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A somatic role for the histone methyltransferase
Setdb1 in endogenous retrovirus silencing
Masaki Kato1, Keiko Takemoto2 & Yoichi Shinkai1

Subsets of endogenous retroviruses (ERVs) are derepressed in mouse embryonic stem cells

(mESCs) deficient for Setdb1, which catalyzes histone H3 lysine 9 trimethylation (H3K9me3).

Most of those ERVs, including IAPs, remain silent if Setdb1 is deleted in differentiated

embryonic cells; however they are derepressed when deficient for Dnmt1, suggesting that

Setdb1 is dispensable for ERV silencing in somatic cells. However, H3K9me3 enrichment on

ERVs is maintained in differentiated cells and is mostly diminished in mouse embryonic

fibroblasts (MEFs) lacking Setdb1. Here we find that distinctive sets of ERVs are reactivated in

different types of Setdb1-deficient somatic cells, including the VL30-class of ERVs in MEFs,

whose derepression is dependent on cell-type-specific transcription factors (TFs). These data

suggest a more general role for Setdb1 in ERV silencing, which provides an additional layer of

epigenetic silencing through the H3K9me3 modification.
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Endogenous retroviruses (ERVs) are major components of
mammalian genomes1. To silence ERV activity and trans-
position, hosts have evolved multiple silencing mechanisms

to establish and maintain repressive heterochromatin formation
across these elements2. We previously demonstrated that the
H3K9me3 methyltransferase Setdb1 (Eset, KMT1E) represses
intracisternal A particles (IAPs) and other ERVs in mouse
embryonic stem cells (mESCs)3,4. Similarly, the depletion of
Trim28 (Kap1, Tif1β), which is a co-repressor of Setdb1, leads to
the derepression of IAP elements in mESCs5. Trim28 is recruited
to ERVs via sequence-specific Krüppel-associated box zinc-finger
proteins (KRAB-ZFPs), a large family of transcription factors
(TFs) that might have expanded and co-evolved in mammalian
genomes with the expansion of ERVs6,7. DNA methylation is
mostly dispensable for the silencing of ERVs repressed by Setdb1
in early embryonic cells3,4. Setdb1 is also required for the silen-
cing of ERVs at approximately embryonic day 13.5 (E13.5) in
primordial germ cells8, in which DNA is typically hypomethy-
lated9,10. In contrast, in somatic and male germ-lineage cells,
which are further differentiated, DNA methylation has been
proposed to be the main mechanism to silence ERVs and non-
long terminal repeat (LTR) retroelements. In this context, CpG
dinucleotides of retroelements are densely methylated and Dnmt1
inactivation leads to IAP derepression in embryos or differ-
entiated mESCs upon depletion of LIF signals11,12. Thus, it is
generally considered that the H3K9me3-mediated ERV silencing
pathway in mESCs is rapidly replaced by a more permanent
silencing mechanism, i.e., Trim28-mediated de novo DNA
methylation, in differentiated embryonic cells13–15. Once DNA
methylation is established, sequence-specific KRAB-ZFPs and
Trim28 are no longer required16,17.

DNA methylation patterns acquired during development have
long been considered a stable epigenetic mark in somatic cells and
adult cells. However, several recent studies have revealed that
some ERVs are also derepressed in differentiated somatic cells
lacking Trim28 or Setdb118–22. In this study, we re-evaluate the
role of Setdb1 in ERV silencing, not only in ESCs, but also in
differentiated somatic cells, in which ERVs are heavily DNA
methylated. We find that specific sets of ERVs are reactivated in
different types of Setdb1-deficient somatic cells. Our data suggest
that Setdb1 plays a more general role in ERV silencing, providing
an additional silencing mechanism through H3K9me3.

Results
Derepression of distinct ERV families upon loss of Setdb1.
H3K9me3 enrichment in ERV family members has been detected
in mESCs3–5,23,24. Although DNA methylation is important for
ERV silencing in differentiated cells, the relevance of H3K9me3
marks is not well defined. To analyze whether the H3K9me3
marks on ERVs are important for silencing in differentiated cell
types, we performed RNA sequencing (RNA-seq) analysis on
Setdb1 conditional knockout (cKO) immortalized mouse
embryonic fibroblasts (iMEFs)3, which is a model for differ-
entiated cells. Our data were compared with previously published
RNA-seq datasets for mESCs and other differentiated cell types
with or without Setdb1 KO4,18,20. The amount of Setdb1 in iMEFs
is almost 10 times lower than that in ESCs, and depletion of
Setdb1 by 4-hydroxytamoxifen (4OHT) in iMEFs induced growth
defects, similar to that in Setdb1 cKO mESCs. However, the
growth recovered 8 days after 4OHT treatment in iMEFs was
unlike that in ESCs3 (Supplementary Fig. 1). We analyzed total
RNA (rRNA was depleted) from untreated and 4OHT-treated
Setdb1 cKO iMEFs 5 days after treatment. An RNA-seq analysis
of repeats in Setdb1 cKO iMEFs revealed a substantially increased
expression of ERVs after Setdb1 depletion, particularly five

elements annotated by Repbase, i.e., MMVL30-int, MuLV-int,
RLTR4_Mm, RLTR4_Mm-int, and RLTR6_Mm (Fig. 1a, high-
lighted in red). In contrast, distinct ERV families were dere-
pressed in other cell types when Setdb1 was removed4,18–20,25.
For example, MMERVK10C exhibited the highest induction in
Setdb1 KO ESCs. Furthermore, IAPLTR1_, 1a_, and 2_Mm were
highly derepressed in the fetal forebrains of Setdb1 KO mice, and
RLTR3_Mm was specifically induced in Setdb1 KO granulocyte/
macrophage progenitors (GMPs) or bone marrow Lin− Sca-1+ c-
Kit+ (LSK) cells.

A viral defense response is induced in Setdb1 KO iMEFs. We
also examined the transcription of non-repeats, and identified 244
RefSeq genes that were upregulated by at least 2-fold in 4OHT-
treated Setdb1 cKO iMEFs, compared to untreated cKO iMEFs
(Supplementary Fig. 2a and Supplementary Data 1). A Gene
Ontology analysis of the upregulated genes revealed the major
representation of genes involved in immune or defense responses
(Supplementary Fig. 2b). In particular, we observed the upregu-
lation of several genes related to interferon (IFN) responses, such
as Irf7, Irf9, Usp18, and Stat1 in Setdb1 KO iMEFs (Supple-
mentary Fig. 2c). Irf7, which is a master regulator of type-I IFN-
dependent immune responses, was upregulated by more than
20-fold.

To determine how many genes upregulated in Setdb1 KO
iMEFs were directly repressed by Setdb1, we performed a
chromatin immunoprecipitation sequencing (ChIP-seq) analysis
of H3K9me3 in wild-type (WT) iMEFs. Surprisingly, only 1% of
the promoter regions of genes that were upregulated in Setdb1 KO
iMEFs (2/244) were marked by H3K9me3 (Supplementary
Fig. 3a), indicating that almost all genes induced by Setdb1 KO
are indirectly regulated by Setdb1. This is consistent with the
results obtained for Setdb1 cKO mESCs4. Derepressed ERVs
might play a role in altering the gene expression profile of
Setdb1 KO cells, since transcriptionally reactivated ERVs
significantly enhance the transcription of their neighboring
genes4,18. Thus, we analyzed the correlation between upregulated
genes in Setdb1 KO iMEF cells and ERV insertions. In MEFs,
~50% of the H3K9me3-marked upregulated genes (11 out of 27
genes) had ERV or LINE insertions with H3K9me3 enrichment
(Supplementary Fig. 3a). H3K9me3 on these retroelements
diminished in MEFs after Setdb1 depletion (Supplementary
Fig. 3b and Supplementary Data 2). However, we did not observe
any derepressed elements inserted in the upregulated genes in
Setdb1 KO iMEFs, unlike those seen in Setdb1 KO ESCs or
forebrain cells4,18. Furthermore, we calculated the ratio between
upregulated genes with and without ERV insertions, and
compared it with those for the downregulated and unchanged
genes. There was no statistically significant difference between the
values for the upregulated genes and those for the other genes
(the ratio of upregulated genes is 0.0472, downregulated 144
genes 0.0434, and unchanged 22533 genes 0.0467, respectively,
thus ERVs seen at upregulated genes were expected by chance (P
= 0.12, binomial test)).

H3K9me3 on ERVs are preserved in distinct cell types. Next, we
tried to determine whether H3K9me3 marks on ERVs seen in
ESCs are preserved in distinct differentiated somatic cells. For
this, we utilized published H3K9 ChIP-seq datasets for ESCs24,
fetal forebrain cells18, iMEFs24, and GMPs20, and generated NGS
plots using the positions of H3K9me3 peaks for representative
ERVs (MMERVK10C-int, IAPEz-int, RLTR4_Mm-int, RLTR6-
int, and MMVL30-int), which are all derepressed in at least one of
the studied Setdb1 KO cell types (Fig. 1b). In this analysis, we
selected full-length ERV elements for each family. Comparison of
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H3K9me3 profiles demonstrated that the pattern of H3K9me3
peaks on ERVs are chiefly conserved among these distinct cell
types, although H3K9me3 enrichment seems lower in differ-
entiated cell types than in ESCs, which is consistent with the
results from a previous report24.

Setdb1-dependent H3K9me3 marks on ERVs. To address why
Setdb1 KO led to the derepression of distinct sets of ERV families,
we performed ChIP-seq analysis of H3K9me3 on Setdb1 cKO
iMEFs treated with or without 4OHT (KO) for 7 days, and
compared the data for the WT and KO samples. Genome-wide
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ChIP-seq analysis revealed that most of the enriched H3K9me3
on the examined ERVs was reduced in Setdb1 cKO iMEFs due to
4OHT treatment; however, the reduction level on each ERV was
variable (Fig. 1c and Supplementary Data 2). We observed a slight
reduction of H3K9me3 in LINE families (Fig. 1c and Supple-
mentary Fig. 3c). To validate the ChIP-seq data and to compare
Setdb1-dependent H3K9me3 on ERVs between iMEFs and ESCs,
we performed a ChIP-qPCR analysis of H3K9me3 on selected
ERVs and major satellite repeats for both cell types (Fig. 1d).
Consistent with previous results and NGS plot data (Fig. 1b),
H3K9me3 was enriched in the repeat domains of WT ESCs, but
exhibited much less enrichment on such repeats in iMEFs. After
Setdb1 depletion in Setdb1 cKO mESCs and iMEFs, we observed
a decrease in H3K9me3 enrichment at the MMVL30-int, IAPEz,
and RLTR4-int loci, suggesting that those H3K9me3 modifica-
tions were induced by Setdb1 in iMEFs (Fig. 1d). In contrast, we
did not observe any significant reduction of H3K9me3 at major
satellite loci in ESCs; however, a slight reduction was observed in
iMEFs, where Suv39h is responsible for most of H3K9me324.
Thus, Setdb1 regulated H3K9me3 marks at many of the ERV loci
that were examined.

Derepression of the VL30 family in Setdb1 KO MEFs. RNA-seq
analysis of repeats in Setdb1 cKO iMEFs revealed a substantial
increase in the expression of MMVL30-int and RLTR6_Mm
sequences (Fig. 1a). RLTR6_Mm is an LTR element flanking
MMVL30-int in the VL30 family (virus-like 30, MMVL30). The
VL30 ERV family can be largely classified into two groups, based
on their internal sequences. One group has RLTR6-int elements,
which are predominantly intact ERVs with coding regions for
retroviral Gag, Pol, and Env proteins; the second group has
MMVL30-int elements, which are likely derived from RLTR6-int
elements, but have lost their coding regions (Fig. 2a). In addition,
VL30-containing RLTR6 LTRs can be divided into four sub-
groups on the basis of their LTR U3 sequences26. RLTR6-int type
VL30 is mostly flanked by U3 class II RLTR6s; therefore, we
called it VL30 U3 class II. MMVL30-int is flanked by U3 class I,
III, or IV RLTR6s, and were thus called VL30 U3 class I, III, or
IV, respectively (Fig. 2a). U3 class III RLTR6s contain a DR2-type
all-trans retinoic acid (atRA)-response element (RARE), and U3
class III VL30 expression is induced by atRA in keratinocytes27.
On the other hand, U3 class II RLTR6s contain DR2-type and
DR5-type RAREs (Fig. 2a).

To identify which VL30 U3 classes are repressed by Setdb1 in
iMEFs, we analyzed the RNA-seq data of iMEFs with and without
Setdb1 depletion by treatment with 4OHT. After 4OHT
treatment, VL30 U3 class I and III were significantly derepressed
by more than 10-fold and 5-fold, respectively, and class IV was
marginally induced, but class II was unaffected (Fig. 2b). We
generated NGS plots, using the positions of H3K9me3 peaks on

VL30 U3 class I, III, and VI elements containing the MMVL30-
int sequence (Fig. 2c). They shared similar H3K9me3 peak
patterns in the three cell types (ESCs, forebrain cells, and iMEFs),
even though significant derepression of VL30 U3 class I and III
was only observed in Setdb1 KO iMEFs. We also observed similar
H3K9me3 peak patterns on U3 class II-containing RLTR6-int
sequences in the three cell types (Fig. 1b). ChIP-seq analysis of
Setdb1 KO iMEFs confirmed the loss of H3K9me3 in all four
classes of VL30 (Fig. 2d).

Distinct regulation mechanism for each VL30 U3 class. Since
specific U3 classes of VL30 were reactivated by Setdb1 KO in
iMEFs, we expected that each class would have different regula-
tion mechanisms for transcription. VL30 U3 class II has a pre-
dominantly intact internal sequence (Repbase annotation:
RLTR6-int) with coding regions for retroviral Gag, Pol, and Env
proteins (Fig. 2a). The H3K9me3 peaks are enriched not only on
the 5′ LTR, but also across the internal region (Fig. 2d right). As
stated, this VL30 U3 class II expression is restricted to Rar α
activity on LTR RAREs in the liver28. Therefore, the lack of
derepression of VL30 U3 class II in Setdb1 KO iMEFs might be
due to an absence of endogenous atRA in MEFs. We then eval-
uated the requirement of atRA for VL30 U3 class II transcription.
The addition of atRA alone did not activate VL30 U3 class II
expression in Setdb1 cKO iMEFs, but substantial induction was
observed after both atRA and 4OHT treatments (Fig. 3a). In
mESCs, Setdb1 KO or atRA treatment alone weakly activated
VL30 U3 class II; this activation was further enhanced after both
atRA and 4OHT treatment (Fig. 3b). Thus, for the U3 class II
VL30 expression in both MEFs and mESCs to be maximum, a
loss of H3K9me3 and the presence of atRA is required. We also
examined the effect of atRA on VL30 class I copies, but impact of
atRA addition to Setdb1 KO is marginal or absent for iMEFs and
ESCs, respectively.

Next, we focused on distinct individual elements of VL30 U3
class I (total 71 elements) to further investigate interactions
between Setdb1-mediated H3K9me3 and transcriptional silen-
cing. Twenty-two elements have a typical proline tRNA primer-
binding site (PBS-pro) near the 3′ end of their 5′ LTR. Not all of
these are derepressed in Setdb1 KO iMEFs (Fig. 3c top); PBS-pro-
negative elements are relatively more derepressed than their PBS-
pro-positive counterparts. Although unique mapping was incom-
plete due to highly homologous sequences, we tried to analyze the
reduction of H3K9me3 at the 5′ LTR regions of 71 VL30 U3 class
I elements in Setdb1 KO iMEFs using ChIP-seq data. We
observed a significant reduction of H3K9me3 at most of those
distinct element loci, but the reduction rate varied (Fig. 3c
bottom). We observed a marginal correlation between the
derepression rate and reduction rate of H3K9me3 for those
VL30 class I elements in Setdb1 KO iMEFs (Supplementary

Fig. 1 Different ERV families are derepressed by Setdb1 KO in different cell types. a Cell-type-specific ERV derepression in Setdb1 cKO cells. Expression of
ERV families in Setdb1 cKO ESC (day 6 after treatment with 4OHT (KO) or no treatment (WT))4, iMEF (day 5 after treatment with 4OHT (KO) or no
treatment (WT)), and E14.5 forebrain cells from WT and Emx2-Cre:Setdb1 fl/fl mice (KO)18. For GMP and LSK cells, bone marrow cells from Rosa-CreERT:
Setdb1 cKO mice were transplanted into irradiated recipient mice, GMP and LSK cells were then isolated after injection of 4OHT for 2 weeks (KO) or
control injection (WT)20. Only ERVs derepressed (≧2 fold) in at least one of the analyzed cell types with Setdb1 KO are listed. Heatmap indicates the
relative expression level of representative ERV families (the RPKM value). The ERVs derepressed (≧1.5 fold) in Setdb1 KO iMEFs are highlighted in red. b
H3K9me3 intensity profiles on different ERV families in different cell types. NGS plots show the fold enrichment of H3K9me3 from −5 kb to 10 kb around
genomic ERV elements in ESC, forebrain, iMEF, and GMP. We selected ERVs containing -int element with flanked LTRs (See Methods). Position 1 is 5′ start
site of the -int element. Positions of LTRs and int for each ERV element are indicated below the plots. c Bar plots showing the loss of H3K9me3 in ERV
families in Setdb1 KO (day 7 after 4OHT treatment: red bar) vs. WT (black bar) iMEF. The y axis indicates the fold enrichment of normalized ChIP read
density relative to input. ERV names written in green are analyzed in Fig. 1b. d ChIP-qPCR of H3K9me3 in the Gapdh promoter region indicated ERVs and
major satellite (Major S) loci of Setdb1 cKO ESCs and iMEFs. Values are means ± s.d. from independent experiments (n= 3). *0.005 < P < 0.05, **0.0005
< P < 0.005, Student’s t-test
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Fig. 4). Since only a subset of VL30 U3 class I was derepressed in
Setdb1 KO cells, this derepression variation cannot be explained
just by the reduction rate of H3K9me3.

The structural analysis of LTRs of VL30 has been reported to
show a possible requirement of tissue-specific TFs29. Thus, we
focused on the potential role of TFs in VL30 U3 class I
derepression in Setdb1 KO iMEFs. Multiple DNA sequence
alignment of the LTRs for VL30 U3 class I, generated using
Clustal Omega, revealed that the silent populations differ slightly
at the DNA sequence level (Fig. 3d). A motif analysis using the
Patch 1.0 database predicted binding sites for several TFs,
including AP-1, Ets1, and Elk, in the LTRs for VL30 U3 class I,
but motifs for Elk family and Ets1-binding sites were mutated in
the silent or low derepressed populations (Fig. 3d and
Supplementary Data 3). Elk-1 is a member of the Ets family of

TFs. Elk-1 and Ets1 appear to be direct targets of activated MAP
kinase (MAPK)30. Thus, we examined the requirement of MAPK
activity for VL30 U3 class I derepression in Setdb1 KO iMEFs.
PD0325901 is a potent MEK inhibitor that suppresses the
phosphorylation of ERK31. We treated Setdb1 cKO iMEFs with
PD0325901 for the final 24 h of a 5-day treatment with 4OHT
and observed a strong inhibition of VL30 derepression in
PD0325901-treated iMEFs (Fig. 3e). RNA-seq analysis showed
that induction of low derepressed VL30 elements with mutated
Elk/Ets binding sites, such as #58 and #47 copies were also
diminished by the MEK inhibitor treatment as similar to those
containing intact Elk/Ets binding sites (Supplementary Fig. 5a).
Indeed, AP-1 is known to be present downstream of the MAPK
pathway to activate VL30 elements32,33 and AP-1 binding site is
mostly intact in the derepressed VL30 elements regardless of Elk/
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Ets binding site mutation(s) (Fig. 3d and Supplementary Data 3).
Thus, we speculate that AP-1 also contribute to activation of
VL30 U3 class I elements after Setdb1 depletion. To test the direct
involvement of Ets1 in VL30 derepression, we performed ChIP-
qPCR analysis of Flag-tagged Ets1 to see an enrichment of Ets1 at
VL30 loci. We observed a slight enrichment of Ets1 at U3 class I
#9 loci (Ets binding site is intact) after Setdb1 depletion, but no
enrichment at #6 and #18 copies, in which the Ets-binding site is
mutated (Supplementary Fig. 5b), suggesting that Ets1 might
contribute to VL30 derepression. However, the Ets family is large,
and we do not rule out the possibility that other Ets proteins are

involved in VL30 derpression. Considering these results, we
conclude that most VL30-class ERVs are silenced by the Setdb1
pathway in MEFs. However, only specific sets of ERVs are
potentially active, depending on whether the regulatory elements
in their LTRs are compatible with the activity of TFs in distinct
cell types.

Distinct requirements for epigenetic marks in ERV silencing.
DNA methylation has an important role in proviral silencing in
somatic cells12,34, but the impact of DNA methylation over entire
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ERVs has not been well characterized, especially in differentiated
cells. Therefore, we performed RNA-seq analysis on Dnmt1
knock down (KD) iMEFs using siRNA. Surprisingly, only a small
fraction of ERV families was derepressed in Dnmt1 KD iMEFs,
involving mostly the IAPEz family and the flanking LTR
(IAPLTR1_Mm), with a much weaker fold induction of MuLV-
int and MMVL30-int (Fig. 4a top). We also reanalyzed public
RNA-seq data for WT and Dnmt1−/− iMEFs in the p53−/−

background35 to examine the derepression of ERVs. Consistent
with the Dnmt1 KD result, we observed a prominent derepression
of the IAPEz family and the flanking LTR (IAPLTR1_Mm)
(Supplementary Fig. 6). In Dnmt1 KO ESCs, the ERVs IAPEz and
IAPLTR1_Mm were also prominently derepressed (Fig. 4a bot-
tom)36.

Since DNA methylation is involved in silencing a subset of
ERVs, such as IAPEz, in mESCs in the absence of H3K9me34, we
examined whether the simultaneous depletion of DNA methyla-
tion and Setdb1 leads to a higher level of ERV reactivation in
iMEFs than in the Setdb1 KO alone. Setdb1 cKO iMEFs were
treated with siRNA specific to Dnmt1 alone or in combination
with 4OHT, and then RNA-seq analysis was performed. We did
not observe a strong augmentation of ERV derepression by the
simultaneous depletion of Dnmt1 and Setdb1 (Fig. 4a top). In
contrast to VL30, IAPs possess the highest CpG density36. We
also confirmed the RNA-seq data using RT-qPCR. Consistent
with the Dnmt1 KD iMEF and Dnmt1−/− iMEF RNA-seq results,
Dnmt1 KD alone induced a strong reactivation of IAPEz in
iMEFs (Fig. 4b), but the Setdb1 KO alone did not show any
reactivation. IAPEz did not show increased reactivation by
simultaneous depletion of Dnmt1 and Setdb1. On the other hand,
we observed a slight derepression of VL30 by Dnmt1 KD alone. In
addition, VL30 showed a minor augmentation in reactivation
following the simultaneous depletion of Dnmt1 and Setdb1,
compared to that by Setdb1 KO alone (Fig. 4b). For some of ERVs
like RLTR4, we observed a mild derepression and marginal
augmentation in induction due to the simultaneous depletion of
both Setdb1 and Dnmt1 (Fig. 4b).

We further analyzed distinct individual elements of VL30 U3
class I to investigate the role of DNA methylation and H3K9me3
in their silencing (Fig. 4c). Some of the Setdb1-repressed elements
like #9 and #38 (all non-PBS-pro) were also derepressed by
Dnmt1 KD with Dnmt1-specific siRNA, but most of these U3
class I elements were not derepressed, and the impact of the
simultaneous depletion of Dnmt1 and Setdb1 was marginal
(Fig. 4c). Dnmt1 siRNA treatment significantly reduced CG
methylation levels on IAPEz (at the Mnd1 locus) and VL30 (PBS-
pro) (Supplementary Fig. 7a); however, we did not detect clear
reduction in DNA methylation at the analyzed VL30 5′ LTR
sequences (individual locus of non-PBS-pro copies, #21, #38 and
pool of PBS-pro elements loci) after the depletion of Setdb1

(Supplementary Fig. 7b and 8). Collectively, the silencing of VL30
in MEFs mostly depends on the Setdb1 pathway, even though
DNA methylation contributes to this phenomenon to some
extent. In contrast, the Dnmt1-mediated pathway is critical for
the repression of IAPEz in iMEFs. Both the Dnmt1 and Setdb1
pathways contribute to IAPEz silencing in mESCs4.

Long-term-cultured Setdb1 KO iMEFs. In our RNA-seq analysis
using long-term-cultured Setdb1 KO iMEFs, we noticed that
reactivated ERV expression was lower than that in 4OHT-treated
Setdb1 cKO iMEFs (Supplementary Fig. 9a). To further examine
the dynamics of VL30 U3 class I derepression after the acute
depletion of Setdb1, we performed RT-qPCR analysis of VL30 U3
class I from day 0 to 11 days after the addition of 4OHT (Sup-
plementary Fig. 9b). Upregulation of VL30 U3 class I was
observed from day 4, and by day 8, the transcription level was
more than 60-fold higher than the WT levels. However, this VL30
U3 class I expression decreased progressively after day 9. We
performed ChIP-qPCR for H3K9me3 in WT, 4OHT-treated
Setdb1 cKO iMEFs, and long-term-cultured Setdb1 KO iMEFs,
and observed a lower enrichment of H3K9me3 at VL30 loci in
long-term-cultured Setdb1 KO iMEFs, which was not the case in
WT cells (Supplementary Fig. 9c). We did not observe any
recovery of H3K9me3 after long-term culturing. It is possible that
other epigenetic repressive modifications, like DNA methylation
or H3K27me3 modification, function to silence VL30, as backup
mechanisms. Additional treatment of long-term-cultured Setdb1
KO iMEFs with 5-Aza-dC, a Dnmt inhibitor, did not increase
VL30 expression (Supplementary Fig. 9d). Thus, the desensiti-
zation of VL30 expression in long-term-cultured Setdb1 KO
iMEFs is not due to DNA methylation as a backup mechanism.
To examine the potential role of H3K27me3, we treated cells with
GSK126, which is a specific inhibitor of Ezh237. Depletion of
H3K27me3 in long-term-cultured Setdb1 KO iMEFs did not
augment the expression of VL30 induced by Setdb1 KO alone;
however, the overall H3K27me3 level was significantly reduced
(Supplementary Fig. 9e, f).

Distinct requirements for Setdb1, Trim28, and Zfp809. Zfp809,
a member of the KRAB-ZFP family, initiates the silencing of
VL30 family members in a sequence-specific manner via the
recruitment of Trim28–Setdb1 complexes38. Zfp809 binds to
PBS-pro, which is used by some retroviruses to prime reverse
transcription. Thus, Zfp809 can recruit Trim28 and Setdb1 to
ERVs possessing PBS-pro39–41. We analyzed the RNA-seq data of
Setdb1 KO iMEFs and Zfp809 KO MEFs38 to compare non-PBS-
pro and PBS-pro, with respect to VL30 derepression. The Zfp809
KO MEFs were obtained from the KO embryo38. We observed a
significant derepression of the non-PBS-pro VL30 group in

Fig. 3 VL30 activation requires cell-type-specific TFs. a, b RT-qPCR of the VL30 U3 classes in RNA from Setdb1 cKO iMEFs (a) or ESCs (33#6,3) (b),
untreated or treated with 1 μM all-trans retinoic acid (atRA), with or without 4OHT (n= 3 biological replicates). For ESC data (n= 2 biological replicates),
we normalized each expression to VL30 U3 class I LTR expression of control iMEF. Error bars represent s.d. *0.005 < P < 0.05, **0.0005 < P < 0.005, ***P
< 0.0005, Student’s t-test. c Upper panel; the derepression induced by Setdb1 depletion in each VL30 U3 class I element (totally 71 elements) is shown. 22
loci on the right side have typical PBS-pro near the 3′ end of 5′ LTR. Selected loci for parallel alignment shown in d are denoted by H, M, and L symbols
based on their derepression (H: high assigned to the locus where RPKMKO (RPKM of Setdb1 KO) is >100, M: mild assigned to 10≤ RPKMKO < 100, and L:
low assigned to RPKMKO < 10, respectively). Lower panel: H3K9me3 ChIP-seq read counts on 5′ LTR at each VL30 U3 class I locus in Setdb1 cKO iMEFs
(no treatment (WT: blue bar) and day 7 after treatment of 4OHT (KO: light blue bar)) are shown. d Alignment of U3 sequences of VL30 U3 class I. The red
box indicates the consensus sequence of Elk family binding sites. The blue and green boxes indicate the consensus sequences of AP-1 and Ets, respectively.
High, mild, and low indicate in Fig. 3c upper panel. Entire alignment of VL30 class I shown in Fig. 3c is in Supplementary Data 3. We defined the copies for
RPKMKO < 10 as silenced. e Inhibition of the MAPK pathway precludes the transcriptional activation of VL30 in Setdb1 KO iMEFs. RT-qPCR analysis of
VL30 U3 class I. 4OHT treatment was applied for the first 4 days and cells were harvested at day 6. The MEK inhibitor PD0325901 (PD; 1 µM) was added
for the last 24 h (n= 2 biological replicates). Error bars represent s.d. *0.005 < P < 0.05, **0.0005 < P < 0.005, Student’s t-test
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Setdb1 KO MEFs, but not in Zfp809 KO MEFs (Fig. 5a). In the
PBS-pro VL30 group, both Setdb1 and Zfp809 KO MEFs showed
derepression of VL30 (Fig. 5a); however, derepression in the
Setdb1 KO was less prominent than that in the non-PBS-pro
group, as shown in Fig. 3c. These results indicate that ERVs
possessing non-PBS-pro escape repression by Zfp809, but are
targeted by other silencing factors that can recruit Setdb1. Zfp809
is required to initiate stable epigenetic silencing during develop-
ment, but not to maintain silencing in somatic cells38.

To confirm whether Trim28 is also required for the
maintenance of ERV silencing, previously published RNA-seq
data from Trim28 KO MEFs, in which Trim28 was depleted in

the conditional KO MEFs5, were compared with our Setdb1 KO
iMEF data. In addition to the lack of increase in IAPEz
expression, which was published previously, an increase of less
than 2-fold in VL30 (MMVL30-int) expression in Trim28 KO
MEFs was observed (Fig. 5b). It is possible that the derepression
of ERVs is desensitized after long-term culture of Trim28 KO
MEFs. Therefore, we utilized CRISPR-gRNA systems to inactivate
Trim28, and analyzed the silencing of VL30 in iMEFs in a short
time period. We also used the CRISPR-gRNA system for Setdb1
inactivation. Both Trim28 and Setdb1 gRNAs efficiently diminished
protein expression of their target molecules, although the cells were
mixture of WT, and the incomplete and complete KO populations
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(Fig. 5c, right panel). The induction of U3 class I VL30 expression
in iMEFs by this Setdb1 gRNA treatment was greater than 30-fold
induction. In contrast, we observed an ~2-fold increase in VL30
expression using Trim28 gRNA (Fig. 5c, left panel), consistent with
the results for the Trim28 KO MEFs (Fig. 5b). Thus, these results
indicate that Trim28 is mostly dispensable for the maintenance of
VL30 silencing in MEFs, like Zfp809.

Finally, to test whether restoring Setdb1 expression can reverse
U3 class I VL30 expression in long-term-cultured Setdb1 KO
iMEFs, we stably transfected cells with a transposon-based Setdb1
expression vector. Exogenous Setdb1 was capable of repressing
VL30 upregulation, but this expression was still higher (~3-fold)
than that in WT iMEFs (Fig. 5d). These results suggest that
Setdb1 is recruited to VL30 loci via additional, unknown factors
to initiate silencing in iMEFs.
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Discussion
In this study, we found that Setdb1 has a constant role in ERV
silencing, which serves as a layer of epigenetic silencing not only
in early embryonic or germ-lineage cells, but also in further dif-
ferentiated somatic cells, even though a subset of cell-type-specific
ERVs are only derepressed in Setdb1-deficient settings. Other
transcriptional mechanisms, including cell-type-specific TFs, may
restrict the expression of ERVs in Setdb1 KO cells (Fig. 6).

As described, distinct ERV families were derepressed in dif-
ferent cell types when Setdb1 was depleted (Fig. 1a). However, the
enrichment of H3K9me3 on ERVs targeted and repressed by
Setdb1 in mESCs was mostly maintained in various differentiated
somatic cells. This situation was similar to that of VL30, whose
expression was highly induced in iMEFs and GMPs, but not in
ESCs, after Setdb1 depletion. These results suggest that Setdb1
continuously targets similar ERV classes and deposits H3K9me3
marks, regardless of the developmental stage or cell type and the
expression level of Setdb1. It is then necessary to determine how
different types of ERVs are activated in different cell types after
Setdb1 depletion. Two distinct mechanisms are probably critical.
According to one mechanism, ERVs are repressed by multiple
epigenetic pathways or marks, and they may function redun-
dantly with Setdb1 to silence some ERVs. Setdb1-mediated H3K9
methylation and Dnmt-mediated DNA methylation is an exam-
ple of this mechanism. IAPEz is redundantly repressed by Setdb1
and DNA methylation in mESCs4. In addition to DNA and H3K9
methyltransferases, many other epigenetic or chromatin factors,
such as Lsd1/Kdm1, the polycomb repressive complex 2, Yin yang
1 (Yy1), Erb3-binding protein 1 (Ebp1), and CAF-1, have roles in
ERV silencing42–46. Therefore, it is possible that these factors and
deposited epigenetic marks may exhibit crosstalk and interact to
cause ERV silencing in a context-dependent manner. In the
second mechanism, tissue-type-specific or cell-type-specific TFs
restrict the transcriptional competence of each ERV. Previously,
we found that MLV-type ERVs are specifically derepressed in B
cells after Setdb1 depletion19. In this case, the expression of B-cell
lineage-specific TF Pax5 confers competence for such an MLV

transcription. As shown in the current analyses, the cell-type-
specific derepression of VL30 is also regulated by multiple cell-
type-specific TF signaling pathways (Fig. 3). Thus, quiescent
Setdb1-targeted ERVs have the potential for derepression upon
inactivation of Setdb1, if their transcriptional machineries are
competent.

Although it is generally recognized that DNA methylation, and
not Setdb1-mediated H3K9me3, dominantly contributes to or is
essential for ERV silencing in differentiated embryonic or adult
somatic cells, only limited classes of ERVs, mostly IAPEz and its
flanking LTR, IAPLTR1_Mm, are derepressed in Dnmt1 KD or
KO iMEFs. Since IAPEz is stably and highly methylated, and this
hyper DNA methylation is maintained in Setdb1 KO ESCs3, it is
reasonable to assume that IAPEz is not derepressed by Setdb1 KO
alone in iMEFs. IAPEz is a high-copy-number ERV in the mouse
genome (∼5000 copies, either full length or internally deleted),
compared to members from other ERV families. Thus, the reg-
ulation of IAP was somewhat misleading with respect to the
general behavior of ERVs.

In MEFs, only 1% (two genes) of gene promoters upregulated
in Setdb1 KO iMEFs were marked by H3K9me3 (Supplementary
Fig. 3a), indicating that only a minority of induced genes are
directly controlled by Setdb1. This finding is consistent with the
results obtained for ESCs, but far fewer genes are regulated by
Setdb1 in MEFs4. The majority of upregulated genes in Setdb1
KO MEFs were IFN pathway-related genes. A recent work by
Cuellar et al. showed that the loss of Setdb1 induces the dere-
pression of retrotransposable elements, and the generated double-
stranded RNAs activate the cytosolic RNA-sensing IFN signaling
pathway47. The depletion of Dnmt1 using RNAi or 5-Aza-dC
treatment also induced IFN pathway-related genes (Supplemen-
tary Fig. 10). Thus, these upregulated genes are most likely
indirectly induced by the derepression of ERVs.

Other H3K9me3-specific methyltransferases are Suv39h1/2.
Suv39hs are responsible for H3K9me3 deposition at the peri-
centric heterochromatin, containing major satellite repeats. They
also deposit H3K9me3 at intergenic major satellite repeats, but
only if intact consensus repeat sequences are maintained24,48.
Previous genome-wide analyses in ESCs, NPCs, and iMEFs have
not provided clear evidence of a major function of Suv39h-
dependent H3K9me3 in directing gene transcription24. Thus, a
main function of H3K9me3 marks is the repression of retro-
elements, such as exogenous retroviruses, ERVs, and LINE ele-
ments, or imprinted genes, which are also thought to be derived
from retrotransposons, but not coding genes. This is consistent
with the role of H3K9 methylation in other species, such as fission
yeast and plants49,50.

ERVs are repressed by distinct, co-operative epigenetic
mechanisms during the first few days of embryogenesis15. KRAB-
ZFP family members are implicated in this process. KRAB-ZFPs
bind to specific ERV loci and recruit their cofactors Trim28,
Setdb1, and other silencing factors15. Zfp809, which belongs to
the KRAB-ZFP family, represses VL30 by binding to PBS-pro,
which is used by some retroviruses to prime reverse transcrip-
tion38. Zfp809 is required to initiate ERV silencing during
embryonic development, but becomes largely dispensable in dif-
ferentiated somatic tissues. Zfp809 functions to repress only
ERVs with the PBS-pro sequence. Thus, Zfp809 regulates small
fractions of VL30 repressed by Setdb1 (Fig. 5a). For the silencing
of ERVs without the PBS-pro sequence, other KRAB-ZFPs may
bind to several loci of ERVs51. Trim28 KO MEFs or acute
depletion of Trim28 in iMEFs leads to the marginal derepression
of VL30 (Figs. 5b, c). Thus, the KRAB-ZFPs-Trim28 system is
mostly dispensable for the maintenance of Setdb1-mediated
VL30 silencing in MEFs. Lastly, it has been reported that a few
number of VL30 elements were derepressed by treatment with a
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IFN pathway
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Fig. 6 Model of Setdb1 function in ERV silencing. a Setdb1 deposits
H3K9me3 at ERV loci generally in differentiated cells, not only in ESCs. b In
Setdb1 KO cells H3K9me3 is reduced at ERV loci. However, TFs are required
for each ERVs to get depressed. Without accelerator (TFs) ERVs are not
expressed even without brake (H3K9me3). c For example, in Setdb1 KO
iMEFs derepression of VL30 class I require Elk, Ets, and AP-1 TFs. VL30
class II is expressed only in the presence of RA in Setdb1 KO iMEFs. This
ERV derepression might cause IFN pathway activation47
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HDAC inhibitor, trichostatin A (TSA)52. We also performed an
RNA-seq analysis of TSA-treated iMEFs, and could reproduce the
reported findings. Interestingly, the impact of TSA was dom-
inantly on the non-PBS-pro type elements (Supplementary
Fig. 11). Thus, there must be more complex mechanisms for
VL30 silencing. Future screen-based studies should be useful to
identify genes or epigenetic factors responsible for Setdb1-
mediated VL30 silencing in Trim28 KO iMEFs.

Methods
Mouse embryonic fibroblasts. Setdb1 cKO iMEFs were described earlier3. Single
cells were recloned by serial dilution. Setdb1 deletion was induced by 800 nM
4OHT treatment for 4 days and further cultured without 4OHT for 2 days. Setdb1
expression was determined by western blot analysis to screen clones that responded
well (MEF3-12). Anti-Setdb1 antibody (Cell Applications Inc., CP10377; dilution:
1:1,000) was used. To generate long-term-cultured Setdb1 KO iMEFs, 800 nM
4OHT was added to MEF3-12 for 4 days, and further cultured without 4OHT for
more than 1 week. For the CRISPR-gRNA knockout, pL-CRISPR-EFS-tRFP plas-
mids53 were transfected into iMEFs (MEF3-12) using the MEF2 Nucleofector Kit
(Lonza). tRFP-positive cells were sorted using FACS Aria. The efficiency of knock
out was confirmed by a western blot analysis with anti-Trim28 antibody (Abcam,
ab22553; dilution: 1:1,000). Anti-α tubulin antibody (Sigma, T5168; dilution:
1:5,000) was used as an internal control. For chemical treatments, iMEFs were
treated with 1 µM atRA (Sigma) for last 2 days, 1 µM MEK inhibitor PD0325901
(Wako) for last 24 hr, 5 µM Ezh2 inhibitor GSK126 (Xcess Bio) for last 5 days, and
150 nM TSA for 24 hr before cells were harvested. For Setdb1 rescue experiment in
Setdb1 KO iMEFs pPB-Setdb1-IRES Bsd plasmid with pPBase plasmid was
transfected. Cells were selected with 8 µg ml−1 Blastcidin (InvivoGen). To generate
3× Flag tagged Ets1 expressing Setdb1 cKO iMEFs, pPB-3xF-Ets1-IRES puro
plasmid with pPBase plasmid was transfected. Cells were selected with 1.5 µg ml−1

puromycin (InvivoGen).

Western blot analysis. Cells were lysed in RIPA buffer (50 mM Tris-HCl (pH
7.5), 150 mM NaCl, 0.5 % NP-40, 0.5 % Na-deoxycholate, and 0.1 % SDS) sup-
plemented with protease inhibitor cocktails (100×) (Nacalai) and 0.1 mM PMSF
(Nacalai). Western blot analyses were performed using the antibodies as indicated.
Uncropped scans of western blot images are available in Supplementary Fig. 12.

RNA extraction and quantitative real-time RT-PCR. RNA was isolated using
RNeasy Plus Mini Kit (Qiagen). DNase I (NEB) was added to the column. Total
RNA (1 µg) was used to generate cDNA, using the Omniscript RT Kit (Qiagen) and
random primers. qPCR was carried out using Power SYBR Green PCR Master Mix
(ABI) on the ABI StepOnePlus. The signals were normalized against Hprt signals.
Primer sequences are shown in Supplementary Table 1.

RNA-seq. Approximately 54 to 73 million high-quality 75-bp paired-end reads per
sample for the forebrain18, ~110 million 100-bp paired-end reads per sample for
iMEFs (Ctrl, 4OHT 5d and long-term cultured), 51-bp single-read per sample for
iMEFs (siCtrl, siDnmt1, 4OHT 6d and 4OHT siDnmt1), and ~15 to 22 million 60-
bp single-read for GMPs were mapped to the mouse genome (mm9) using the
TopHat2 splice junction mapper (version 2.0.12)54 with parameter (-g 1) telling the
software to report best alignment only once for multi-hit reads. Mm9 Refseq gtf file
was downloaded from UCSC (http://genome.ucsc.edu) in Oct 22, 2014 and applied
as gene annotation file. After obtaining the aligned bam files, the Cufflinks algo-
rithm (version 2.2.1)55 was used to calculate FPKM with the Refseq gtf file. Repeat
elements were downloaded from the University of California at Santa Cruz
RepeatMasker track (mm9) and we selected ERVs annotated with high SW
(Smith–Waterman) probability scores (≥2000). Sequences of RepeatMasker
annotated ERVs were compared with Repbase consensus sequences and scored for
percentage of similarity or length mismatch. We applied SW 2000 as a cutoff
because sufficient LTR only types (such as IAPLTR1a, RLTR6_Mm, or RLTR10C)
could not be collected with high SW (>3000). Differential expression was computed
using BEDTools for ERVs (http://bedtools.googlecode.com) with a minimum of 1-
bp overlap. According to published data28, MMVL30 subclasses were assigned to
their neighboring RLTR6 repeats and reconfirmed the position from which each
LTR starts by alignment with consensus sequence. The genomic positions of ERVs
used for the analysis are shown in Supplementary Data 4.

Native ChIP and crosslinked ChIP. Native ChIP assays were performed as
described previously3. A mouse monoclonal antibody against H3K9me3 (2F3) was
used56.

The antibody was incubated with anti-mouse IgG Dynabeads (Veritas for 1 h on
ice and overnight after the addition of MNase-digested chromatin. For crosslinked
ChIP, 1 × 107 cells were crosslinked with 1% formaldehyde at 25 °C for 10 min.
Chromatin was extracted and then sonicated using Bioruptor USD-250 to obtain
an average fragment size of 300–500 bp. Immunoprecipitation was performed

using Dynabeads with antibodies, followed by purification using QIAquick PCR
Purification Kit (Qiagen).

Bisulfite sequencing. Genomic DNA was purified from MEFs and bisulfite-
converted using MethylCode Bisulfite Conversion Kit (Thermo). PCR products
were amplified using TaKaRa EpiTaq HS (TaKaRa) and subcloned using TOPO
Cloning Kit (Thermo) for sequencing. CpG methylation was analyzed using the
QUMA tool (http://quma.cdb.riken.jp).

siRNA. For knockdown experiments, 50 nM siRNAs targeting Dnmt1 (siGENOME
SMARTpool) or control siRNA (Dharmacon) was transfected into Setdb1 cKO
iMEFs using RNAiMAX (Thermo). Transfected cells were passaged 24 h after
transfection. A second transfection was conducted with the same reagents on the
following day. Cells were harvested at day 6 and RNA was isolated. For simulta-
neous KO of Setdb1, 4OHT was added at day 0.

ChIP-seq. For ChIP-seq of H3K9me3, a polyclonal antibody against H3K9me3
(abcam ab8898) was used. For library preparation, KAPA Hyper Prep kit (KAPA
biosystems) was used. Approximately 200 million 50-bp paired-end reads for
forebrain cells, and ~20 to 23 million 76-bp single-end reads for iMEF were
mapped to the mouse genome (mm9) using the Bowtie2 short read aligner (version
2.2.3) with default parameters57. A multi-hit read was assigned to one site ran-
domly selected from among valid alignments and duplicate reads were removed
using Picard tools (https://broadinstitute.github.io/picard/).

Public sequencing data. Raw reads were downloaded from publicly available
ChIP-seq (H3K9me3 in ESC: GSM1375155, GSM727425), (H3K9me3 in MEF:
GSM1375168, GSM1375173), (H3K9me3 in GMP: DRX021712, DRX021713,
DRX021716, DRX021717), and RNA-seq (Setdb1 KO ESC established from con-
ditional KO ESC: GSM727423, GSM727424), (Dnmt1 cKO ESC and Dnmt1, Setdb1
double cKO ESC: GSE77781), (Dnmt1 WT, p53-/- and Dnmt1-/-, p53-/- iMEF:
GSM1089793, GSM1089794), (Zfp809 KO MEF established from KO embryo at
E12.5: SRX487521), (Trim28 KO MEF established from Trim28 conditional KO
MEF: GSM1916177, GSM1916178, GSM1916179, GSM1916180). Mapping and
data processing were performed as described above.

ChIP-seq NGS plots. NGS plots show the average ratios of normalized read
density between ChIP and input samples every 10 bp (1 bin) of H3K9me3 from −5
kb to 10 kb around genomic ERV elements in ESC, forebrain, iMEF, and GMP. We
selected ERVs containing -int element (which means the internal region) with
flanked LTRs. Position 1 is 5′ start site of the -int element and average length of
flanking LTR elements is about 600 bp. Positions of LTRs and int for each ERV
element are indicated below the plots. Unique ERVs containing MMERVK10C-int
(167 copies, average length: 7190 bp, flanking LTRs are RLTR10C), IAPEz-int (593
copies, average length: 5516 bp, flanking LTRs are IAPLTR1a), RLTR4_Mm-int (50
copies, average length: 7230 bp, flanking LTRs are RLTR4_MM), RLTR6-int (186
copies, average length: 7212 bp, flanking LTRs are RLTR6_Mm), and MMVL30-int
(86 copies, average length: 5294 bp, flanking LTRs are RLTR6_Mm) were analyzed.
ChIP-seq data sets for ESC and iMEF24, GMP20 and forebrain cells (this study)
were used. Alignment files for H3K9me3 ChIP-seq data (bam format) were
transformed to read coverage files (bigwig format) and processed to obtain plots for
each ERV of interest using DeepTools2.058 with the following parameters: -ratio
log2, bin Size 10, scaleFactors SES. Read densities are normalized with read depth
and million mapped reads of each NGS data.

Data availability. All NGS sequencing data that support the findings of this study
are available in the NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/) database under the accession number GSE102490.

Received: 6 October 2017 Accepted: 5 April 2018

References
1. Waterston, R. H. et al. Initial sequencing and comparative analysis of the

mouse genome. Nature 420, 520–562 (2002).
2. Goodier, J. L. Restricting retrotransposons: a review. Mob. DNA 7, 16 (2016).
3. Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone

methyltransferase ESET. Nature 464, 927–931 (2010).
4. Karimi, M. M. et al. DNA methylation and SETDB1/H3K9me3 regulate

predominantly distinct sets of genes, retroelements, and chimeric transcripts
in mESCs. Cell Stem Cell 8, 676–687 (2011).

5. Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem
cells. Nature 463, 237–240 (2010).

6. Thomas, J. H. & Schneider, S. Coevolution of retroelements and tandem zinc
finger genes. Genome Res. 21, 1800–1812 (2011).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04132-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1683 | DOI: 10.1038/s41467-018-04132-9 |www.nature.com/naturecommunications 11

http://genome.ucsc.edu
http://bedtools.googlecode.com
http://quma.cdb.riken.jp
https://broadinstitute.github.io/picard/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


7. Wolf, D. & Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral
DNAs. Nature 458, 1201–1204 (2009).

8. Liu, S. et al. Setdb1 is required for germline development and silencing of
H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes
Dev. 28, 2041–2055 (2014).

9. Kobayashi, H. et al. High-resolution DNA methylome analysis of primordial
germ cells identifies gender-specific reprogramming in mice. Genome Res. 23,
616–627 (2013).

10. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation
reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

11. Bourc’his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon
reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004).

12. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous
retroviruses is constrained by cytosine methylation. Nat. Genet. 20, 116–117
(1998).

13. Ellis, J., Hotta, A. & Rastegar, M. Retrovirus silencing by an epigenetic TRIM.
Cell 131, 13–14 (2007).

14. Wiznerowicz, M. et al. The Kruppel-associated box repressor domain can
trigger de novo promoter methylation during mouse early embryogenesis. J.
Biol. Chem. 282, 34535–34541 (2007).

15. Rowe, H. M. & Trono, D. Dynamic control of endogenous retroviruses during
development. Virology 411, 273–287 (2011).

16. Quenneville, S. et al. The KRAB-ZFP/KAP1 system contributes to the early
embryonic establishment of site-specific DNA methylation patterns
maintained during development. Cell Rep. 2, 766–773 (2012).

17. Rowe, H. M. et al. De novo DNA methylation of endogenous retroviruses is
shaped by KRAB-ZFPs/KAP1 and ESET. Development 140, 519–529 (2013).

18. Tan, S. L. et al. Essential roles of the histone methyltransferase ESET in the
epigenetic control of neural progenitor cells during development. Development
139, 3806–3816 (2012).

19. Collins, P. L., Kyle, K. E., Egawa, T., Shinkai, Y. & Oltz, E. M. The histone
methyltransferase SETDB1 represses endogenous and exogenous retroviruses
in B lymphocytes. Proc. Natl Acad. Sci. USA 112, 8367–8372 (2015).

20. Koide, S. et al. Setdb1 maintains hematopoietic stem and progenitor cells by
restricting the ectopic activation of nonhematopoietic genes. Blood 128,
638–649 (2016).

21. Takikita, S. et al. A Histone methyltransferase ESET is critical for T cell
development. J. Immunol. 197, 2269–2279 (2016).

22. Fasching, L. et al. TRIM28 represses transcription of endogenous retroviruses
in neural progenitor cells. Cell Rep. 10, 20–28 (2015).

23. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent
and lineage-committed cells. Nature 448, 553–560 (2007).

24. Bulut-Karslioglu, A. et al. Suv39h-dependent H3K9me3 marks intact
retrotransposons and silences LINE elements in mouse embryonic stem cells.
Mol. Cell 55, 277–290 (2014).

25. Pasquarella, A. et al. Retrotransposon derepression leads to activation of the
unfolded protein response and apoptosis in pro-B cells. Development 143,
1788–1799 (2016).

26. Nilsson, M. & Bohm, S. Inducible and cell type-specific expression of VL30
U3 subgroups correlate with their enhancer design. J. Virol. 68, 276–288
(1994).

27. Islam, T. C. & Toftgard, R. Nuclear orphan receptor-binding retinoic acid
response elements in keratinocytes. Biochem. Biophys. Res. Commun. 203,
545–552 (1994).

28. Herquel, B. et al. Trim24-repressed VL30 retrotransposons regulate gene
expression by producing noncoding RNA. Nat. Struct. Mol. Biol. 20, 339–346
(2013).

29. Markopoulos, G. et al. Genomic analysis of mouse VL30 retrotransposons.
Mob. DNA 7, 10 (2016).

30. Janknecht, R., Ernst, W. H., Pingoud, V. & Nordheim, A. Activation of ternary
complex factor Elk-1 by MAP kinases. EMBO J. 12, 5097–5104 (1993).

31. Sebolt-Leopold, J. S. & Herrera, R. Targeting the mitogen-activated protein
kinase cascade to treat cancer. Nat. Rev. Cancer 4, 937–947 (2004).

32. Reddy, M. A., Langer, S. J., Colman, M. S. & Ostrowski, M. C. An enhancer
element responsive to ras and fms signaling pathways is composed of two
distinct nuclear factor binding sites. Mol. Endocrinol. 6, 1051–1060 (1992).

33. Owen, R. D., Bortner, D. M. & Ostrowski, M. C. ras oncogene activation of a
VL30 transcriptional element is linked to transformation. Mol. Cell. Biol. 10,
1–9 (1990).

34. Hutnick, L. K., Huang, X., Loo, T. C., Ma, Z. & Fan, G. Repression of
retrotransposal elements in mouse embryonic stem cells is primarily mediated
by a DNA methylation-independent mechanism. J. Biol. Chem. 285,
21082–21091 (2010).

35. Reddington, J. P. et al. Redistribution of H3K27me3 upon DNA
hypomethylation results in de-repression of Polycomb target genes. Genome
Biol. 14, R25 (2013).

36. Sharif, J. et al. Activation of endogenous retroviruses in Dnmt1(-/-) ESCs
involves disruption of SETDB1-mediated repression by NP95 binding to
hemimethylated DNA. Cell Stem Cell 19, 81–94 (2016).

37. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma
with EZH2-activating mutations. Nature 492, 108–112 (2012).

38. Wolf, G. et al. The KRAB zinc finger protein ZFP809 is required to initiate
epigenetic silencing of endogenous retroviruses. Genes Dev. 29, 538–554
(2015).

39. Sripathy, S. P., Stevens, J. & Schultz, D. C. The KAP1 corepressor functions to
coordinate the assembly of de novo HP1-demarcated microenvironments of
heterochromatin required for KRAB zinc finger protein-mediated
transcriptional repression. Mol. Cell. Biol. 26, 8623–8638 (2006).

40. Wolf, D. & Goff, S. P. TRIM28 mediates primer binding site-targeted silencing
of murine leukemia virus in embryonic cells. Cell 131, 46–57 (2007).

41. Wolf, D. & Goff, S. P. Host restriction factors blocking retroviral replication.
Annu. Rev. Genet. 42, 143–163 (2008).

42. Schlesinger, S., Lee, A. H., Wang, G. Z., Green, L. & Goff, S. P. Proviral
silencing in embryonic cells is regulated by Yin Yang 1. Cell Rep. 4, 50–58
(2013).

43. Yang, B. X. et al. Systematic identification of factors for provirus silencing in
embryonic stem cells. Cell 163, 230–245 (2015).

44. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are
coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011).

45. Leeb, M. et al. Polycomb complexes act redundantly to repress genomic
repeats and genes. Genes Dev. 24, 265–276 (2010).

46. Wang, G. Z., Wolf, D. & Goff, S. P. EBP1, a novel host factor involved in
primer binding site-dependent restriction of moloney murine leukemia virus
in embryonic cells. J. Virol. 88, 1825–1829 (2014).

47. Cuellar, T. L. et al. Silencing of retrotransposons by SETDB1 inhibits the
interferon response in acute myeloid leukemia. J. Cell Biol. 216, 3535–3549
(2017).

48. Martens, J. H. et al. The profile of repeat-associated histone lysine methylation
states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

49. Lippman, Z. et al. Role of transposable elements in heterochromatin and
epigenetic control. Nature 430, 471–476 (2004).

50. Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-
mediated epigenetic control of the fission yeast genome. Nat. Genet 37,
809–819 (2005).

51. Ecco, G. et al. Transposable elements and their KRAB-ZFP controllers
regulate gene expression in adult tissues. Dev. Cell 36, 611–623 (2016).

52. Brunmeir, R. et al. Epigenetic regulation of a murine retrotransposon by a dual
histone modification mark. PLoS Genet 6, e1000927 (2010).

53. Heckl, D. et al. Generation of mouse models of myeloid malignancy with
combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat.
Biotechnol. 32, 941–946 (2014).

54. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence
of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

55. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation.
Nat. Biotechnol. 28, 511–515 (2010).

56. Chandra, T. et al. Independence of repressive histone marks and chromatin
compaction during senescent heterochromatic layer formation. Mol. Cell 47,
203–214 (2012).

57. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357–359 (2012).

58. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a
flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42,
W187–W191 (2014).

Acknowledgements
We thank Ms. Chikako Shimura for her technical assistance with the western blot
analysis and all other members of the Shinkai lab for their experimental support, critical
feedback, and suggestions. We also thank Mr. Kenji Ohtawa (RIKEN BSI Research
Resources Center: RRC) who provided technical support for cell sorting and Drs. Eugene
M. Oltz, Patrick L. Collins, and Matthew C. Lorincz for critically reading the manuscript.
Illumina sequencing was supported by Genome Resource and Analysis Unit RIKEN
CDB. This work was supported in part by AMED-CREST and a RIKEN internal research
fund.

Author contributions
M.K. designed and conducted the experiments, K.T. designed the experiments and
performed informatics analysis, and Y.S. designed and supervised the experiment. M.K.,
K.T., and Y.S. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-04132-9.

Competing interests: The authors declare no competing interests.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04132-9

12 NATURE COMMUNICATIONS |  (2018) 9:1683 | DOI: 10.1038/s41467-018-04132-9 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-04132-9
https://doi.org/10.1038/s41467-018-04132-9
www.nature.com/naturecommunications


Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04132-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1683 | DOI: 10.1038/s41467-018-04132-9 |www.nature.com/naturecommunications 13

http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing
	Results
	Derepression of distinct ERV families upon loss of Setdb1
	A viral defense response is induced in Setdb1 KO iMEFs
	H3K9me3 on ERVs are preserved in distinct cell types
	Setdb1-dependent H3K9me3 marks on ERVs
	Derepression of the VL30 family in Setdb1 KO MEFs
	Distinct regulation mechanism for each VL30 U3 class
	Distinct requirements for epigenetic marks in ERV silencing
	Long-term-cultured Setdb1 KO iMEFs
	Distinct requirements for Setdb1, Trim28, and Zfp809

	Discussion
	Methods
	Mouse embryonic fibroblasts
	Western blot analysis
	RNA extraction and quantitative real-time RT-PCR
	RNA-seq
	Native ChIP and crosslinked ChIP
	Bisulfite sequencing
	siRNA
	ChIP-seq
	Public sequencing data
	ChIP-seq NGS plots
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




