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Renal proximal tubules reabsorb glucose from the glomerular filtrate and release it back into the circulation. Modulation of
glomerular filtration and renal glucose disposal are some of the insulin actions, but little is known about a possible insulin effect
on tubular glucose reabsorption. This review is aimed at synthesizing the current knowledge about insulin action on glucose
handling by proximal tubules. Method. A systematic article selection from Medline (PubMed) and Embase between 2008 and
2019. 180 selected articles were clustered into topics (renal insulin handling, proximal tubule glucose transport, renal
gluconeogenesis, and renal insulin resistance). Summary of Results. Insulin upregulates its renal uptake and degradation, and
there is probably a renal site-specific insulin action and resistance; studies in diabetic animal models suggest that insulin
increases renal SGLT2 protein content; in vivo human studies on glucose transport are few, and results of glucose transporter
protein and mRNA contents are conflicting in human kidney biopsies; maximum renal glucose reabsorptive capacity is higher
in diabetic patients than in healthy subjects; glucose stimulates SGLT1, SGLT2, and GLUT2 in renal cell cultures while insulin
raises SGLT2 protein availability and activity and seems to directly inhibit the SGLT1 activity despite it activating this
transporter indirectly. Besides, insulin regulates SGLT2 inhibitor bioavailability, inhibits renal gluconeogenesis, and interferes
with Na+K+ATPase activity impacting on glucose transport. Conclusion. Available data points to an important insulin
participation in renal glucose handling, including tubular glucose transport, but human studies with reproducible and
comparable method are still needed.

1. Introduction

Diabetes global prevalence almost doubled in the last three
decades. This disorder is a major cause of kidney failure, up
to 44% of world end-stage renal disease, beyond ten times
dialysis need and renal transplantation [1]. Kidneys are the
leading organs involved in insulin clearance from the sys-
temic circulation [2]. They contribute to endogenous glucose
production through gluconeogenesis, primarily in proximal
tubule (PT) cells [3] under glucose and insulin regulation
[4]. Furthermore, PTs reabsorb glucose following its glomer-
ular filtration, through the sodium-glucose linked trans-
porters (SGLTs), mainly the SGLT2 located on the luminal
surface of PT cells [5]. Consequently, renal glucose handling

also depends on glucose glomerular filtration [6, 7] and on
the degree of kidney damage [8].

The insulin effect has been extensively studied in renal
sodium handling [9]. There is also evidence of direct [10]
and indirect [11] insulin effect on glomerular filtration and
modulation of renal glucose expenditure [12–14]. However,
its action on renal glucose transport is still little understood.

Renal glucose uptake in diabetic patients is higher than
that in healthy individuals, even when renal function is main-
tained [15–19]. Adaptive or pathophysiological changes in
glucose transporters related to acute [20, 21] or sustained
hyperglycaemia [22–26] may partially explain such differ-
ence. Nonetheless, insulin lack or resistance should be taken
into consideration too.
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High glucose absorption and flux, as in diabetes, may
induce tubular damage via an SGLT2 dependent pathway
[27, 28]. The enhanced SGLT2 activity causes mitochondrial
dysfunction through a more extensive glucose flux inside
PT cells [29], resulting in high oxidative stress and cellular
apoptosis [30–32]. Since insulin signalling directly preserves
mitochondrial metabolism and function, insulin resistance
can trigger mitochondrial dysfunction and damage [33] con-
tributing to renal injury. Reciprocally, impairedmitochondrial
function reduces insulin sensitivity [33]. These findings may
explain the protective effect of SGLT2 inhibition on kidneys
and suggested an intrinsic relationship between renal glucose
transport and insulin signalling.

Insulin has been used as a diabetes therapy since 1921
[34]. It is the principal resource to treat type 1 diabetes
(T1D) as well as type 2 diabetes (T2D) patients under oral
treatment failure. New therapy options include the SGLT2
inhibitors (SGLTi) that block renal glucose reabsorption
and can be used as monotherapy or as add-on oral antihyper-
glycaemic drugs or insulin, at least in T2D patients [35]. In
this way, knowing the interactions between insulin and glu-
cose transport by PTs is important to understand not only
renal diabetes impairment but also interactions among ther-
apy drugs, mainly of insulin with SGLT2i.

This review is aimed at describing and summarizing the
current understanding of the insulin effect on PTs and at dis-
cussing the main points involved in this process.

2. Methods

Original studies, written in English, assessing primary or
secondary insulin action on glucose handling by PTs in
humans, animal models, tissues, or cell cultures were eligible
for inclusion. Data source, between 2008 and June 2019,
from Medline (PubMed) and EMBASE, was used. Articles
important to the review understanding published before
2008 and described in the references of at least one selected
article were included as well.

Search terms included the following: insulin, diabetes,
T1D, T2D, renal, kidney, proximal tubule or tubules, GLUT,
GLUT1, GLUT2, SGLT, SGLT1, SGLT2, and Na+K+ATPase
derivative terms (for example, NKA, NaKAtpase, or NK-
pump). We performed a triple-term search in databases with
insulin, diabetes, T1D, and T2D as the first term; renal, kid-
ney, and proximal tubule or tubules as the second; and the
transport proteins as the third one. After that, an inclusive,
double-term search without the second designative term
was performed only in PubMed.

Two reviewers (R.P.M. and E.M.) independently eval-
uated the titles and abstracts and then the full text for
inclusion eligibility.

Intervention studies with SGLT2i that did not evaluate
insulin effect on PTs as well as those regarding glomerular
function or diabetic nephropathy not related to glucose
transport were excluded. Studies about renal gluconeogenesis
and renal insulin resistance were included because of the pos-
sible influence of those processes on PT glucose handling.

We developed a data extraction table considering the
methods and outcomes of the selected studies. One investiga-

tor extracted the data (R.P.M.) and the other reviewed it
(E.M.). The extracted data included general information
(title, authors, and year of publication), type of study,
objectives, methodological characteristics (humans, animal
models, cell cultures, renal site of evaluation, insulin inter-
vention, isolated insulin effect, type and duration of diabetes,
and insulin therapy length), and main outcomes related to
the review aims.

3. Results

The articles were selected as described in Figure 1.
A total of 2385 articles were selected. After title evalua-

tion, 1983 articles were excluded (review, not related to kid-
neys, to insulin action, or to glucose handling) resulting in
402 articles for abstract selection. After abstracts analysis,
228 articles were excluded with the same criteria and 174
articles were selected for a full reading. Full reading resulted
in 126 selected articles from the initial search, and more 54
articles were obtained from their references. Then, a total of
180 articles were included in this review. Other 32 papers
including some reviews were used to introduce and explain
our aim and the result topics. The selected articles were clus-
tered into topics and used to construct the summary of evi-
dence described below.

3.1. Renal Insulin Handling. Insulin handling by the kidneys
and the hormone concentration differences along the renal
capillaries and tubules will be described before its action on
PTs to facilitate the understanding of insulin effect at PT level
and emphasize its importance.

While the liver removes around 50% of portal insulin
during its first pass [36, 37], kidneys are the major organs
responsible for the insulin clearance from the systemic circu-
lation removing about 35% of total secreted insulin [2]. Most
of this clearance occurs in the glomerulus impacting the hor-
mone bioavailability in the tubular lumen and peritubular
capillaries at PT level and other downstream nephron seg-
ments [2]. The majority of insulin is freely filtered in glomer-
ular capillaries being virtually totally recovered by PT cells,
predominantly across the brush border membrane (BBM),
where insulin translocates through endocytic vesicles to vac-
uoles and then is degraded [2, 38]. Endocytosis occurs after
insulin binding to the megalin-cubilin complex and, to a
lesser extent, to the specific insulin receptors (IRecs) present
on PT BBM.Megalin is a protein of the transmembrane com-
plex that recovers the majority of serum proteins, including

174 full-text articles assessed for eligibility

126 studies included 54 inclusions from  selected
articles’ references

402 abstracts screened

2385 records identified

Figure 1: Literature flow diagram.
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insulin. It is expressed in the PT proximal segment S1 and
slightly in the intermediary S2 and distal S3 PT segments
[39, 40]. Insulin increases its own uptake and degradation
by inducing a rise in megalin content [41]. Less than 1% of
filtered insulin undergoes transcytosis to the basolateral
membrane [42], and only 1% is excreted in the urine [43–
45]. The remaining nonfiltered insulin reaches the postglo-
merular peritubular circulation where insulin clearance takes
place through specific IRecs binding mainly at PT level.

In PTs, insulin reaches its highest concentration and acts
on gluconeogenesis suppression [12, 46, 47] and, possibly,
on glucose transport [21, 48, 49]. Furthermore, insulin is dis-
posed in other tubular sites where IRecs are found in high
density, like the medullary thick ascending limb of Henle’s
loop and the distal convoluted tubules where it stimulates
sodium reabsorption [50, 51].

Insulin is degraded mainly by the enzyme protein disul-
fide isomerase, cathepsin D, and especially the insulin-
degrading enzyme (IDE). IDE is upregulated by insulin in
the central nervous system, but little is known about its renal
regulation [52, 53]. SNX5, a sorting nexin protein family, reg-
ulates intracellular trafficking and the expression of IRecs in
PTs and upregulates IDE expression and function. The colo-
calization of IDE and SNX5 next to the BBM reduces insulin
levels while deficiency of one or both regulators leads to
increased circulating insulin levels decreasing IRec expres-
sion and inducing insulin resistance [54, 55].

3.2. Proximal Tubule Glucose Transport. In this section,
results of experimental and clinical studies are described aim-
ing at exploring the relationship between insulin signalling
and its effect on PTs, on glucose excretion, and on renal glu-
cose transporters, particularly in diabetes. The first topic is a
brief description of renal glucose transporters, their localiza-
tion, and function.

3.2.1. Renal Glucose Transport Proteins. Two protein fami-
lies, GLUTs and SGLTs, are in charge of the glucose transport
in PT S1, S2, and S3 segments [5, 56]. GLUTs, highly
expressed in kidneys, are facilitative glucose transporters
present ubiquitously on cellular surfaces, composing a satu-
rable, stereoselective, and bidirectional transport system.
While GLUT1 has a high affinity for glucose, GLUT2 is a
low-affinity and high-capacity transporter also mediating
galactose, mannose, and fructose transport [56]. SGLTs uti-
lize the electrochemical sodium gradient to move glucose
against its concentration gradient [5]. The two types of renal
SGLTs, SGLT1 and SGLT2, differ in sodium to glucose
stoichiometry, sugar selectivity, sites of expression, and regu-
lation [5, 57], even if one electrophysiological study has dem-
onstrated similar affinities [58]. SGLT2 has higher transport
capacity and is more able to adjust its glucose transport pro-
portionally to glucose concentrations than SGLT1 [5].

In rats, GLUT1 is located in the S3 segment. It is also
found in the thick limb of Henle’s loop and collecting ducts
[59, 60], metabolically active sites that consume large
amounts of glucose as substrate [61]. GLUT2 expression
has been demonstrated in the S1 segment [60, 62]. SGLT1
is found along all PT segments [59, 63], and its density in

the BBM and intracellular organelles increases from S1
to S3 being higher in the outer medulla than in the cortex
[63, 64]. SGLT2 is situated in the renal cortex [65], especially
in the S1 and S2 segments [66, 67], and its expression is
higher in the former [66]. In humans, expression of SGLT2
protein occurs in S1 and S2 whereas SGLT1 is expressed in
the S3 segment. The two proteins are present only on the
BBM side [57]. To our knowledge, studies regarding GLUT2
tubular localization were not performed in human but its
mRNA has been demonstrated in PT cells [68–70].

Studies in knockout mice for SGLT2 or SGLT1 or SGLT2
plus SGLT1 have demonstrated that SGLT2 reabsorbs 80% to
90% glucose of the glomerular filtrate while SGLT1 reabsorbs
the remaining 10-20% [71]. However, under acute [72] or
chronic [73] SGLT2 inhibition or in SGLT2 knockout mice
[73, 74], a compensatory increase in SGLT1-mediated glu-
cose transport explains 40-50% of its fractional reabsorption.
This is observed early, even in the first hour of SGLT2 inhibi-
tion in murine models [72]. SGLT1 vicariance justifies the
maintenance of until 50% of the normal fractional glucose
reabsorption during selective SGLT2 inhibition in humans
[75–77]. Besides, in rats, a higher SGLT1contribution was
reported under euglycaemic or hypoglycaemic conditions
than in hyperglycaemic conditions [78].

3.2.2. Tubular Glucose Transporters in Animal Models of
Diabetes. In this topic, studies in diabetes models involving
quantitative modification of a specific glucose transporter
mRNA or protein were clustered (Table 1). This kind of study
does not quantify the real dynamic function of the glucose
transporters and their activity variation. However, all together,
they can suggest transporter impairment in diabetes.

Most of the studies for GLUT1 evaluation in these
models were carried out in streptozotocin (STZ) rats. They
predominantly reported higher GLUT1 protein [79–82]
and corresponding mRNA [81–85] contents in the whole
kidney and increased GLUT1 protein [86, 87] and mRNA
[86, 88, 89] in the cortex. Nonetheless, these studies are yet
controversial [22, 67, 90–93]. In STZ rats, S3 GLUT1 mRNA
availability raised and returned to its normal values after one
month of diabetes induction, while cortical (mainly S1 and
S2 segments) GLUT1 remained at low levels until six
months. Subsequent insulin treatment increased the cortical
but did not change the S3 GLUT1 content [24]. On the con-
trary, in insulin-resistant animals, GLUT1 in the S3 segment
decreased in the first 3 months of diabetes and increased in
the next 3 months, when cortical GLUT2 activity enhanced
[25]. So, GLUT1 seems to have a differentiated regulation
depending on which tubular segment is evaluated, the insu-
lin deficiency or resistance, and the diabetes duration.

Regarding GLUT2, the results of diabetes murine models
are debatable [22, 24–26, 79, 83–85, 87, 90–100]. In addition,
many studies have been carried out in STZ rats [24, 26, 79,
83, 85, 87, 90–93, 96, 98], and STZ induces diabetes through
beta-cell apoptosis after being transported by GLUT2 [101].
Theoretically, the same can occur in the proximal portions
of PTs where GLUT2 is coupled to SGLT2. This toxicity
could change the proportions of active cells impairing the
evaluation of these transporters [101, 102]. In a STZ model,
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the increased cortical GLUT2 mRNA availability was nor-
malized after seven days of insulin replacement [24], but
glycaemic changes could have modified the results, making
their interpretation problematic.

Reports of SGLT1 protein [80, 84, 103] and mRNA [83–
85, 92, 93, 98] contents in PTs of T1Dmurine models are also
contradictory while in T2D models only mRNA expression
seems to be upregulated [22, 90, 92, 98, 100, 103–106].
SGLT2 has been studied in many models of diabetes, and
the results suggest increased protein [32, 67, 84, 85, 90, 94,
99, 107–111] and mRNA [22, 32, 83, 85, 100, 104, 106–109,
112] contents and activity [108] despite some controversial
results [85, 93, 98, 100, 105, 113].

In summary, T1D models showed increased GLUT1 in
both the whole kidney and cortex. These changes can be tran-
sitory and site-specific. GLUT2 results are still controversial.
SGLT1 results were concordant only regarding the upregula-

tion of mRNA expression in T2D models. Studies frequently
reported SGLT2 contents as increased in both models, a
plausible reason for the higher renal glucose uptake of dia-
betic patients. However, whether transporter changes are
due to high glycaemic levels or reduced insulin signalling or
both is still an open question.

3.2.3. Tubular Glucose Transporters and Renal Glucose
Handling in Diabetes: Human Studies. Renal glucose reab-
sorption is proportional to glycaemic increments until blood
glucose levels exceed the renal threshold for glucose (RTG)
when glucose starts to appear in the urine [114, 115]. As glu-
cose concentration rises above the RTG limit (around
10mmol/L [5, 15, 16]), the increment in the rate of tubular
glucose reabsorption slows down in an initial nonlinear curve
termed splay [116, 117]. It is followed by a constant glucose
reabsorption rate that has been studied since 1940 and

Table 1: Glucose transporter protein and mRNA availability in T1D and T2D murine models.

Results Protein mRNA

GLUT1∗

T1D

Increased [79–82] (STZWK); [86, 87] (STZC) [81–85] (STZWK); [86, 88, 89] (STZC)

Similar [93] (STZWK); [67, 91] (STZC) [93] (STZWK)

Reduced [92] (STZWK)

T2D

Increased [85] (db/dbWK)

Similar [90] (GKC); [90] (JKC); [90] (HFDC) [22] (OLETFC)

Reduced [92] (GKWK)

GLUT2

T1D

Increased [26, 79, 87, 90, 96] (STZ); [99] (Alloxan) [24, 83] (STZ); [84] (Akita); [97] (Alloxan)

Similar [91] (STZ) [85, 91, 92, 93, 98] (STZ); [96] (Akita)

Reduced [95] (Alloxan) [95] (Alloxan)

T2D
Increased [25] (MG); [94] (Zucker) [22] (OLETF); [100] (db/db§)

Similar [90] (GK); [90] (JK); [90] (HFD) [85] (db/db); [92] (GK); [98] (HFD)

SGLT1

T1D

Increased [80] (STZ) [83] (STZ); [84] (Akita)

Similar [93, 98] (STZ)

Reduced [84] (Akita); [103] (STZ) [85, 92] (STZ)

T2D
Increased [90] (GK); [90] (JF); [103] (db/db); [105] (HFD#)

[104] (OB/OB); [100] (db/db§); [22] (OLETF); [106]
(Zucker); [92] (GK)

Similar [100] (db/db§) [98] (HFD)

SGLT2

T1D

Increased
[32, 67, 107, 108, 109], [110]a (STZ); [84, 85] (Akita);

[99] (Alloxan)
[32, 83, 107, 108, 109] (STZ); [112] (Alloxan)

Similar [93] (STZ) [93] (STZ)

Reduced [85]b, [113]a,c (STZ) [85]b, [98] (STZ)

T2D

Increased [90] (JF); [111] (db/db); [94] (Zucker)
[85] (db/db); [100] (db/db§); [22] (OLETF); [106] (Zucker);

[104] (OB/OB)

Similar [100] (db/db§); [105] (HFD#)

Reduced [98] (HFD)

Results were compared to the corresponding controls; numbers are references; the study model is inside the parentheses. ∗Results for GLUT1 were specified for
whole kidney (WK) or cortex (C) due to the different availability of GLUT1 in distinct nephron sites, while GLUT2, SGLT1, and SGLT2 are available only at
proximal tubules level. aShort-duration diabetes. bInitially reduced followed by a partial recovery but maintaining lower levels. cProtein activity was also
reduced. STZ: streptozotocin model; db/db: leptin receptor mutation model; GK: Goto–Kakizaki diabetic rats; HFD: high-fat diet; OLETF: Otsuka Long-
Evans Tokushima Fatty rats; MG: monosodium glutamate treatment. §Mix model with insulinopenic and insulin-resistant rats. #Insulin resistance without
changes in glycaemic levels compared to controls.
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defines the maximum renal glucose reabsorptive capacity
(Tmax). After Tmax is reached, increments in blood glucose
result in equal linear increments in glycosuria [48, 116, 117].

Tmax for glucose is 15 to 20% higher in diabetic
patients (356 to 463mg/min) compared to healthy subjects
(303 to 404 mg/min) [15, 16, 48, 118] despite RTG variability
in the former overlapping the expected RTG of the latter [17–
19, 119]. The RTG seems to be increased in patients with
T2D, especially in the elderly and those with long diabetes
duration and higher body mass index [19]. In these patients,
supposed to be the best candidates for SGLT2 inhibition
because of their high RTG, the damaged kidney structure
and its reduced function may impair the expected glycosuric
response. In fact, a better SGLT2i effect is observed in youn-
ger diabetic patients [28].

The few studies carried out in kidneys from T2D patients
reported decreased [70] or unchanged [68] GLUT1 mRNA
levels while GLUT2 mRNA was described as reduced [68]
or raised [100]. In exfoliated PT cells, isolated from the urine
of T2D patients and cultured in a hyperglycaemic environ-
ment, GLUT2 and SGLT2 protein andmRNAwere increased
compared to healthy controls [69].

In diabetic patients, SGLT1 mRNA levels in tissues from
biopsies [68, 100] or nephrectomies [70] were unchanged
[70, 100] or raised [68] without any data about protein
levels. Regarding SGLT2, its mRNA levels were described
as increased [100] or reduced [68, 70] while increased pro-
tein content was reported [100]. These very conflicting
results can be explained by methodological differences in tis-
sue collection and storage, diabetic status, and possible kid-
ney abnormalities of the control group.

3.2.4. Glucose Effects on Renal Glucose Transporters. In ani-
mal models, plasma and luminal glucose concentrations have
been shown to stimulate GLUT2 expression [26, 120] and,
even, to translocate the transporter from basolateral to
BBM side [26]. In canine PT polarized cultures with apical
and basolateral cell layers, GLUT2 migrated to the apical side
exposed to isolated glucose stimulus [20].

Both SGLTs also seem to be under glucose influence. In
cultures of human embryonic kidney (HEK) cells, glucose
promoted trafficking of SGLT1 proteins to plasma mem-
brane without changes in the total pool [23] but did not
change SGLT1 mRNA levels in PT cultured human kidney-
2 (HK2) cells [22]. In addition, glucose stimulated SGLT2
mRNA transcription and amplified SGLT2 protein pool in
cultures of human PT cells [22] and promoted its transloca-
tion from the intracellular compartment to the membrane
in HEK cell cultures [21]. One study, on the other hand,
reported a neutral glucose effect on SGLT2 content and/or
activity in cultures of human PT cells [121].

3.2.5. Insulin Effect on Renal Glucose Transport. Insulin
effects on cells and tissue metabolism result from a highly
integrated network of different pathways [122]. IRecs on cell
surface, after the insulin binding, phosphorylate the insulin
receptor substrate proteins (IRS) that, in turn, activate two
main signalling pathways: the phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (AKT) pathway, which regulates

the majority of insulin metabolic effects, and the Ras-
mitogen-activated protein kinase (MAPK) pathway. MAPK
participates in the control of cell growth and differentiation
through gene expression regulation [122–124]. Insulin itself
is the utmost inhibitor of its own signalling [123].

In 1951, Farber at al. demonstrated that insulin decreased
Tmax in diabetic patients but under very high insulin plasma
levels [48]. However, in a recent trial, physiological insulin
levels increased urinary glucose excretion under hyperglycae-
mic conditions in healthy but not in diabetic volunteers
[125]. Both studies separated the insulin effect from glycae-
mic variation. Thus, emerging questions are as follows: in
which way is the higher Tmax of diabetic patients related to
insulin resistance, hyperinsulinaemia, or insulin deficiency;
and which are the relationships between the insulin signal-
ling and PTs glucose transport proteins activity. That pro-
vides a rationale to investigate an insulin effect, isolated or
combined to glucose and insulin resistance, on glucose trans-
port proteins, mainly on their function.

Assessing insulin action by itself, a dual temporal insulin
effect on glucose uptake was reported in murine PT cultures:
raised in the first twenty minutes and returning to the initial
rate after thirty minutes [49]. In these cultures, insulin
increased GLUT1 mRNA and membrane protein contents
but other glucose transporters were not evaluated. Accord-
ingly, regulatory proteins involved in pathways triggered by
insulin upregulates the cell surface GLUT1 expression in
HEK cell cultures [126]. GLUT1 traffic to the apical mem-
brane in HEK cells has been demonstrated under PI3K/AKT
signalling with elevated glucose uptake [127]. The AKT signal-
ling interacts with megalin and the AKT substrate of 160kDa
(AS160), the most downstream insulin signalling step related
to insulin-stimulated glucose transport [126, 128]. This sig-
nalling reproduces the same insulin-dependent GLUT4 traf-
fic demonstrated in adipocytes [129] and myocytes [130] and
could justify GLUT1 raising in HEK and PT cultures exposed
to insulin. Concerning renal GLUT2 expression, it was
elevated in the presence of insulin resistance, visceral obe-
sity, high triglycerides, and low high-density lipoprotein cho-
lesterol concentrations even under normal glucose levels, in
Otsuka Long-Evans Tokushima Fatty (OLETF) rats [25], a
T2D model.

About the SGLT system, insulin seems to regulate SGLT1
directly [21] and indirectly [131, 132]. In HEK cell cultures,
two hours of insulin exposition inhibited SGLT1 activity
[21]. In contrast, the serum and glucocorticoid inducible
kinase (SGK1), which is activated by both glucose [133]
and insulin [131], stimulated SGLT1 function [132]. The
reported findings are very important since the SGLT1 system
is virtually fully activated after SGLT2i use or in high glycae-
mic levels as in diabetes. Besides, SGLT1 is the predominant
BBM glucose transporter at PT S3 portion [63, 64], the neph-
ron site with the highest IRec level (46).

Experimental studies indicate SGLT2 activation by
insulin. In fact, IRecs seem to be required for maximal
SGLT2 expression and SGLT2-mediated glucose reabsorp-
tion as evidenced by studies in mice knockout for renal
tubule-specific IRecs [134]. Insulin also raised the SGLT2
activity [21, 121] and protein levels [121] independently

5Journal of Diabetes Research



of glucose concentrations in cultures of human kidney cells.
In HEK cells, insulin increased SGLT2 glucose transport by
200 to 300%, probably by stimulating the SGLT2 transloca-
tion from an intracellular pool to the S1 and S2 BBM seg-
ments [21]. A similar finding was reported using cultured
human PT cells where insulin increased SGLT2 content
and/or activity in a dose-dependent response [121]. How-
ever, in HK2 cells, the activation of the liver X receptor
decreases SGLT2 protein and its function. The liver X recep-
tor is a nuclear receptor family that plays a major role in
energy metabolism and regulates several membrane trans-
porters. As insulin activates liver X receptor, it could indi-
rectly decrease SGLT2 content [135]. Furthermore, in an
Alloxan T1D rat model, insulin reduced SGLT2 mRNA inde-
pendently of glucose levels [112]. Despite the conflicting
data, all these findings open the possibility that the higher
SGLT2 levels in diabetic states can be attributed not only to
elevated glycaemic concentrations but also to a direct or indi-
rect insulin action. Moreover, insulin resistance perhaps
modulates SGLT availability and activity, but this issue was
not well evaluated until now.

As insulin resistance is associated with an imbalance of
the autonomic system, insulin could indirectly modulate
the RTG and Tmax through sympathetic system stimulation.
In fact, the reduction of renal sympathetic activity limits
SGLT2 excessive transcription in rat models enhancing uri-
nary glucose excretion [22] as well as reducing renal gluco-
neogenesis in pigs [136].

Organic anion transporters (OAT), proteins situated in
the basal membrane of PT cells, contribute to cellular uptake
and secretion of multiple molecules to the luminal side,
including the SGLT2 inhibitors [137, 138]. The SGLT2i
action is related to the SGLTi luminal concentration reached
in the S1 and S2 portions and thus depends primarily on the
glomerular filtration [139]. However, tubular secretion of
SGLT2i [140] mediated by OAT proteins increases its tubular
concentration and action [137]. OAT type 3 (OAT3), through
its colocalization with SGLT2 but not with SGLT1, enhanced
the empagliflozin glycosuric effect [140]. The insulin effect
raising [141] and the insulin resistance decreasing [142] renal
OAT3 activity on the renal cortex suggest a link between insu-
lin action and pharmacological inhibition of SGLT2. Indeed, a
better understanding of insulin effects on tubular glucose
transport and its interaction with SGLTi is imperative.

3.2.6. Na+K+ATPase (NKA). The ubiquitous NKA protein
and its activity have been intensively studied for some
decades before our review interval. This transporter is under
the influence of many factors, including glucose, catechol-
amines, C-peptide, insulin, and other hormones [143, 144].
The insulin effect on NKA activity is cell type-specific and
depends on the time and intensity of exposition displaying
acute and chronic responses [144, 145].

NKA maintains a sodium gradient across the basolateral
membrane of PT cells that provides the driving force for the
SGLT activity [146]. In this way, changes in NKA activity
presumably have an impact on SGLT function and glucose
recovery. As insulin influences NKA function and that func-
tion directly modulates the SGLT glucose uptake, to evaluate

the NKA activity in diabetes can give important information
concerning the mechanisms of renal glucose handling regula-
tion by insulin.

Old studies in diabetes models evaluated the NKA
activity in the whole kidney and nephron segments, but
not in isolated PTs [147], and were inconclusive. Results
of recent studies in the whole kidney are still contradictory
[148–154] probably because of mixed tissue responses and
discrepancies in disease duration and glucose levels.

In the renal cortex of murine STZ models, NKA activity
was reported as increased [155–157] or as reduced due to
impaired insulin binding to its receptor [158]. In two of those
reports with increased NKA activity, insulin treatment
reduced it [155, 157]. The duration of disease, i.e., sustained
hyperglycaemia or chronic adaptation to it, could have con-
tributed to the differences, as in one study diabetes lasted
twice as long as in the other. A specific study on PTs of
T2D rats showed a raised NKA activity [159]. In any case,
none of these studies investigated the insulin and glucose
effects separately.

Although these do not fully represent the real in vivo pro-
cess, cell culture studies evaluating isolated insulin and glu-
cose effects can give a better understanding of the
interaction between NKA activity and insulin signalling. Glu-
cose reduced NKA membrane protein and its activity in cul-
tured tubular cells from human nephrectomies [143], and an
indirect effect of glucose was demonstrated in HK2 cell cul-
tures where advanced glycation end products reduced NKA
activity [160, 161]. An inhibitory glucose effect was also dem-
onstrated in cell cultures of proximal tubule lines from por-
cine kidneys (LLC-PK1) associated with a downregulation
of the surface expression α1 subunit, the NKA active site
[162, 163]. Thus, glucose seems to be a negative regulator
of its own uptake.

Regarding insulin, a short exposition to it (until 30
minutes) raised NKA activity [160, 161, 164], whereas expo-
sition for more than 24 hours reduced NKA activity in rat PT
cultures [165]. In the same way, in a culture complex model,
insulin exposition raised renal NKA activity in the first 30
minutes, but it returned to the baseline levels after 2 hours
and was even lower at 48-hour measurements [166]. This
reduction was likewise observed after one hour of insulin
exposition in another study [167]. Taken together, these
results suggest a dual temporal insulin action on NKA activ-
ity. In the NKA low activity second phase, insulin could limit
SGLT function by reducing the sodium gradient across the
BBM. However, once glucose impacts NKA activity too, the
described limiting insulin effect should be evaluated also in
the presence of variable and elevated glucose levels, as in dia-
betes states. Besides, it should be assessed considering a pos-
sible renal insulin resistance.

C-peptide is another reported NKA modulator of inter-
est. It increased NKA activity in cultures of human tubular
cells from nondiabetic patients [143] and increased NKA
alpha subunit mRNA in the renal cortex from STZ rats [168].

3.3. Insulin Regulation of Renal Gluconeogenesis. Another
important insulin action on PTs is gluconeogenesis inhibi-
tion. Liver and renal cortical cells, primarily the PTs [3], are
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classical tissues that have the enzymatic apparatus necessary
to significantly release glucose into the circulation. Hence,
PTs contribute to the total endogenous glucose production
in fasting and even in postprandial states [47]. Renal glucose
release under normal conditions is about 20 to 25% of total
systemic glucose production in fasting and 60% in the post-
prandial state [169].

As kidneys are not able to store significant amounts of
glycogen and as glycogenolysis enzymes are lacking, the renal
glucose production is provided basically by gluconeogenesis
that generates 15–55 g of glucose and kidneys metabolize
25–35 g of glucose per day [47, 170]. Insulin suppresses the
renal gluconeogenesis to a lesser extent than it does in the
liver probably because of the lower kidney sensitivity to this
insulin effect. However, such a difference could be the result
of lower insulin delivery to the renal tissue. Furthermore,
glucagon has little to no effect on renal gluconeogenesis
[170–172]; hence, catecholamines are the major counter
regulator of insulin-induced inhibition of gluconeogenesis
in the kidneys [170, 172].

Renal gluconeogenesis is enhanced in STZ rats [4, 14, 46,
67, 110, 173], in murine model knockout for IRecs [174] or
IRS1 plus IRS2 [4], in a mix model of high-fat diet plus
STZ [175], and in T2D murine models [176, 177] demon-
strating the essential insulin role.

Reabsorbed glucose from tubular filtrate [4, 178] and
insulin [4] seems to have a complementary inhibitory effect
on renal gluconeogenesis. In fact, the higher postprandial
insulin levels reduce PT gluconeogenic enzyme transcription
in wild mice [4] and rabbits [179], and gluconeogenic gene
expression was reduced by the glucose counterregulatory
effect in insulin-resistant and insulinopenic models [4]. In
addition, SGLT1 plus SGLT2 inhibition by phlorizin restored
gluconeogenic activity in these models [4] and isolated
SGLT2 inhibition in normal mice activated renal gluco-
neogenic gene expression [178]. Therefore, the reduction
of glucose flux across PT cells stimulates gluconeogenesis.
Moreover, in HK2 cell cultures, insulin and glucose inhibit
gluconeogenic enzymes across distinct pathways [4].

In accordance, PT cells from human nephrectomies
[176] and HK2 cell cultures [4] exposed to insulin undergo
gluconeogenesis reduction. However, a high gluconeogenic
enzyme content in human renal biopsies from T2D was
reported [46] which could be interpreted as an impairment
of insulin action on kidneys, maybe a kidney-specific insulin
resistance. The intracellular glucose generated from high-
intensity gluconeogenesis might impact the glucose transport
through modifications of SGLT2 transcription or its pool
mobilization, as described for the extracellular glucose stim-
ulus in PT cells of diabetes models. That could mean an addi-
tional indirect insulin regulation of glucose transport, in this
case, through gluconeogenesis.

3.4. Renal Insulin Resistance. Despite the higher Tmax for
glucose in diabetic patients compared to healthy subjects, it
is not clear if renal insulin resistance could impact glucose
transport. Even the concept of renal insulin resistance is still
debatable. Insulin resistance, in general, is characterized by
an attenuation of its triggered biologic processes inducing

metabolic impairment [123, 180, 181], and the insulin resis-
tance phenotype is variable among organs and even among
tissues from the same organ. For example, the liver has selec-
tive insulin resistance, and metabolic pathways diverge
according to specific spatial zonation near or distal to the
portal space [123]. The same may be possible in different
renal segments according to the presence and density of
IRecs and insulin availability considering the hormone filtra-
tion, extraction, and degradation.

The variability of protein isoforms of the insulin signal-
ling cascade (IRecs, IRS, PI3K, and AKT) [122] and of diabe-
tes phenotypes, mainly in T2D [182, 183], is partially due to
genetic variations [184–186] and may be related to specific
tissue resistance differences. In addition, insulin signalling
determines several phenotypic characteristics regarding cell
size and proliferation in PTs [187]. Therefore, another ques-
tion is if the insulin action on PT glucose transport is
impaired in insulin resistance.

The two IRec isoforms differ in affinity to insulin binding
and metabolic effects [188, 189]. In humans, IRec type B,
available mainly in insulin-sensitive organs (skeletal muscle,
liver, and adipose tissue) [188, 190], is abundant in kidneys
too [190]. In rat models, insulin binding [50] and IRecs are
present along the whole nephron with the highest levels at
PTs, especially in the outer medullary S3 portion [46]. The
distal convoluted tubule is another nephron segment where
insulin binding is high [50] and where insulin stimulates
sodium reabsorption [180, 191, 192]. At PTs, insulin stimu-
lates sodium uptake also through Na+H+ exchanger type 3
(NHE3) [180].

The differences in IRec density and of insulin concentra-
tion along the nephron indicate a specific site and variable
hormone action. Some findings in animal cell cultures dem-
onstrated variations of nephron or PT IRec densities. In
PTs of normal rats, IRecs are localized in the basolateral
membrane where it may sense insulin from capillaries while
IRec on the apical membrane is involved in insulin reab-
sorption [44, 46]. IRecs accumulate into the cytoplasm dur-
ing fasting and in the two membranes after refeeding
consequent to both insulin and glucose oscillations [46].
Insulin decreases its own receptors in murine PT cultured
cells [165]. Reduced IRec protein expression in all nephron
segments in either insulin-resistant [193] or insulinopenic
rats [46] has been described. The latter had a stronger reduc-
tion in the renal cortex and distal tubules [46]. The increase
of membrane IRecs after feeding was also lost in diabetes
models [46]. In humans, IRec protein expression was also
significantly reduced in renal biopsies from T2D patients
with a pronounced downregulation observed in PTs and
slightly in distal tubule cells [46] again suggesting reduced
insulin action on PTs.

Impairment of another step of the insulin signalling cas-
cade in PTs has been described. After the IRS phosphorylation
triggered by the insulin binding, the IRS tyrosine residues
serve as anchoring sites for regulatory subunits of PI3K at
the cell membrane cytoplasmic side [194]. The IRS1 and
IRS2 isoforms, widely expressed in human tissues, have dis-
tinct physiological roles in vivo [33] and are frequently
decreased in insulin-resistant states [124]. Hyperinsulinaemia
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induces IRS1 and IRS2 protein degradation [195] across dif-
ferent pathways [124], according to the target organ where
the insulin resistance takes place. In PTs of insulin-resistant
murine models, the stimulatory effect of insulin via IRS1 is
impaired in contrast to a preserved IRS2 insulin signalling
[180]. IRS2 has a role in PT sodium transport not related
to the SGLT system [121, 196]. On the other hand, IRS1
impaired signalling may be associated with a lesser inhibition
of renal gluconeogenesis [46, 47, 197]. While IRS1 expression
and phosphorylation are normal [198] or reduced [199],
IRS2 has normal levels in diabetes models [27, 191]. IRS2
expression is preserved in the renal cortex of insulin-
resistant patients [191] or even enhanced in tubules of
patients with diabetic nephropathy [200]. These findings cor-
roborate the renal insulin resistance hypothesis as well as a
site-specific and selective resistance. It is reasonable that a
PT insulin resistance, beyond being related to an impaired
gluconeogenesis regulation, could impact renal glucose
transport and thus hypothetically contribute to the higher
Tmax found in diabetes.

Other corroborating evidences are the increased inflam-
matory markers (NF-κB, TNFα, IL-6, and IL-10) reported
in cortical tissues of murine diabetes models [201–203],
HK2 cell cultures under high glucose environment (NF-κB)
[204], and cortical portions of T2D patients (NF-κB) [202].
These elevated markers were associated with disrupted insu-
lin signalling characterized by high FOXO1 and reduced
AKT [202], PPARγ, and ISRS1 [201, 203] but maintained
ISR2 levels [201]. Increased renal gluconeogenesis [202], as
expected, and reduced GLUT2 [203] were also associated
with enhanced inflammatory markers.

4. Summary of Evidence and Discussion

The review objective was to describe and summarize the liter-
ature data about the insulin effect on renal glucose transport.
We aimed to construct a sequence of evidence to facilitate the
reader access to the current understanding of insulin action
on renal proximal tubules, the nephron site responsible for
the glucose uptake from glomerular filtrate, and where renal
gluconeogenesis takes place. In the following paragraphs, the
main findings are summarized.

Kidneys, mainly PTs, play a significant role in insulin
metabolism. Insulin upregulates its own PT uptake and deg-
radation [41], thus changing insulin availability in the whole
body and specific renal sites [54, 55].

Regarding glucose transporters in diabetes, T1D models
showed increased GLUT1 protein availability and mRNA
expression in the whole kidney and higher cortical GLUT1
mRNA expression. These changes can be transitory and
site-specific. Results concerning GLUT2 are controversial.
SGLT1 studies agreed only in the upregulation of its mRNA
expression in T2D models while protein and mRNA SGLT2
contents in both T1D and T2D models are frequently
reported as increased (Table 1). Elevated SGLT2 levels could
explain the higher glucose uptake capacity of diabetic
patients. Human studies, however, are scarce and contradic-
tory with few studies demonstrating raised SGLT2 protein
availability in diabetic patients.

Insulin alone [21, 121] or with glucose [24, 25] can mod-
ulate availability and/or function of PT glucose transporters
beyond changing renal gluconeogenesis [4, 178]. The insulin
effect in murine PT cell cultures seems to increase GLUT1
content and trafficking [49, 126]. Insulin resistance, on the
other hand, is associated with increased GLUT2 in animal
models [25] while insulin replacement reduces this trans-
porter availability [24]. However, glucose level variations
may have confused the results in these models. While glucose
has promoted SGLT1 trafficking [23], insulin seems to
directly inhibit the SGLT1 activity in renal human cell cul-
tures [21] but could activate it indirectly [131]. Furthermore,
glucose seems to amplify membrane SGLT2 protein avail-
ability in these cultures [22]. It was reported that insulin
raises SGLT2 protein availability and activity independently
of glucose and additionally regulates SGLT2i bioavailability
[140–142]. Differences in IRec density along the nephron
[46] and in the type of IRS expressed in diverse tubule seg-
ments, or the same segment but under distinct insulin sensi-
tivity [27, 191, 199–201, 203], point to a renal site-specific
selective insulin action and, possibly, to a spatial selective
insulin resistance.

Insulin action on the sympathetic system can, indi-
rectly, modulate SGLT2, hence changing glucose handling
[22]. In addition, renal gluconeogenesis is enhanced in dia-
betes [4, 14, 46, 67, 110, 173–177] and is inhibited by insulin
[4, 179], which could influence glucose reabsorption through
SGLT2 [21, 22].

NKA activity might impact SGLTs by providing the
driving force for their activity [146]. In murine models of
diabetes, changes in NKA function are probably due to high
glycaemic levels [155–157, 159] and impaired insulin signal-
ling [158]. Nevertheless, the results’ heterogeneity does not
allow to clearly define the insulin effect on NKA. In com-
plex models of animal PT cultures, NKA activity increased
after short exposition to insulin but decreased under sus-
tained stimulus [160, 161, 164–167]. In human tubular cell
cultures, glucose inhibited while C-peptide stimulated NKA
activity [143, 168].

All of the above findings are summarized in Figures 2(a)
and 2(b).

Therefore, the elevated Tmax of diabetic patients [16,
18, 19, 48, 118] yet so far not completely known is possi-
bly associated with an upregulation of glucose protein
transporters and may be related to insulin in many ways.
Human studies with reproducible and comparable meth-
odology are needed to understand the real impact of insu-
lin on glucose transport in healthy and diabetic subjects,
independently of glucose influence.

Our review has limitations. It is circumscribed to publica-
tions in the last 10 years. The literature search using specific
terms and the limitation to publications in English may have
missed some papers related to our aim. Other difficulties are
related to the issue itself. In fact, most studies did not have
the insulin action on glucose transport as their first objective.
Results are not always comparable taking into account differ-
ences among species [102, 189, 205] and study models. In
human studies, one limitation is the inclusion of subjects
with other kidney diseases as the control group rather than
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Figure 2: (a) Insulin effect on renal proximal tubule cells. (b) Diabetes, hyperinsulinaemia, and insulin resistance impact on renal proximal
tubule cells. Grey arrows = flux; black continuous arrows = stimulatory effect; black interrupted arrows = inhibitory effect; thicker
arrows = increased activity. I: insulin; GLU: glucose; ROS: reactive oxygen species; NHE3: Na+H+ exchanger type 3; NKA: Na+K+ATPase;
IRecs: insulin receptors; IRS: insulin receptor substrate proteins; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells;
TNFα: tumor necrosis factor alpha; IL-6 and IL-10: interleukins. ?Scanty or conflicting data; //reduced effect; ∗enhanced in animal models
but conflicting human data; ∗∗enhanced in murine models but reduced in cultures; §temporal dual action according to exposition (short
time = stimulatory and sustained = inhibitory); #total NKA function increased despite inhibitory GLU effect and mitochondrial dysfunction.
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just healthy ones. Moreover, frequently, insulin and glucose
effects were not evaluated separately. Cell culture models
are able to isolate these effects although they do not consider
the microenvironment of the whole organ, possibly influenc-
ing transcriptional regulators of genes involved in glucose
utilization [49, 206], and do not consider the hormonal [49,
207–209] and neural [22, 209] crosstalking among organs.
It is still important to take into account that mRNA or pro-
tein measurements do not necessarily reflect their dynamic
function. At the same protein content, its function can be
enhanced or diminished by modification of serum lipids
and fluidity in the cytoplasmic membrane [144], by trans-
porter conformational changes [5] or by subcellular spatial
arrangement [67, 210]. Furthermore, protein interactions in
the cytoplasmic membrane side, as described for SGLT2
and its anchoring protein [211], can be related to variation
in glucose transporter function without any change in the
protein content [210, 212].

In conclusion, the upregulation of renal glucose trans-
porters, mainly SGLT2, associated with sustained hypergly-
caemia, or to a disrupted renal insulin signalling, can be
related to the increased maximum renal glucose reabsorp-
tive capacity observed in diabetes. The several effects of
insulin on distinct kidney sites can modify glucose trans-
port directly, through changes of glucose transporter avail-
ability and function, or indirectly through Na+K+ATPase
activity modulation. Thus, there is evidence of insulin effect
not only on renal gluconeogenesis but also on renal glucose
transport. However, until now the scarcity and the hetero-
geneity of the studies limit an accurate proposal of the
implicated mechanisms.
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