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ABSTRACT: Antimalarial peptides (AMAPs) varying in length, amino acid composition, charge, conformational structure,
hydrophobicity, and amphipathicity reflect their diversity in antimalarial mechanisms. Due to the worldwide major health problem
concerning antimicrobial resistance, these peptides possess great therapeutic value owing to their low incidences of drug resistance as
compared to conventional antibiotics. Although well-known experimental methods are able to precisely determine the antimalarial
activity of peptides, these methods are still time-consuming and costly. Thus, machine learning (ML)-based methods that are
capable of identifying AMAPs rapidly by using only sequence information would be beneficial for the high-throughput identification
of AMAPs. In this study, we propose the first computational model (termed iAMAP-SCM) for the large-scale identification and
characterization of peptides with antimalarial activity by using only sequence information. Specifically, we employed an interpretable
scoring card method (SCM) to develop iAMAP-SCM and estimate propensities of 20 amino acids and 400 dipeptides to be AMAPs
in a supervised manner. Experimental results showed that iAMAP-SCM could achieve a maximum accuracy and Matthew’s
coefficient correlation of 0.957 and 0.834, respectively, on the independent test dataset. In addition, SCM-derived propensities of 20
amino acids and selected physicochemical properties were used to provide an understanding of the functional mechanisms of
AMAPs. Finally, a user-friendly online computational platform of iAMAP-SCM is publicly available at http://pmlabstack.
pythonanywhere.com/iAMAP-SCM. The iAMAP-SCM predictor is anticipated to assist experimental scientists in the high-
throughput identification of potential AMAP candidates for the treatment of malaria and other clinical applications.

1. INTRODUCTION
Malaria is a global public health concern as it causes millions
of deaths annually. Its causative agent, Plasmodium falciparum,
poses a serious medical challenge.1 Currently, the develop-
ment of novel strategies for combating this epidemic disease
includes screening of novel antimalarial drugs as a means to
curb parasite transmission and thus decrease the mortality
rate.2 Antimicrobial peptides (AMPs) are composed of both
naturally and synthetically derived molecules with features
such as charge, secondary structure features, molecular weight,
and hydrophobicity, to name a few. Even though they are
better known for their antimicrobial properties, many AMPs
also exhibit broad-spectrum activities toward pathogenic
microbiota including the malarial parasite. AMPs target the

growth of the malarial parasite at different life cycle stages
such as the vertebrate blood stage or the mosquito stage.3

Polypeptides remain an alternative antimicrobial agent since
they have been actively tested against various pathogenic
microbes4 and lead to novel strategies for therapeutic drug
development in transgenic malaria-resistant mosquitoes.
Besides naturally occurring AMPs and their lineages,
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significant antimalarial activity has also been demonstrated in
peptidomimetic compounds.5 Antimalarial peptides (AMAPs)
consist of several classes of unique peptides i.e., cationic-
amphipathic host defense peptides (defensins and cecro-
pins),6−11 membrane-active peptide antibiotics (gramici-
dins),12−15 hydrophobic peptides (cyclosporins),15,16 thiopep-
tides (thiostrepton),17−19 and other natural or synthetic
peptides. The aforementioned peptides are involved in
membrane interactions that are more specific to the parasite
membranes than the host cellular membrane, and some are
thought to have more specific intracellular targets.3 Hence,
AMPs play an important role of innate immunity in the host
defense mechanism against infections. Most AMPs are
encompass cationic molecules at physiological pH and
amphipathic peptides that are smaller than 45−50 amino
acid residues.20 In addition, an in vitro study on the
antiplasmodial activity of fungal-derived peptide antibiotics
has also been reported.21

As such, accurate identification of AMAPs will give a
direction for elucidating and revealing their potential func-
tional mechanisms. To date, two computational techniques,
including molecular docking and molecular dynamics (MD)
simulations, have been used in the discovery of new AMAPs
or antiplasmodial peptides. Both molecular docking and MD
simulations were able to elucidate the interactions between
novel phenylalanine−glycine dipeptide sulfonamide conjugate
compounds and target protein residues.22−24 To validate the
antiplasmodial activity of cyclic peptides engineered from
phytocystatin against falcipain (cysteine proteases from the
malarial parasite P. falciparum), protein−peptide docking and
MD simulations were performed to calculate the free energy
of ligand−enzyme binding.25,26 Moreover, MD experiments of
the interaction between a potential drug target PFI1625c (a
metalloprotease present in P. falciparum) and several bioactive
peptides have been performed to screen for AMAPs with high
affinity.27 Although these two computational techniques could
enable the discovery of new AMAPs, all these approaches
might be limited in the large-scale identification of new
AMAPs from a vast number of candidate peptides. Thus, with
such potential of AMAPs in therapeutic applications,
automated machine learning (ML)-based approaches that
can rapidly and accurately identify AMAPs by using only
sequence information are highly desirable.

In this study, we present a new computational approach
(named iAMAP-SCM) that is able to rapidly identify AMAPs
and automatically generate propensities of 20 amino acids and
400 dipeptides to be AMAPs. To the best of our knowledge,
iAMAP-SCM is the first scoring card method (SCM)-based
model for AMAP identification and characterization. In
iAMAP-SCM, we established a benchmark dataset by
collecting experimentally validated AMAPs and non-AMAPs
extracted from several resources. Then, propensities of 20
amino acids and 400 dipeptides were estimated and optimized
using the 10-fold cross-validation scheme. After that, the
estimated propensities of 20 amino acids were utilized to
select important physicochemical properties (PCPs) from the
amino acid index database (AAindex). Finally, the optimal
propensities of 400 dipeptides (DPS) were selected and used
to develop the final predictive model (iAMAP-SCM).
Experimental results on the independent test dataset showed
that iAMAP-SCM could achieve a maximum accuracy (ACC)
and Matthew’s coefficient correlation(MCC) of 0.957 and
0.834, respectively. In addition, comparative analysis results

revealed that iAMAP-SCM outperformed decision tree (DT)-
based, k-nearest neighbor (KNN)-based, and logistic
regression (LR)-based classifiers as indicated by MCC and
balanced accuracy (BACC) on both the training and
independent test datasets. Furthermore, analysis results
based on the 20 amino acid propensities and selected PCPs
indicated four important characteristics of AMAPs, which can
be encapsulated as follows: (i) AMAPs have high conforma-
tional and thermal stability; (ii) AMAPs are composed of
hydrophobic amino acids; (iii) AMAPs are composed of
amino acids interacting with the cell membrane; and (iv)
AMAPs tend to be in the amphipathic antimicrobial peptide
class.

2. MATERIALS AND METHODS
2.1. Dataset Preparation. Dataset preparation is an

important step in the development of ML-based models.
Herein, we created two datasets called main and alternative
datasets. To be specific, positive samples were experimentally
validated AMAPs, which were mainly derived from ParaPep28

and several literature studies.10,29−33 After removing redun-
dant samples, a total of 139 unique AMAPs were accounted
for in this study. These AMAPs were then used for creating
the main and alternative datasets. Since there are very few
experimentally validated non-AMAPs, negative samples in the
main dataset were derived from non-parasitic peptides, which
were derived from the work of Xiao et al.34 For the alterative
dataset, negative samples were derived from random peptides
in SwissProt, which were derived from the work of Agrawal et
al.35 Herein, we excluded the negative samples found in both
main and alterative datasets. As a result, the main dataset
consisted of 139 positives and 2135 negatives, while the
alternative dataset consisted of 139 positives and 677
negatives.

2.2. Construction of Training and Independent Test
Datasets. Herein, around 80% of positive and negative
samples were used for constructing the training dataset, while
the remaining were considered for constructing the
independent test dataset.

In general, the training dataset is employed for model
construction and optimization, while the independent test
dataset is employed to evaluate the effectiveness and
generalizability of the model. Therefore, for the main dataset,
its training and independent test datasets (referred herein as
Main-CV and Main-TS, respectively) contained (111 positives
and 1708 negatives) and (28 positives and 427 negatives),
respectively. In the same way, the training and independent
test datasets of the alternative dataset (referred herein as
Alter-CV and Alter-TS, respectively) contained (111 positives
and 542 negatives) and (28 positives and 135 negatives),
respectively. Table S1 summarizes the details of the Main-CV,
Main-TS, Alter-CV, and Alter-TS datasets. Herein, we noticed
that most of the AMAPs contain less than 30 amino acid
residues (87.27%), while most of the non-AMAPs contain less
than 40 amino acid residues (72.19 and 73.62% for the Main-
CV and Alter-CV datasets, respectively) (Tables S2 and S3).

2.3. General Framework of iAMAP-SCM. Here, iAMAP-
SCM is an SCM-based predictor coupled with the optimal
propensities of 400 dipeptides designed for AMAP prediction
and characterization. Numerous previous studies demonstra-
ted that the SCM method iAMAP-SCM is able to rapidly
identify several biological functions of peptides and automati-
cally generate propensities of 20 amino acids and 400
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dipeptides as a function of interest in a supervised
manner.36−41 The iAMAP-SCM construction involves three
main steps (as summarized in Figure 1), which involves the
generation of an initial propensity score of 400 dipeptides
(init − DPS), DPS optimization, iAMAP-SCM construction,
and AMAP characterization using informative PCPs from the
AAindex database. Below, we briefly describe the calculation
and optimization procedures of the DPS. In the meanwhile,
the propensities of 400 g-gap dipeptides (GDPS) (g = i, where
i = 1, 2, 3, 4, and 5) can be optimized in the same procedure
as the DPS.

2.3.1. Generating Init-DPS. We generated an initial-DPS
matrix (init − DPSij = {nij}) using a simple statistical method,
where nij is the number of occurrences of the dipeptides
containing the ith amino acid followed by the jth amino acid,
where i, j = 1,2,3, ...,20. The first step is to calculate the
number of occurrences of 400 dipeptides in positive (Pij = (nij
| C = 1)) and negative (Nij = (nij | C = 0)) samples. The
second step is to compute the composition of Pij and Nij,
which are referred to as cPij and cNij. The third step is to
compute the scores of 400 dipeptides by subtracting cPij from
cNij. Finally, the scores of 400 dipeptides are normalized into
the range of 0−1000 to construct the init − DPS, which is a
20 × 20 matrix containing initial propensity scores of 400
dipeptides.

2.3.2. Optimizing DPS. Since the information of init −
DPS might be not sufficient to enable the construction of a
comprehensive predictive model,38,42,43 we employed the
genetic algorithm (GA) to create the DPS matrix, which is a
20 × 20 matrix containing optimal propensity scores of 400
dipeptides. The major contribution of the DPS over init −

DPS could be listed as follows: (i) the DPS could enhance the
discriminative ability and (ii) the DPS could conserve the
information of AMAPs. In this work, the fitness function of
the GA algorithm is represented by

RMax(DPS) 0.9 AUC 0.1= × + × (1)

As can be seen, this fitness function involves the area under
the receiver operating characteristics (ROC) curve (AUC)
and Pearson’s correlation coefficient (R-value) between DPS
and init − DPS.36,38 To control overfitting and biasness, we
assessed the predictive performance of each DPS by the 10-
fold cross-validation scheme. More details of the DPS
optimization is summarized in the Supplementary Methods.

2.3.3. Constructing iAMAP-SCM. In this step, we aimed to
construct a scoring function S(P) coupled with the DPS and
to determine an optimal threshold value. As a result, the
scoring function S(P) used for AMAP identification is defined
as follows:

S P S( ) DPS
i

i i
1

400

=
= (2)

where Si and DPSi represent the occurrence number and the
propensity score of the ith dipeptide. The query peptide P is
considered as AMAP, if S(P) is greater than the threshold
value, otherwise the query peptide P is considered as non-
AMAP

S P

S P

AMAP, ( ) threshold value

non AMAP, ( ) threshold value

>

<

l
mooo
noo (3)

Figure 1. Schematic framework of the development of iAMAP-SCM. The schematic framework of the development of SCMB3PP contains four
main steps: (i) training and independent dataset preparation, (ii) DPS generation and optimization, (iii) iAMAP-SCM construction, and (iv)
performance evaluation.
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The DPS having the highest MCC were considered for
constructing the final model (iAMAP-SCM). More detailed
information for the SCM method and tDPS optimization is
recorded in our previous studies.36,38,42,43

2.3.4. AMAP Characterization Using Informative PCPs.
After obtaining the optimal DPS, the propensity score of the
ith amino acid is computed by averaging the propensity scores
of all dipeptides containing the ith amino acid. These
propensities were then utilized to select informative PCPs
relating to functional mechanisms of AMAPs. To select
informative PCPs, first, we collected 544 PCPs from the
AAindex database44 and the PCPs having a value of “NA”
were eliminated to optimize the utilization of PCPs. As a
result, the remaining 531 PCPs were employed herein.
Second, we calculated the R-value between the propensities
of the 20 amino acids and each of the 531PCPs. Finally, we
selected the top 20 informative PCPs with the highest R-
values for AMAP characterization.
2.4. Conventional ML-Based Classifiers. In this study, a

total of 72 different ML classifiers (8 MLs × 9 descriptors)
were created by using eight popular ML algorithms (DT,
KNN, LR, multilayer perceptron (MLP), naive Bayes (NB),
partial least squares regression (PLS), random forest (RF),
and support vector machine (SVM)) trained with nine
conventional feature descriptors (AAindex, PCP, amino acid
composition (AAC), composition transition and distribution
(CTD), composition (CTDC), distribution (CTDD), tran-
sition (CTDT), dipeptide composition (DPC), and tripeptide
composition (TPC)). For implementation, all the 72 ML
classifiers were trained and optimized under the 10-fold cross-
validation test based on the iFeature45 and the Scikit-learn
v0.22.0 packages46 (Table S4). A detailed description of the
construction of these ML classifiers is recorded in our
previous reports.42,43,47,48

2.5. Evaluation Metrics. The performance of iAMAP-
SCM and conventional ML classifiers was evaluated in terms
of five well-known performance measures, including ACC,
AUC, BACC, MCC, sensitivity (Sn), specificity (Sp), and area
under the precision-recall (PR) curve (AUPR),47,49 described
as follows:

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

=
× ×

+ + + +
(4)

Sn
TP

(TP FN)
=

+ (5)

Sp
TN

(TN FP)
=

+ (6)

ACC
TP TN

(TP TN FP FN)
= +

+ + + (7)

BACC 0.5 Sn 0.5 Sp= × + × (8)

where TPs and TNs represent the number of true AMAPs and
true non-AMAPs that are correctly predicted as AMAPs and
non-AMAPs, respectively. On the other hand, FPs and FNs
represent the number of true non-AMAPs and true AMAPs
that are predicted as AMAPs and true non-AMAPs,
respectively.50−54

3. RESULTS AND DISCUSSION
3.1. Performance Evaluation of BLAST-Based Pre-

dictors. In this section, we created a BLAST-based predictor
for the prediction of AMAPs. A detailed construction of the
BLAST-based predictor is summarized in our previous
studies.55,56 To assess the performance of BLAST-based
predictors, the expectation values (E-values) in the range of
0.0001 to 0.1 were employed. Table 1 provides the

performance comparison results of various E-values on the
Main-TS and Alter-TS datasets. The highest ACC values of
0.901 and 0.889 on the Main-TS and Alter-TS datasets were
achieved using E-value cutoff values of 0.0001 and 0.1,
respectively. However, these cutoff values were found to have
Sn values of 0.222 and 0.407 on the Main-TS and Alter-TS
datasets, respectively, thereby indicating that the BLAST-
based predictor was not effective for accurately identifying
true AMAPs. Altogether, ML-based predictors that are capable
of accurately and rapidly identifying AMAPs are more suitable
for this problem.

3.2. Performance Evaluation of Different Sets of
Propensity Scores. Here, we evaluated and analyzed the
predictive capability of variant SCM classifiers coupled with
six different types of propensity scores by performing 10-fold
cross-validation and independent tests on both the main and
alternative datasets. Tables 2 and 3 list a comparison of the
predictive performance of the six different types of propensity
scores. Table 2 shows that the highest MCC of 0.793 in terms
of the Main-CV dataset is achieved by using DPS, while the
second and third highest MCC of 0.765 are obtained from
GDPS (g = 1) and GDPS (g = 4). Interestingly, we noticed
that the best-performing DPS also accomplished satisfactory
results with the highest MCC of 0.776 on the Main-TS
dataset. For the performance on the alternative dataset, we
noticed that DPS performed well with the highest MCC of
0.917 on the Alter-CV dataset (Table 3), while GDPS (g = 1)
performed well with the third highest MCC of 0.900.
Remarkably, DPS still yielded an impressive predictive
performance with an MCC of 0.834 on the Alter-TS dataset.
Altogether, our comparative results highlighted the impor-
tance and contribution of DPS to the performance of the
SCM classifier. Thus, for the convenience of discussion, the
SCM classifiers combined with DPS is referred to as iAMAP-
SCM. The propensities of 400 dipeptides based on threshold
values of 449 and 309 on the Main-CV and Alter-CV datasets,
respectively, are shown in Figure 2.

As mentioned in the General Framework of iAMAP-SCM
Section, the GA method was used to optimize the initial
propensity scores as means to improve the performance of the
SCM classifier. To elucidate this important point, we

Table 1. Performance Evaluation of BLAST-Based
Predictors Using Various E-Value Cutoffs

dataset E-value ACC BACC Sn Sp MCC

Main-TS 0.1 0.824 0.629 0.407 0.850 0.164
0.01 0.872 0.602 0.296 0.909 0.159
0.001 0.892 0.596 0.259 0.932 0.167
0.0001 0.901 0.583 0.222 0.944 0.158

Alter-TS 0.1 0.889 0.696 0.407 0.985 0.539
0.01 0.883 0.648 0.296 1.000 0.510
0.001 0.877 0.630 0.259 1.000 0.475
0.0001 0.870 0.611 0.222 1.000 0.439
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compared the predictive performance of DPS to that of initial-
DPS (Table 4). It could be noticed that DPS yielded the
overall best performance as compared with initial-DPS as
judged by all measures on both the 10-fold cross-validation
and independent tests. To be specific, the BACC and MCC of
DPS were 2.2−6.0 and 7.0−17.3% higher than those of the
initial-DPS, respectively, on the Main-TS and Alter-TS
datasets. Altogether, our analysis results confirmed that the
propensities of 400 dipeptides (DPS) provide more
discriminative power for identifying AMAPs than initial-DPS.
3.3. Comparison of iAMAP-SCM with Conventional

ML Classifiers. Since iAMAP-SCM represents the first
computational approach designed for AMAP identification,
we compared its performance to that of other conventional
ML classifiers as means to elucidate its predictive capability
and effectiveness. Herein, the conventional ML classifiers,
which contained a total 72 ML classifiers trained with eight
ML algorithms and nine features were created. The perform-
ance evaluation results of the 72 ML classifiers are recorded in
Tables S5−S8. Furthermore, to simplify the comparative
analysis, we compared the performance of iAMAP-SCM to
that of five top-ranked ML classifiers as determined by MCC
values on the training datasets. These comparative analysis
results are provided in Figures 3−5 and Table 5.

Figure 3 shows that the five top-ranked ML classifiers on
the Main-CV dataset contain MLP-TPC, SVM-TPC, LR-
TPC, SVM-DPC, and SVM-CTD, while the five top-ranked
ML classifiers on the Alter-CV dataset contain MLP-TPC, LR-
DPC, SVM-TPC, SVM-CTD, and SVM-AAC. This demon-
strates that MLP-TPC is the most powerful ML combination
for AMAP prediction in terms of both the Main-CV and

Alter-CV datasets. From Figure 3, iAMAP-SCM is found to
yield the third and first highest MCC of 0.793 and 0.917 for
the Main-CV and Alter-CV datasets, respectively. In the
meanwhile, the highest MCC in terms of the Main-CV was
found in MLP-TPC. For the Main-TS and Alter-TS datasets,
iAMAP-SCM and MLP-TPC achieved a similar predictive
performance and outperformed the remaining top-ranked ML
classifiers as indicated by BACC and MCC.

Although our iAMAP-SCM approach provided a lower
AUPR value as compared with MLP-TPC, SVM-DPC, and
SVM-CTD (0.737 versus 0.787−0.794 and 0.869 versus
0.867−0.928 for the Main-TS and Alter-TS datasets,
respectively), the major advantages of iAMAP-SCM over the
compared ML classifiers could be summarized in three
aspects: (i) iAMAP-SCM achieved a competitive performance
on the Main-TS and Alter-TS datasets compared with MLP-
TPC. In the meanwhile, iAMAP-SCM outperformed LR,
KNN, and DT classifiers in terms of MCC for the Main-TS
and Alter-TS datasets; (ii) iAMAP-SCM is a simple and easy-
to-understand approach for biologists and biochemists, and
(iii) unlike MLP and SVM methods that are known as black-
box computational approaches, iAMAP-SCM is capable of
estimating propensities of 20 amino acids and 400 dipeptides.
This information is beneficial for AMAP characterization.

3.4. Case Studies. In this section, we further utilized our
iAMAP-SCM approach to perform case studies as a means to
verify its predictive capability in practical situations. First, we
collected experimentally validated AMAPs from various
literature studies.57−60 Second, to alleviate the over-estimation
and over-fitting issues, these AMAPs found in the main and
alternative datasets were excluded. As a result, the remaining

Table 2. Performance Comparison of Different Types of Propensity Scores on the Main Dataset

dataset descriptor cutoff ACC BACC Sn Sp MCC AUC

Main-CV DPS 449 0.978 0.857 0.720 0.995 0.793 0.881
GDPS (g = 1) 424 0.978 0.852 0.710 0.994 0.765 0.924
GDPS (g = 2) 540 0.978 0.840 0.687 0.994 0.760 0.911
GDPS (g = 3) 513 0.980 0.820 0.643 0.997 0.759 0.899
GDPS (g = 4) 478 0.980 0.814 0.631 0.998 0.765 0.897
GDPS (g = 5) 586 0.979 0.783 0.568 0.998 0.709 0.854

Main-TS DPS 449 0.978 0.826 0.654 0.998 0.776 0.820
GDPS (g = 1) 424 0.967 0.775 0.560 0.991 0.644 0.856
GDPS (g = 2) 540 0.971 0.769 0.545 0.993 0.647 0.798
GDPS (g = 3) 513 0.982 0.824 0.650 0.998 0.769 0.865
GDPS (g = 4) 478 0.973 0.795 0.600 0.991 0.657 0.850
GDPS (g = 5) 586 0.980 0.777 0.556 0.998 0.702 0.819

Table 3. Performance Comparison of Different Types of Propensity Scores on the Alternative Dataset

dataset descriptor cutoff ACC BACC Sn Sp MCC AUC

Alter-CV DPS 309 0.977 0.950 0.910 0.991 0.917 0.968
GDPS (g = 1) 423 0.975 0.935 0.877 0.993 0.900 0.957
GDPS (g = 2) 390 0.972 0.925 0.860 0.991 0.886 0.943
GDPS (g = 3) 312 0.979 0.940 0.885 0.994 0.912 0.971
GDPS (g = 4) 329 0.968 0.915 0.840 0.989 0.862 0.962
GDPS (g = 5) 418 0.958 0.884 0.784 0.983 0.806 0.935

Alter-TS DPS 309 0.957 0.896 0.808 0.985 0.834 0.903
GDPS (g = 1) 423 0.956 0.876 0.760 0.993 0.826 0.873
GDPS (g = 2) 390 0.943 0.834 0.682 0.985 0.745 0.799
GDPS (g = 3) 312 0.974 0.900 0.800 1.000 0.881 0.948
GDPS (g = 4) 329 0.942 0.839 0.700 0.978 0.727 0.911
GDPS (g = 5) 418 0.967 0.885 0.778 0.993 0.835 0.941
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32 AMAPs were obtained and accounted for the case studies
(as listed in Table S9). As mentioned above, iAMAP-SCM
was optimized and constructed by using the Main-CV and

Alter-CV datasets. Therefore, iAMAP-SCM constructed by
these two datasets was performed on the case studies
separately. From Tables S10 and S11, several observations

Figure 2. Propensity scores of 20 amino acids to be AMAPs obtained from the proposed iAMAP-SCM based on the Main-CV (A) and Alter-CV
(B) datasets.
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can be made: (i) 20 and 31 samples (ACC of 0.625 and
0.969, respectively) are correctly identified as AMAPs by
iAMAP-SCM developed by using the Main-CV and Alter-CV
datasets, respectively; (ii) MLP-TPC developed by using the
Main-CV and Alter-CV datasets can correctly identify 21 and
24 samples (ACC of 0.656 and 0.750, respectively),
respectively; (iii) Based on the case studies, we noticed that
the performance of the predictive models (i.e., MLP-TPC,
SVM-CTD, and iAMAP-SCM) trained using the Alter-CV
dataset is better than that of the predictive models trained
using the Main-CV dataset, demonstrating that the Alter-CV
dataset could be more suitable for creating an efficient
predictive model. In addition, this result indicates that
iAMAP-SCM outperformed the compared methods and

could effectively determine candidates as AMAPs from large-
scale proteins.

3.5. Characterization of Antimalarial Peptides Using
SCM-Derived Propensity Scores. In this section, we
employed SCM-derived amino acid propensities for AMAP
characterization. As mentioned above, the SCM-derived
amino acid propensities were generated using the optimal
propensities of 400 dipeptides to be AMAPs (Figure 2A) and
a straightforward statistical approach.38,42,43 As can be seen
from Table 6, the top five informative amino acids for AMAPs
are Phe, Ala, Val, His, and Trp. Interestingly, the unique non-
polar amino acids (Phe, Ala, Trp, and Val) and positive charge
amino acid (His) are prevalent in AMAPs as compared to
non-AMAPs. Similar to the amino acid composition results

Table 4. Performance Comparison of DPS with Initial-DPS on the Main and Alternative Datasets

dataset descriptor ACC BACC Sn Sp MCC AUC

Main-CV Initial-DPS 0.958 0.757 0.530 0.985 0.588 0.895
DPS 0.978 0.857 0.720 0.995 0.793 0.881

Main-TS Initial-DPS 0.971 0.804 0.615 0.993 0.706 0.776
DPS 0.978 0.826 0.654 0.998 0.776 0.820

Alter-CV Initial-DPS 0.940 0.885 0.801 0.969 0.786 0.953
DPS 0.977 0.950 0.910 0.991 0.917 0.968

Alter-TS Initial-DPS 0.907 0.836 0.731 0.941 0.661 0.858
DPS 0.957 0.896 0.808 0.985 0.834 0.903

Figure 3. Performance comparison between iAMAP-SCM and top 20 ML classifiers. Comparisons of MCC values on the Main-CV (A), Main-TS
(B), Alter-CV (C), and Alter-TS (D) datasets.
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that have been reported before, the preferential amino acids
that are more prominent in AMPs and AMAPs are Ala, Lys,
Arg, Ile, Leu, Phe, Pro, Tyr, and Val.31,33,61,62

For the amphipathic feature of AMPs, peptide interactions
with the membranes are driven by both the hydrophilic and
lipophilic nature of the peptides. The positive charge or
cationic side chain amino acids (Arg, Lys, and His) and bulky
(Pro, Phe, Val, Ile and Trp) side chains are fundamental for
peptide antimicrobial activity.63 This is also correlated to
several pieces of evidence that have reported that the amino
acids Ala, Lys, Arg, Ile, Leu, Phe, Pro, Tyr, and Val are
frequently included on antimicrobial and antimalarial peptides.
In the case of the hydrophobic character of AMPs, Val, Phe,
and Pro are considered to be important for collapsing the
plasmodium cell membrane.62,64−66 Research observed that
deletion of Val could lead to a 23% decrease in the
antiplasmodial activity.62 Since Phe is necessary for proficient
antibacterial activity and membrane phospholipid interac-
tion,66 the substitution of polar residues (Arg or Lys) by Phe
could promisingly increase antimalarial activity.67 Further-
more, a study observed the parasite specific property of Phe in
combination with Pro to show lower toxicity toward healthy
cells such as erythrocytes and fibroblasts.68 For the positively
charged amino acids with the fourth highest propensity score
(His), it was observed that His-rich amphipathic cationic
peptides could significantly enhance membrane disruption and
antimicrobial activities including their antimalarial ability.68

3.6. Characterization of Antimalarial Peptides Using
Informative Physicochemical Properties. In this section,
iAMAP-SCM coupled with the SCM-derived amino acid
propensities was applied to select informative PCPs for AMAP
characterization. Table S6 lists the top 20 PCPs with the
highest R-values, which are perceived as most important for
AMAP characterization. As seen in Table S6, the top five
PCPs with the highest R-values consisted of TAKK010101,
BIOV880101, RICJ880111, BIOV880102, and CIDH920102,
respectively. Detailed analysis results of these important PCPs
for AMAPs are provided in the following subsections.

3.6.1. AMAPs Have High Conformational and Thermal
Stability. The TAKK010101 can be described as “side-chain
contribution to protein stability (kJ/mol)”.69 The stability
estimation profile is a powerful tool that has shown to be
useful in the analysis of protein sequences. Since the side-
chain contribution to protein stability includes the entropic
effect, they might represent the contributions of each amino
acid side chain to the conformational stability of the globular
protein. However, the high R-value implies that hydrophobic
amino acids contribute largely to AMAPs. Notably, the five
top-ranked amino acids were Trp, Phe, Ile, Tyr, and Leu,
possessing the highest side chain hydrophobicity values.70 As
previously mentioned above, from the amino acid propensity
results, the overall stability of AMAPs is high, with the five
top-ranked amino acids being highly hydrophobic (non-polar)
side chains. Research has suggested that Trp and Phe are

Figure 4. Performance comparison between iAMAP-SCM and top five ML classifiers. Comparisons of the ROC curve, AUC value, PR curve, and
AUPR value on the Main-CV (A, B) and Main-TS (C, D) datasets.
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Figure 5. Performance comparison between iAMAP-SCM and top five ML classifiers. Comparisons of the ROC curve, AUC value, PR curve, and
AUPR value on the Alter-CV (A, B) and Alter-TS (C, D) datasets.

Table 5. Performance Comparison of iAMAP-SCM and Best-Performing ML Classifiers on the Main and Alternative Datasets

dataset method ACC BACC Sn Sp MCC AUC

Main-CV MLP-TPC 0.985 0.894 0.792 0.997 0.859 0.944
SVM-TPC 0.982 0.868 0.737 0.998 0.833 0.919
LR-TPC 0.976 0.881 0.773 0.989 0.783 0.944
SVM-DPC 0.975 0.805 0.611 0.999 0.754 0.921
SVM-CTD 0.974 0.817 0.638 0.996 0.749 0.928
iAMAP-SCM 0.978 0.857 0.720 0.995 0.793 0.881

Main-TS MLP-TPC 0.978 0.808 0.615 1.000 0.775 0.888
SVM-TPC 0.967 0.712 0.423 1.000 0.639 0.627
LR-TPC 0.974 0.787 0.577 0.998 0.724 0.836
SVM-DPC 0.971 0.750 0.500 1.000 0.697 0.935
SVM-CTD 0.978 0.826 0.654 0.998 0.776 0.893
iAMAP-SCM 0.978 0.826 0.654 0.998 0.776 0.820

Alter-CV MLP-TPC 0.966 0.915 0.837 0.993 0.876 0.973
LR-DPC 0.962 0.912 0.837 0.987 0.861 0.980
SVM-TPC 0.960 0.886 0.773 0.998 0.851 0.924
SVM-CTD 0.959 0.903 0.818 0.987 0.850 0.974
SVM-AAC 0.954 0.929 0.891 0.967 0.844 0.983
iAMAP-SCM 0.977 0.950 0.910 0.991 0.917 0.968

Alter-TS MLP-TPC 0.950 0.846 0.692 1.000 0.808 0.920
LR-DPC 0.950 0.877 0.769 0.985 0.808 0.944
SVM-TPC 0.907 0.727 0.462 0.993 0.613 0.630
SVM-CTD 0.963 0.916 0.846 0.985 0.859 0.966
SVM-AAC 0.932 0.882 0.808 0.956 0.752 0.967
iAMAP-SCM 0.957 0.896 0.808 0.985 0.834 0.903
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involved in peptide structural stability by restricting their
conformation through hydrogen bond formation, affecting the
antiplasmodial activity.71 In addition, it has been reported that
non-polar aliphatic amino acids (Ala, Ile, Leu, and Val) are
responsible for the thermal stability of proteins and peptides.72

These non-polar amino acid compositions indicate that

AMAPs tend to be highly thermostable and conformationally
stable in general. Thus, certain features such as high activity
and thermostability coupled with peptide shelf life and
stability in the host have made AMAPs an attractive endeavor
for peptide drug discovery applications against malaria.

3.6.2. AMAPs Are Composed of Hydrophobic Amino
Acids. The CIDH920102 property was found at rank five,
which is described as normalized hydrophobicity scales for
beta-proteins.73 Thus, it could be implied that side-chain
hydrophobicity might be important to AMAPs. Table 7
indicates the informative amino acids of the top five AMAPs
(i.e., Phe, Ala, Val, His, and Trp) ranked by the propensity
scores. In the meanwhile, the residues having the highest
scores for the CIDH920102 property were Trp, Phe, Tyr, Ile,
and Met.73 The hydrophobicity of the nonpolar side of
amphipathic helical peptides is correlated with peptide helicity
and their ability to self-associate in aqueous environments,
which is involved in peptide stability and membrane−peptide
interaction.72,74 An abundance of hydrophobic amino acids is
significant in AMPs both of non-polar aliphatic and aromatic
side chains.75,76 Since a significantly high hydrophobic activity
in AMPs can cause a strong hemolytic activity on
erythrocytes,74 an optimum hydrophobicity value is necessary
to obtain both maximum specificity and activity of AMAPs.

3.6.3. AMAPs Are Composed of Amino Acids Interacting
with Cell Membranes. To group amino acids based on
peptide solubility, we analyzed the protein/peptide solubility
based on the Amino Acid Index Database.77 Relevant to the
solvent accessibility property, the PCPs common to both the
hydrophilic and hydrophobic residues, the BIOV880101 and
BIOV880102 properties, are described as “Information value
for accessibility; average fraction 35%” and “Information value
for accessibility; average fraction 23%”,78 respectively. The

Table 6. Propensity Scores of 20 Amino Acids to be
AMAPs (PS) along with Different Amino Acid
Compositions (%) of AMAPs and Non-AMAP Based on the
Main-CV Dataset

amino
acid PS (rank)

AMAP
(%)

non-AMAP
(%)

difference
(rank) p-value

F-Phe 444(1) 10.05 4.81 5.24(1) 0.001
A-Ala 419(2) 11.23 7.45 3.78(2) 0.003
V-Val 403(3) 8.74 5.71 3.02(3) 0.030
H-His 382(4) 3.45 2.21 1.24(7) 0.051
W-Trp 372(5) 2.66 1.87 0.80(8) 0.126
Y-Tyr 371(6) 3.57 2.13 1.44(6) 0.101
M-Met 364(7) 1.19 1.26 −0.08(10) 0.846
P-Pro 364(8) 4.86 4.71 0.15(9) 0.847
K-Lys 359(9) 11.82 10.18 1.65(5) 0.203
D-Asp 355(10) 2.16 2.23 −0.08(11) 0.881
R-Arg 348(11) 5.90 6.06 −0.16(12) 0.884
C-Cys 341(12) 3.62 6.11 −2.49(18) 0.007
I-Ile 335(13) 4.64 6.63 −1.99(15) 0.006
L-Leu 333(14) 11.73 9.92 1.81(4) 0.178
T-Thr 320(15) 1.75 4.19 −2.44(17) 0.000
E-Glu 318(16) 0.84 2.20 −1.36(14) 0.000
N-Asn 318(17) 1.54 3.53 −1.99(16) 0.000
G-Gly 312(18) 7.10 10.62 −3.52(19) 0.009
Q-Gln 308(19) 1.80 2.23 −0.44(13) 0.343
S-Ser 275(20) 1.34 5.94 −4.60(20) 0.000

Table 7. Five Important Physicochemical Properties (PCPs) Derived from iAMAP-SCMa

amino acid PS (rank) PCP1 (rank) PCP2 (rank) PCP3 (rank) PCP4 (rank) PCP5 (rank)

F-Phe 444(1) 444(1) 23.0(2) 189(1) 2.9(1) 148(1)
A-Ala 419(2) 419(2) 9.8(11) 16(10) 1.3(8) 44(8)
V-Val 403(3) 403(3) 15.3(6) 123(7) 1.4(7) 117(7)
H-His 382(4) 382(4) 11.9(8) 50(9) 1.9(4) 47(4)
W-Trp 372(5) 372(5) 24.2(1) 145(4) 2.1(3) 163(3)
Y-Tyr 371(6) 371(6) 17.2(4) 53(8) 0.8(10) 22(10)
M-Met 364(7) 364(7) 11.9(9) 124(6) 2.8(2) 121(2)
P-Pro 364(8) 364(8) 15.0(7) −20(12) 0.0(20) −36(20)
K-Lys 359(9) 359(9) 10.5(10) −141(20) 1.0(9) −188(9)
D-Asp 355(10) 355(10) 4.9(14) −78(18) 0.5(18) −91(18)
R-Arg 348(11) 348(11) 7.3(12) −70(14) 0.8(11) −68(11)
C-Cys 341(12) 341(12) 3.0(17) 168(2) 0.7(12) 90(12)
I-Ile 335(13) 335(13) 17.2(3) 151(3) 1.6(5) 100(5)
L-Leu 333(14) 333(14) 17.0(5) 145(5) 1.4(6) 108(6)
T-Thr 320(15) 320(15) 6.9(13) −38(13) 0.6(14) −54(14)
E-Glu 318(16) 318(16) 4.4(15) −106(19) 0.7(13) −139(13)
N-Asn 318(17) 318(17) 3.6(16) −74(17) 0.6(15) −72(15)
G-Gly 312(18) 312(18) 0.0(20) −13(11) 0.5(16) −8(16)
Q-Gln 308(19) 308(19) 2.4(19) −73(16) 0.2(19) −117(19)
S-Ser 275(20) 275(20) 2.6(18) −70(15) 0.5(17) −60(17)
R 1.000 0.666 0.629 0.621 0.615 0.564

aPCP1 = TAKK010101 (side-chain contribution to protein stability (kJ/mol) (Takano−Yutani, 2001)); PCP2 = BIOV880101 (information value
for accessibility; average fraction 35% (Biou et al., 1988)); PCP3 = RICJ880111 (relative preference value at C4 (Richardson−Richardson, 1988));
PCP4 = BIOV880102 (information value for accessibility; average fraction 23% (Biou et al., 1988)); PCP5 = CIDH92010 (normalized
hydrophobicity scales for beta-proteins (Cid et al., 1992)).
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high correlation between the 20 amino acid propensities and
these two PCPs highlight that high membrane propensity is a
key component of amino acids for AMAPs. Notably, the top
seven amino acids with the highest propensity scores in the
BIOV880101 and BIOV880102 properties (Phe, Cys, Ile, Trp,
Leu, Met, and Val) are all non-polar side-chain amino acids.78

These hydrophobic residues in the amphipathic AMPs affect
membrane permeabilization via pore formation that is more
sensitive to phospholipid bilayers with a negative charge.79,80

This high positive correlation strongly indicates that AMAPs
favor non-polar aliphatic and aromatic amino acids, which play
an important role in peptide−membrane interactions.81,82

3.6.4. AMAPs Tend to be in the Amphipathic Antimicro-
bial Peptide Class. The property of RICJ880111, described as
“relative preference value at C4”,83 was found at rank 3. As a
result, the high positive correlation of the RICJ880111
property and the top eight informative amino acids (i.e.,
Phe, Met, Trp, Ile, Leu, Val, Ala, and His) indicate that
AMAPs favor hydrophobic amino acids and tend to be in the
amphipathic AMP class. The interface residue of globular
protein structures, characterized by a half-in/half-out
phenomenon, is termed N-cap or C-cap. This is based on
the fact that the hydrophobic residues are highly conserved on
α-carbon positions 4 of C-cap (C4).83 The amphiphilic
property enhances cellular membrane permeability through
ion channel formation and thus disrupts the lipid bilayer.84,85

In general, peptides acting on membranes exhibit their
amphipathic activity in secondary structure form once they
are in a membrane environment.85 Owing to the potent
clinical relevance of membrane active peptides, the correlation
of AMP structure−function relationship has been extensively
investigated.85−88 The formation of amphipathic conforma-
tions can be observed when the cationic amphipathic peptides
are located in membrane environments.89−91 Notably, other
conformations can also result in an amphipathic separation of
hydrophobic and polar residues, efficient membrane inter-
actions, and antimicrobial activities.90,91 The amphipathic
separation of hydrophobic and polar residues illustrates the
specific interactions of AMPs with the phospholipid
membrane interfaces.89

4. CONCLUSIONS
In this study, we have developed iAMAP-SCM, an
interpretable and efficient ML-based predictor for the high-
throughput identification and characterization of peptides with
antimalarial activity using only sequence information. To the
best of our knowledge, iAMAP-SCM is the first ML-based
approach designed for AMAP identification and character-
ization. To be specific, this new predictor was developed
based on the interpretable SCM method and estimated
propensities of 20 amino acids and 400 dipeptides to be
AMAPs. Experimental results based on the training and
independent test datasets revealed that iAMAP-SCM achieved
a competitive performance in AMAP prediction and out-
performed several ML-based predictors in terms of simplicity
and interpretability. Additionally, the iAMAP-SCM-derived
analysis results demonstrated four important characteristics of
AMAPs, which can be encapsulated as follows: (i) AMAPs
have high conformational and thermal stability; (ii) AMAPs
are composed of hydrophobic amino acids; (iii) AMAPs are
composed of amino acids interacting with cell membranes;
and (iv) AMAPs tend to be in the amphipathic antimicrobial
peptide class. Finally, a user-friendly online computational

platform of iAMAP-SCM is publicly available at http://
pmlabstack.pythonanywhere.com/iAMAP-SCM.
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