stem cell (hMSC) treatments 
significantly decreased AHR and bronchoalveolar lavage fluid counts. In addition, single 
treatment with hMSCs showed significant attenuation of allergic airway inflammation. 
However, double treatment with hMSCs during OVA -sensitization and -challenge further 
increased inflammatory cell infiltration, and TH2 cytokine levels.
Conclusion: The results of treatment with hADSCs or hBMSCs suppresses AHR and airway 
inflammation. However, double hMSC treatment significantly induces eosinophilic airway 
inflammation and lung histological changes. Therefore, double hMSC treatment is ineffective 
against asthma and single injection frequency appears to be more important for the 
treatment of asthma. These results suggest that hMSC therapy can be used for treatment of 
asthma patients but that it should be used carefully.
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INTRODUCTION

Bronchial asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness 
(AHR), airway inflammation, and airway structural changes.1,2 Airway inflammation and 
structural changes are associated with irreversible loss of lung function that tracks from childhood 
to adulthood.3 Although symptoms can be controlled in most patients using anti-inflammatory 
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drugs and bronchodilators, they remain uncontrolled in 10% of patients.1,4,5 Therefore, there is a 
clear need for new drugs for the treatment of patients with uncontrolled asthma.

Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the ability to self-renew 
and differentiate into multiple cell types.6 They can control inflammation by modulating T 
lymphocytes (T cells), natural killer (NK) cells, and dendritic cells (DCs),6-8 and can be isolated 
easily from different adult tissues, including adipose tissue (adipose-derived stem cells, ADSCs) 
and bone marrow (bone marrow-derived mesenchymal stem cells, BMSCs).9 Significant advances 
have been made in the use of stem cells to treat various diseases, such as acute myocardial 
infarction (AMI),10 liver cirrhosis,11 Crohn's disease, and graft-versus-host disease (GVHD).12

MSCs show anti-inflammatory effects in mouse models of asthma.13-17 These effects are 
associated with the induction of TGF-β,18,19 IFN-γ,16 recruitment of regulatory T cells,15,20,21 
and modulation of the T-helper 1 (TH1) to T-helper 2 (TH2) cell balance.16 Similarly, human 
MSCs have been shown to ameliorate airway inflammation in mouse models of acute 
and chronic asthma.22 Taken together, these studies suggest that MSCs may play a role in 
ameliorating airway inflammation in allergic asthma. However, there have been no reports of 
clinical data regarding the efficacy of MSCs for the treatment of asthma.

The present study investigated the efficacy of human mesenchymal stem cells (hMSCs) in a 
mouse acute asthma model. We focused on the treatment frequency and timing of human 
ADSCs (hADSCs) and human BMSCs (hBMSCs) in a mouse model of acute asthma.

METHODS

Mice
Female, 6-week-old, BALB/c mice (Orient Bio, Seongnam, Korea) were used in all 
experiments. The mice were divided into the following groups: 1) control (CON, n = 5–6), 
2) ovalbumin (OVA, n = 5–6) challenge, 3) OVA challenge + phosphate buffered saline (PBS) 
as vehicle (OVA + PBS, n = 5–8), 4) OVA challenge + hADSCs (OVA + hADSC, n = 5–8), and 5) 
OVA challenge + hBMSCs (OVA + hBMSC, n = 5–8).

Sensitization and antigen challenge protocol
The mice were immunized with 25 µg OVA (chicken egg albumin, grade V; Sigma-Aldrich, St. 
Louis, MO, USA) in 1 mg aluminum hydroxide (Sigma-Aldrich, Milwaukee, WI, USA) in 200 
µL PBS according to our previous report.23 Mice were sacrificed 24 hours after the last OVA 
challenge. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected.

Isolation of hADSCs and hBMSCs
hADSCs and hBMSCs were isolated from 17 adult donors with approval from the Institutional 
Review Board of our institution, and characterized as described previously.24 Briefly, the 
cells isolated from adipose tissue and bone marrow were cultured in Dulbecco's modified 
Eagle's medium (DMEM) supplemented with 20% fetal bovine serum (Gibco, Grand Island, 
NY, USA) at 37°C in a 5% CO2 humidified incubator. After 72 hours, nonadherent cells were 
removed and adherent cells were cultured for an additional 14 days. The adherent cells were 
retrieved using 0.25% trypsin (Gibco) and sorted using CD13+, CD90+, CD73+, CD105+, 
CD34−, CD45−, CD146−, and HLA− markers to obtain hADSCs (R&D Systems, Minneapolis, 
MN, USA). The sorted cells were enriched further by culturing.
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Administration of hADSCs or hBMSCs
Vials of frozen hADSCs and hBMSCs were thawed and expanded according to the 
supplier's instructions. The hMSCs were used in all experiments between passages 3 and 
4. Subsequently, 2.5 × 107/kg hADSCs and hBMSCs in 100 µL PBS were administered using 
an insulin syringe via the tail vein following last sensitization and OVA challenge. A single 
injection of hMSCs was performed during OVA challenge and double injection of hMSCs was 
performed during OVA sensitization and OVA challenge into the tail vein of the mice.

Measurement of AHR
Airway resistance (Rrs) to methacholine (Sigma-Aldrich) was measured by the FlexiVent 
system (SCIREQ, Montreal, QC, Canada) as reported previously.23 In brief, mice were exposed 
for 3 minutes to nebulized PBS. Baseline Rrs was established by PBS and Rrs was measured 
according to the increased concentration of nebulized methacholine (Sigma-Aldrich). 
Aerosonic ultrasonic nebulizer (DeVilbiss, Somerset, PA, USA) was used for nebulization.

Cell counts of bronchoalveolar lavage (BAL)
BALF was performed immediately after the measurement of AHR as previously reported.23 
The BALF was cytospun at 2,000 rpm for 7 minutes onto microscope slides. It was stained 
with Diff-Quik (Sysmax, Kobe, Japan). The percentages of BALF macrophages, neutrophils, 
lymphocytes, and eosinophils were measured. Five hundred leukocytes were counted on 
randomly selected fields under a light microscope.

Enzyme-linked immunosorbent assay
The concentrations of interleukin (IL)-4, IL-5, and IL-13 in lung homogenate proteins 
were measured via enzyme-linked immunosorbent assay (ELISA) using commercial kits in 
accordance with the manufacturer's instructions (R&D Systems, Minneapolis, MN, USA).

Hematoxylin and eosin (H&E) staining
Lungs were fixed in 4% paraformaldehyde for 24 hours and then embedded in paraffin. 
Sections were cut at a thickness of 4 μm using a microtome, and deparaffinized tissue 
sections were subjected to H&E staining to examine airway inflammation.

Statistical analyses
Results are shown as the mean ± standard error of mean. Analysis of variance (ANOVA) with 
the nonparametric Kruskal-Wallis test, followed by post hoc Dunn's multiple comparison 
of means was used for the comparison between groups. Graph Pad Prism (Graph Pad, San 
Diego, CA, USA) statistical software package was utilized for the analyses. In all analyses, P < 
0.05 was taken to indicate statistical significance.

Ethics statement
All procedure of animal research was provided in accordance with the Laboratory Animal 
Welfare Act, the Guide for the Care and Use of Laboratory Animals and the Guidelines and 
Policies for Rodent experiment provided by the Institutional Animal Care and Use Committee 
(IACUC) in School of Medicine, The Catholic University of Korea (IACUC Approval number: 
CUMC-2016-00654-01).
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RESULTS

Double injection of hMSCs leads to greater improvement of AHR
To investigate the effects of the injection of hADSCs or hBMSCs on allergic asthma, we first 
measured AHR after the last OVA challenge (Fig. 1A). Rrs values of OVA challenge and in the 
PBS-treated OVA (OVA+PBS) mice showed significant increases in a methacholine dose-
dependent manner compared to CON mice (P < 0.01). However, double administration of 
hADSCs or hBMSCs to mice given OVA significantly inhibited AHR to the same degree as in 
CON mice (P < 0.001) (Fig. 1B).

Airway inflammation is attenuated by hMSC double injection in BALF cells
Airway inflammation is another important feature of allergic asthma. To examine the 
effects of double injection of hMSCs in the mouse model of asthma, total and differential 
cell counts in BALF were determined. However, we were unable to count the total number 
of BALF cells in hADSC double injection mice, as there were few viable cells. The treatment 
seems to adversely affect the viability of BALF cells, so BAL studies were limited to counting 
only hBMSCs. OVA-challenged mice and OVA+PBS mice showed significantly increased total 
cell numbers and eosinophils levels compared to CON mice (P < 0.001). However, double 
treatment with hBMSCs markedly reduced infiltration of inflammatory cells in the airway 
according to the absolute cell count in BALF compared to OVA+PBS mice (total cells, P < 
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Fig. 1. Double injection of human mesenchymal stem cells inhibited airway hyperresponsiveness and airway inflammation. (A) Schematic diagram of the 
mouse model of acute asthma and treatment with hADSCs or hBMSCs. Mice were sensitized on days 0 and 7 by subcutaneous injection of OVA and challenged 
intranasally on days 21, 23, and 25 (black dots). Aliquots of 2.5 × 107/kg hADSCs or hBMSCs were injected via the tail vein on days 7 and 27 (blue triangles). 
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0.001; eosinophils, P < 0.05) (Fig. 1C). These findings indicate that double hMSC treatment 
inhibited the recruitment of eosinophils into the airway and BALF and reduced AHR in 
asthmatic mice.

Double injection of hMSCs further increases lung inflammation
To investigate the extent of inflammatory cell infiltration, we examined histological 
changes in OVA-induced asthmatic lung tissues. OVA-induced mice exhibited marked 
infiltration of inflammatory cells into peribronchial and perivascular lesions in the lung 
tissue. Interestingly, hADSC or hBMSC double injected mice showed further increases in 
inflammatory cell infiltration compared to OVA+PBS mice (Fig. 2A). Moreover, expanded 
images clearly showed that OVA challenge induced inflammation around peribronchial 
(Fig. 2B) and perivascular (Fig. 2C) lesions. Strikingly, hADSC or hBMSC double injection 
markedly increased the accumulation of inflammatory cells. Furthermore, the results of 
H&E staining showed that hMSC double treatment induced goblet cell hyperplasia compared 
to the OVA+PBS group and smooth muscle hyperplasia (Fig. 2B). Histological analyses of 
tissue inflammation in lungs of mice showed that human MSCs significantly alter tissue 
inflammation (Fig. 2D). Specifically, perivascular-associated inflammation was robustly 
induced in hADSCs and hBMSCs treatment. These results suggest that double injection of 
hMSCs significantly decreased total cell number and eosinophils in BALF, but exacerbated 
lung pathology, such as lung inflammation.

Double injection of hMSCs increases TH2 cytokine production in BALF
To understand the mechanisms underlying hADSC- or hBMSC-mediated stimulation of lung 
inflammation, we assayed key mediators of asthma in our model. TH2 cytokines are important 
for the pathophysiological features of allergic asthma.25 We examined the levels of TH2 
cytokines in the BALF of mice. As expected, levels of IL-4, IL-5, and IL-13 were significantly 
increased in OVA-challenged mice compared to CON mice (P < 0.05). Interestingly, the levels 
of each were increased to a greater extent in hADSC- or hBMSC-double treated mice compared 
to PBS-treated OVA mice (Fig. 3). These observations indicate that treatment with hMSCs 
induced airway inflammation by promoting IL-4, IL-5, and IL-13 secretion.

Single injection of hMSCs also reduces AHR
The optimal treatment timing with hMSCs for asthma patients has not been established. 
Therefore, we investigated the treatment timing-dependent effects on features of asthma in 
a mouse model of OVA-induced asthma. Mice were sensitized with OVA/aluminum hydroxide 
and then challenged three times with intranasal OVA. A single injection of hMSCs was 
performed after the last challenge (Fig. 4A). We first checked the AHR. OVA-challenged 
mice showed increased AHR to methacholine compared to CON mice. Single treatment 
with hADSCs and hBMSCs clearly showed significant inhibition of the increase in resistance 
induced by OVA (Fig. 4B). There were no significant differences in these results between 
animals given double or single hMSC injections (Figs. 1B and 4B). These results indicate that 
injection frequency is not important with regard to attenuation of AHR by hMSCs in this 
mouse model of acute asthma.

Single hMSC injection is more effective for reducing airway inflammation
To confirm the effects of hMSCs on airway inflammation, we performed differential cell 
counts and measurement of TH2 cytokines in BALF. As shown in Fig. 4C, total cell counts and 
the percentage of eosinophils in OVA-challenged mice were significantly increased compared 
to CON mice (P < 0.001). However, there were robust decreases in both hADSC- and hBMSC-
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treated mice compared to PBS-treated mice given OVA (P < 0.001 and P < 0.01, respectively) 
(Fig. 4C). Next, we examined the levels of TH2 cytokines in BLAF to further define the 
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antiinflammatory effects. A single injection of hADSCs and hBMSCs resulted in significant 
decreases in levels of IL-4, IL-5, and IL-13 in the BALF (Fig. 5). These data strongly suggest 
that single injection of hMSCs attenuated airway inflammation.
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Single hMSC injection inhibits eosinophilic lung inflammation
We examined whether a single injection of hMSCs can suppress OVA-induced lung 
inflammation in a mouse model of acute asthma. In histological examinations, OVA-
sensitized and challenged mice showed extensive infiltration of inflammatory cells and 
substantial changes in the peribronchial layers. Single injection of hADSCs and hBMSCs 
markedly reduced the lung inflammation induced by OVA sensitization and challenge 
(Fig. 6A). Also, OVA-sensitization/challenge caused dense peribronchial (Fig. 6B) and 
perivascular (Fig. 6C) accumulation of inflammatory cells. However, these changes were 
minimal in single-treated hMSC mice with OVA-sensitization/challenge (Fig. 6B and C). 
As for the peribronchial and perivascular inflammation, the degree of the accumulation of 
inflammatory cells was assessed as inflammation score (Fig. 6D). Thus, a single injection of 
hMSCs can protect against lung inflammation.

DISCUSSION

Asthma is a complex disease with various features, including airway inflammation and 
AHR. The optimal treatment strategy should relieve symptoms, attenuate inflammation, 
and prevent remodeling. The need for new treatment options for patients with asthma has 
prompted research in various fields of study. We assessed the effects of hMSCs in attenuating 
airway inflammation and AHR. We found that hMSCs suppressed AHR and airway 
inflammation according to the timing and frequency of injection.

Cell-based therapies are attractive approaches for the treatment of asthma and other diseases. 
MSC administration attenuates airway inflammation and AHR.13-17,20-22 Similarly, we found 
that both single and double injection of hMSCs suppressed AHR. However, histological 
changes, production of TH2 cytokines, and inflammatory cell counts differed according 
to injection timing. Furthermore, early hMSC injection induced lung inflammation and 
production of TH2 cytokines compared to the OVA-challenged group. Interestingly, late hMSC 
injection significantly reduced airway inflammation, such as BALF cell counts, TH2 cytokine 
levels, and lung inflammation. Several studies have reported that MSCs attenuate airway 
inflammation in experimental asthma. Lee et al.26 revealed that rat BMSCs effectively reduced 
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toluene diisocyante-induced airway inflammation, remodeling, and AHR. Additionally, 
Ou-Yang et al.27 and Abreu et al.28 demonstrated that mouse MSCs (mMSCs) can migrate 
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to sites of inflammation and protect against allergic airway inflammation in asthmatic mice. 
Kavanagh et al.29 demonstrated that mBMSCs induce Tregs and reduce allergen-driven 
pathology. Sun et al.30 revealed that hBMSCs attenuate allergic-specific inflammation and 
pathological changes in OVA-induced asthmatic mice. These studies evaluated the effects of 
hBMSC administration before challenge on allergic inflammation. However, in our study, 
double injection of hMSCs were treated during OVA-sensitization and challenge. These 
different methods may be related to the differing effects on airway inflammation. The 
limitations of this study are the failure to clarify this point. Further studies are required to 
investigate the effect of hMSCs in attenuating airway inflammation according to the timing 
and frequency of injection. Recent findings have demonstrated that MSCs actively interact 
with components of the innate immune system and divide both antiinflammatory and 
proinflammatory effects via these interactions.31-34 These switching mechanisms depend 
on the production of soluble mediators, such as inducible nitric oxide synthase in mice and 
indoleamine 2,3-dioxygenase in humans. The concentrations of these mediators may be 
important to trigger the switch between proinflammatory and antiinflammatory MSCs. These 
concepts may help explain the observation that OVA-induced pulmonary responses differed 
according to the timing of hMSC injection. In our first model, hMSCs were injected during 
OVA sensitization and after the last challenge with OVA. In the period of sensitization, the 
inflammatory microenvironment of lung tissue in not yet fully activated. Early injection of 
hMSCs had a profound effect on disease progression in a mouse model of acute asthma. A 
few reports have demonstrated that hMSCs tend to shift the TH2-polarized immune response 
in encephalomyelitis and cultured immune cells in vitro.35,36 Our observations are consistent 
with these findings in that treatment with hMSCs may be either ineffective or could potentially 
exacerbate immune responses in a model of TH2-mediated inflammation, such as asthma. 
However, in our second experiment, hMSCs were only injected after the last OVA challenge 
when lung tissue was sufficiently characterized by an inflammatory environment. Therefore, 
late injection of hMSCs had antiinflammatory effects and attenuated airway inflammation 
as determined by examining BALF inflammatory cell numbers, TH2 cytokine production, 
and lung histology. We found that hMSCs can modulate airway inflammatory condition by 
microenvironment of lung tissue. Therefore, the timing of MSC treatment is very important.

Cell dose, cell injection frequency, and injection site are crucial in MSC therapy. Recent 
studies have shown that the survival of injected MSCs is dependent on cell dose and injection 
frequency in an animal model of critical limb ischemia.37 Our study provides further evidence 
that hMSCs can significantly reduce airway inflammation and AHR. Notably, single hMSC 
injection improved OVA-induced airway inflammation to a greater extent than double 
injection of hMSCs in our mouse model. These observations indicate that injection frequency 
must be taken into consideration in the application of MSC therapies to the treatment of 
asthma. The ability to use a single injection of hMSCs has the advantage of reducing the costs 
of therapy. However, the mechanisms underlying the beneficial effects of hMSCs on AHR 
without decreasing airway inflammation are unclear. AHR and airway inflammation may not 
always occur at the same time.38,39 This focused our attention on other effector functions of 
T cell cytokines in the pathophysiology of asthma. Airway overexpression of other cytokines, 
including IL-25,40 IL-33,41 and thymic stromal lymphopoietin,42 indirectly promotes 
asthma by stimulating production of TH2 cytokines. Ballantyne et al.43 reported that IL-25 
promotes AHR independently of its stimulatory effects on TH2 cytokine secretion. Strikingly, 
neutralization of IL-25 only during OVA challenge specifically prevents AHR during ongoing 
TH2 inflammation in the lungs. Similarly, IL-12p40, a subunit of IL-12 and IL-23, is required to 
inhibit AHR and peribronchial fibrosis, but not eosinophilic inflammation, in a mouse model 
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of chronic asthma.44 Consistent with these observations, hMSC treatment may suppress 
AHR by inducing IL-25 production or IL-12p40 expression. Also, we showed that double-
treated hMSCs significantly exacerbated perivascular-associated inflammation (Fig. 2C and D).  
Delivery routes are essential for therapy efficiency and systemic delivery by infusion in the 
obvious goal for cell therapy. However, the mean size of suspended MSCs is larger than the 
size of pulmonary capillaries. Thus, IV-injected MSCs are trapped within the pulmonary 
capillaries, causing pulmonary alteration.45,46 In this study, we found a striking difference 
between single- and double-treated MSCs on lung inflammation effect. It seems that MSC 
size and treatment frequency were the major reason behind lung trapping. The size of hMSCs 
in six passages was after culture expansion in monolayer. The average diameter of hMSCs 
in six passages was small (17.9 μm) and large (30.4 μm).47,48 This size is about three to five 
times larger than pulmonary capillary (11.3 μm in human and 5.7 μm in mouse),49 probably 
increasing the difficulty of the cells to pass through capillaries. Similarly, several papers 
revealed that lung trapping of MSCs has been observed to cause severe lung damage in mice 
models.50,51 Current knowledge does not allow us to make definite conclusions whether 
trapping of MSCs in the lung according frequency is harmful or beneficial. Therefore, 
strategies to decrease the mismatch between MSCs and the capillary diameters are needed 
for cell-based therapy: the route of administration (intratracheal or systematic), the method 
for repeated treatment.

In summary, we demonstrated a beneficial effect of hMSCs on AHR and airway inflammation 
dependent on the timing of injection in a mouse model of acute asthma. A single injection of 
hMSCs inhibited allergic airway inflammation. Double hMSC treatment may have harmful 
effects in OVA-induced lung inflammation. Compared to PBS-treated OVA mice, hADSC or 
hBMSC double treated mice showed exacerbation of lung inflammation and higher levels of TH2 
cytokines, such as IL-4, IL-5, and IL-13. These observations indicate that care is required for hMSC 
administration. Further studies regarding the timing of hMSC administration are required.
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