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Abstract

Introduction: In 2014 the Joint United Nations Programme on HIV/AIDS defined the ambitious 90�90�90 targets for 2020, in

which 90% of people living with HIV must be diagnosed, 90% of those diagnosed should be on sustained therapy and 90% of

those on therapy should have an undetectable viral load. Children are considered to be a key focus population for these targets.

This review will highlight key components of the epidemiology, prevention and treatment of tuberculosis (TB) in HIV-infected

children in the era of increasing access to antiretroviral therapy (ART) and their relation to the 90�90�90 targets.

Discussion: The majority of HIV-infected children live in countries with a high burden of TB. In settings with a high burden of

both diseases such as in sub-Saharan Africa, up to 57% of children diagnosed with and treated for TB are HIV-infected. TB results

in substantial morbidity and mortality in HIV-infected children, so preventing TB and optimizing its treatment in HIV-infected

children will be important to ensuring good long-term outcomes. Prevention of TB can be achieved by increasing access to

ART to both children and adults, and appropriate provision of isoniazid preventative therapy. Co-treatment of HIV and TB is

complicated by drug-drug interactions particularly due to the use of rifampicin; these may compromise virologic outcomes if

appropriate corrective actions are not taken. There remain substantial operational challenges, and improved integration of

paediatric TB and HIV services, including with antenatal and routine under-five care, is an important priority.

Conclusions: TB may be an important barrier to achievement of the 90�90�90 targets, but specific attention to TB care in

HIV-infected children may provide important opportunities to enhance the care of both TB and HIV in children.
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Introduction
An estimated 240,000 children were newly infected with HIV

in 2013 despite scale-up of prevention of mother-to-child

transmission (PMTCT), which resulted in a 40% reduction in

perinatal transmission of HIV in 2011 compared to 2009 [1].

The majority of HIV-infected children (630,300) live in Africa,

followed by Asia (54,100) and Latin America (26,400) [1].

Although 13.6 million HIV-infected people accessed combina-

tion antiretroviral therapy (ART) in 2014, this represents only

38% of adults and 24% of children with HIV. The regions with

the lowest access to therapy are also in Africa (20 to 24%)

and Asia (22 to 32%) [1]. In order to address these ongoing

critical gaps in HIV care, the Joint United Nations Programme

on HIV/AIDS defined the ambitious 90�90�90 targets to be

achieved by 2020: 90% of persons living with HIV must be

diagnosed, 90% of those diagnosed should be on sustained

therapy and 90% of those on therapy should have an un-

detectable viral load. These targets were designed to stimu-

late rapid scale-up of sustainable and high quality HIV care,

in order to prevent new HIV infections and to reduce HIV-

associated morbidity and mortality. Adolescents and children

were identified as key focus populations [2].

Tuberculosis (TB) remains a major cause of disease globally,

with 9 million incident cases; 13% of these cases were

HIV-infected. There were 1.5 million TB deaths in 2013, of

which 360,000 were in HIV-infected persons. Although Asian

countries (particularly China and India) account for the highest

numbers of TB cases, all the countries with a TB incidence of

more than 500 cases per 100,000 population are in Africa [3].

Models estimate that in 2010 there were 650,000 cases of

TB disease in children andmanymore with latent infection [4].

In settings with a high burden of both diseases up to 56% of

children treated for TB had HIV [5].

Given the close overlap of the TB and HIV epidemics, suc-

cessful achievement of the 90�90�90 targets must specifi-

cally consider TB and its impact on HIV diagnosis, retention in

care and attaining virologic suppression.

In this paper we discuss key aspects of the care of TB in

HIV-infected children, highlighting threats and opportunities

on the road to 90�90�90. We will discuss the epidemiology

of TB-HIV co-infection, calling attention to the ongoing close

interactions of these two diseases, as well as recent advances

in the prevention of TB in HIV-infected children. We will des-

cribe developments in the treatment of TB and HIV and the

implications of these for the reduction of morbidity and

mortality in TB-HIV co-infected children.We will also focus on

the emerging threat of drug-resistant TB.
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The epidemiology of TB-HIV co-infection
As described above, the TB and HIV epidemics have subs-

tantial overlap in their epidemiology. It is clear that Africa

(particularly sub-Saharan Africa), South East Asia (Thailand

and India) and Latin America carry the biggest burden of TB

and HIV [1,6]. This has impacted children directly and through

its impact on women of childbearing age. The HIV epidemic

disproportionately increased the burden of TB in women of

childbearing age [7]. One-third of TB deaths in women are in

HIV-infected women [6]. Data from India confirms that where

TB occurs in HIV-infected pregnant women, the infant is not

only at risk for TB, but has a threefold higher risk of HIV

acquisition and a fourfold increase in mortality [8�10].

The risk of TB in HIV-infected children

HIV-infected and HIV-exposed infants are highly TB exposed

in their households and local communities. In a South African

trial of isoniazid preventive therapy (IPT), 10% of HIV-

exposed infants had contact with a potential case of TB by

14 weeks of age [11].

In addition to frequent TB exposure, other conditions, in-

cluding advanced immune suppression, poor nutritional status

(stunting, wasting and reduced mid-upper arm circumference)

and anaemia are associated with increased risk of TB in HIV-

infected children [12]. The proportion of children with TB that

are HIV co-infected varies from 5.8 to 56% depending on the

setting [5].

Among South African infants with limited access to ART, up

to 1595 cases per 100,000 population have been reported;

this is more than 24 times the rate reported at the same time

for HIV-uninfected South African infants [13]. The risk in-

creases after six months of age in the absence of ART, with

incidence rates of 6.2 to 18.1 cases per 100 person-years

(age B6 months) and 9.4 to 46.3 cases per 100 person-years

(age ]6 months) reported in East Africa [14]. In other HIV-

infected African children with poor access to ART, high risk of

TB is also reported (more than 17 TB cases per 100 person-

years) [15�18]. A review study of African post-mortem studies

reports pulmonary TB in 8.3% of HIV-infected children [19].

In low-burden settings, the risk of TB in HIV-infected

children is much less; however TB still occurs. Among children

attending HIV services in the United Kingdom (between 1991

and 2006) and New York City (between 1989 and 1995) 3 to

5.5% had a diagnosis of TB at some point [20,21].

TB prevention in HIV-infected children
TB co-infection negatively affects outcomes for HIV-infected

patients, and there are challenges with TB diagnosis and

co-treatment in HIV-infected children. These factors may all

impact negatively on achieving 90% retention on ART and

90% virologic suppression; hence strategies to prevent TB in

HIV-infected children are a priority for achieving the 90�90�90
targets.

Antiretroviral therapy for HIV-infected children and adults

Increasing access to ART in paediatric cohorts decreases

confirmed and probable TB. In the Children with HIV Early

Antiretroviral Therapy (CHER) study, South African infants

with deferred ART had 20 cases of TB per 100 person-years,

compared to 8.3 cases per 100 person years in children

receiving early ART [17]. Up to 33% of infants starting ART at

a median age of eight months are already on TB therapy,

indicating early infancy as a particular risk period and high-

lighting the importance of early initiation of ART [22]. A

similar reduction in risk of TB in older children receiving

ART has also been demonstrated in diverse settings in Africa,

Asia and Latin America [15,16,18,22�28].
The first three months after initiation of ART represent

a very high-risk period for hospitalization and death [29]. In

addition, there is a substantial initial increase in the risk of

TB, likely representing undetected TB, TB exposure at ART

initiation or unmasking TB immune reconstitution inflamma-

tory syndrome (IRIS) [27,30�33].
With increasing access to ART in adults, the risk of TB

declines in adults as well as in HIV-infected and -uninfected

children. In Johannesburg, South Africa, ART access in adults

increased from 21.5% in 2005 to 68.2% in 2009 of those

requiring ART. During the same period, TB in HIV-infected

children declined from 1566.3 to 460.7 per 100,000 and in

HIV-uninfected children from 18.7 to 11.0 per 100,000 [34].

If ART expands to cover 80% of adults living with HIV, TB

incidence among all adults is projected to decline by 28 to

37% [35]. A reduction of adult TB cases, particularly among

HIV-infected adults, would likely have an important impact

on the risk of TB exposure, infection and disease among HIV-

infected children.

Despite these clear benefits of ART, the risk of TB remains

high in HIV-infected infants and children even when on ART.

In South African infants with a 98% uptake of ART, those that

were HIV-infected had a burden of 121 cases per 1000 years

compared to 41 cases per 1000 child-years in HIV-exposed

uninfected infants [36]. This highlights the importance

of a multi-pronged strategy to address TB in HIV-infected

children.

BCG vaccination

Although Bacille Calmette Guérin (BCG), a live attenuated

Mycobacterium bovis strain, is protective against dissemi-

nated TB, including meningitis in young children, it is less

effective at preventing pulmonary TB [37]. BCG itself poses a

risk to HIV-infected children, particularly those with severe

immunosuppression and delayed initiation of ART. Dissemi-

nated BCG, a serious and potentially life-threatening com-

plication of BCG vaccination, occurs in an estimated 992

(95% CI: 567 to 1495) per 100,000 HIV-infected infants [38].

In addition, infants initiating ART may develop IRIS related

to BCG [39]. Given these concerns, the WHO recommended

that BCG not be administered to persons who are confirmed

HIV-infection [40]. As BCG is given at birth to healthy infants,

this recommendation is problematic in settings where birth

HIV DNA PCR is not routine, particularly as these are often

the same settings with a high TB burden. Early infant diag-

nosis of HIV and early ART mitigates the risk of disseminated

BCG and IRIS [41]. In a prospective study of 451 HIV-infected

infants receiving early ART, none developed disseminated

BCG disease; although BCG IRIS remained a problem, the risk

was reduced threefold with early access to ART [39]. Rather

than altering BCG vaccine delivery or managing IRIS, most
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countries are focusing on prevention of HIV transmission to

children and access to ART [42].

Isoniazid preventative therapy

Young age is an important risk factor for the development of

TB disease after infection [43]. Treating latentMycobacterium

tuberculosis infection with isoniazid (INH) prevents disease

[44,45]. Therefore the WHO recommends the provision of IPT

for a minimum of six months to all children B5 years of age,

and HIV-infected children of any age, with a documented

infectious TB source case; this is an integral component of TB

prevention in HIV-infected children [6].

Studies of pre-exposure and longer-term IPT in HIV-infected

children have yielded conflicting evidence. In the only true

pre-exposure prevention trial (IMPAACT P1041), 548 HIV-

infected and 804 HIV-exposed uninfected infants between

three and four months of age without TB exposure were

randomized to INH versus placebo for 96 weeks with follow-

up for another 96 weeks. The pre-exposure prevention did not

reduce the TB incidence in either HIV-exposed-uninfected or

HIV-infected infants [36]. An earlier placebo controlled study

of IPT for all HIV-infected children enrolled older children with

delayed access to ART, including those with prior TB or TB

exposure. This study showed a significant reduction in TB and

all-cause mortality (9.9 and 16% in the placebo arm vs. 3.8

and 8% in the IPT arm). Subsequent analysis of this cohort

illustrated that combining IPT with ART was more effective

than either strategy alone to prevent TB [16,46]. In 2014, the

WHO recommended routine pre-exposure IPT for six months

in all HIV-infected children older than 12 months without

evidence of TB disease [6]. Children with suggestive symp-

toms (poor weight gain, fever and current cough) or with a

history of TB exposure should be investigated for TB prior to

IPT initiation. Diagnostic challenges in HIV-infected children

remain a reality, especially if there is no TB contact but sug-

gestive symptoms. The WHO guidelines also recommend that

children treated for TB with a good response should receive

six months of INH post�TB treatment completion; however,

there is little evidence for this recommendation.

There are substantial challenges in IPT implementation,

including health system weakness and lack of availability

of child-friendly INH formulations. Missed opportunities for

chemoprophylaxis are well documented. A community-based

study from South Africa found that only 21% of eligible

children received IPT and that the lack of specific tools to

ensure implementation possibly contributed to low uptake

[47]. Poor adherence to IPT remains a challenge [48]. Health

care worker training and introduction of specific documenta-

tion such as cards and registers, as well as contact tracing,

increased uptake of IPT from 16 to 61% [49]. Integration of

TB and HIV services may also increase IPT completion [50].

In HIV-uninfected children, adherence is improved by using

rifamycins, which require shorter courses [51]. This is not

an option for HIV-infected children on ART or HIV-exposed

infants on extended nevirapine (NVP) prophylaxis for HIV pre-

vention, as rifamycins have important drug-drug interactions

with a number of antiretrovirals. Twelve doses of rifapentine-

INH, recently shown to be effective in HIV-uninfected children,

was not studied in HIV-infected children [52].

There is no published data in HIV-infected children on the

benefit of tuberculin skin testing or other tests of infection,

such as the interferon gamma release assays, to help target

pre-exposure IPT. Data in HIV-infected adults suggests that

TST-positive adults benefit the most from IPT [53]. No TB

prevention studies have specifically targeted adolescents.

However, the risk of TB increases during adolescence [43],

and HIV-infected adolescents with TB exposure or infection

would potentially benefit considerably from IPT. Drug resis-

tance in TB source cases may be a major factor in children

failing IPT. In the IMPAACT P1041 trial, children developing

culture-confirmed TB on INH did not have INH mono-

resistance, but rather multidrug-resistant (MDR) TB [54].

Obtaining a thorough history of the potential contacts prior

to IPT initiation is important; if a child on IPT develops TB,

the contacts should be reviewed again for resistance and

clinically relevant specimens should be taken for culture and

susceptibility testing prior to starting TB treatment.

Other TB prevention opportunities

There are a number of other additional opportunities for

preventing TB in HIV-infected children. Temporal associations

between TB, influenza and pneumococcal disease in children

suggest a complex interaction between these infections.

An increase in TB diagnoses following approximately three

months after an influenza epidemic in a high burden set-

ting suggests a potential role for the influenza vaccine in

reducing the TB burden [55]. A study of TB after introduction

of conjugated pneumococcal vaccine showed that culture-

confirmed TB was 47% less in vaccinated compared to un-

vaccinated HIV-infected children [56]. Cotrimoxazole appears

to have anti-mycobacterial activity [57] and conflicting evi-

dence suggests cotrimoxazole prophylaxis may reduce in-

cident TB in HIV-infected adults [58,59]. In a trial of 758

HIV-infected children on ART randomized to prolonged cotri-

moxazole despite immune reconstitution, there were fewer

incident cases of TB, although numbers were small [60].

These strategies, in addition to reducing their targeted dis-

ease, may have the benefit of reducing TB, adding to the

urgency of their implementation in HIV-infected children. In

the absence of a highly effective TB vaccine, a multi-pronged

approach to TB prevention is likely to be the most successful

and is important in enabling achievement of the 90�90�90
targets.

Outcomes among TB-HIV co-infected children
Prior to wide access to ART, high mortality of co-infected

children was reported. A study from South Africa documen-

ted a 10 times higher mortality in TB-HIV co-infected children

than in HIV-uninfected children with TB [12]. Children

with TB-HIV co-infection who died often had additional

pulmonary infections on post-mortem [61]. With access to

ART, better outcomes are reported, particularly for children

who develop TB while on ART for more than six months;

however, mortality does occur especially in the first two

months of ART. A retrospective observational study from

South Africa reported 10% mortality in TB-HIV co-infected

children less than two years of age [18,22]. Deaths may be

due to TB, other HIV complications or IRIS. The effect of TB
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co-infection on mortality thus affects the achievement of

90% retention on ART.

Virologic outcomes in children co-treated with rifampicin

Concomitant TB therapy may be a significant risk factor for

virologic failure in children who are co-treated, impacting

the target of 90% of children on ART being virologically

suppressed. Viral load is not available in all settings where

there is a high TB burden. In settings where the protease

inhibitor (PI) lopinavir/ritonavir (4:1) LPV/r is the preferred

initial therapy in childrenB3 years and super-boosting is

used, high levels of viral suppression are reported for children,

regardless of co-treatment. However the rates of suppression

at 6 and 12 months are lower than those of children not

requiring co-treatment [62�64]. Studies of children failing

LPV-based regimens have shown accumulation of PI mutations

in 10% of children tested a median of 21 months after

initiation of therapy [65]. Although concurrent TB therapymay

be a risk factor for virologic failure, it was not necessarily a

risk factor for LPV resistance [67]. A likely explanation is the

robust resistance profile of LPV; however great care should

be taken to ensure dosing accuracy and appropriate addition

of ritonavir (RTV). RTV at full dose should not be used as

therapy, as it is associated with the highest risk of failure and

PI resistance [62,66].

No difference in virologic suppression has been seen with

efavirenz (EFV)-based therapies at month 12 [64]. There is

limited data on the routine virologic outcomes of children

treated with NVP. However, poorer virologic outcomes are

reported in several cohort studies when compared to EFV,

regardless of TB therapy [67,68].

Treatment
Optimizing the co-treatment of TB and HIV is important to

ensuring the targeted 90% treatment success in HIV-infected

children.

In low resource settings, TB treatment initiation is as fre-

quent a cause of ART regimen changes as adverse effects [69].

When choosing an ART regimen, apart from drug interactions,

clinicians should also consider prior ART, available drugs and

formulations, age and weight. For children on ART, clinicians

must also consider duration on therapy, adherence to therapy

and the probability of therapeutic failure.

First-line TB medications and drug-susceptible TB

In 2010, the WHO recommended higher doses of the first-

line anti-TB drugs in all children [70]. This recommendation

was based on an extensive review of evidence demonstrating

low exposure with the previously recommended doses. These

changes introduced practical challenges, as the ratio of RMP,

INH and pyrazinamide (PZA) in the existing paediatric fixed-

dose combination (FDC) formulations does not allow for easy

dosing within the new recommendations [71].

Among 20 children younger than two years receiving the

newly recommended doses of INH, RMP and PZA, nearly

all children had maximum serum concentrations of these

medications above target levels. HIV-infected children in this

study (n�5) had a significantly lower Cmax and Tmax on PZA

35 mg/kg, but no difference in total exposure; the small

sample size may have limited the ability to detect other

differences [72]. In 31 South African children younger than

10 years, the majority receiving the new WHO-recommended

doses of the first-line TB medications, two-hour target con-

centrations were attained for RMP in only 2/31 (6%), for INH

in 20/31 (65%), for PZA in 17/31 (55%) and for ethambutol

(EMB) in 2/13 (15%); HIV infection (n�7 children) was

associated with a low two-hour INH concentration [73].

It is not clear whether the reduced TB drug concentrations

reported in these studies are related to interactions with ART

or the direct effects of HIV infection; neither study clearly

describes the ART regimens in the included HIV-infected

children. Studies of the first-line TB medications in children

are ongoing (NCT01637558 and NCT01687504).

Despite limited evidence, the WHO recommends the

addition of EMB to the intensive phase of TB treatment in

children with HIV, extensive disease or in settings with a high

prevalence of INH resistance [6]. The rationale for this is that

EMB may protect against the acquisition of RMP resistance in

children with existing INH resistance; acquired RMP resis-

tance in children has been described, although the actual

risk is not known [74]. Additional data on the benefit, risk

and programmatic implications of this recommendation

for HIV-infected children is needed. An extensive review of

the literature identified very few reports of EMB-associated

ophthalmologic toxicity in children [75]. Recently in a study

of a small number of children treated with EMB, newer tech-

nology identified reversible ophthalmological complications

attributed to EMB. EMB should continue to be used when

indicated, but this risk deserves further evaluation [76].

Second-line TB medications

Despite common use there is little data on the pharmaco-

kinetics of second-line TB medications in children [77]. The

currently recommended doses of ofloxacin, levofloxacin and

moxifloxacin result in drug exposures considerably lower

than in adults, and moxifloxacin exposure is significantly

lower in HIV-infected compared to HIV-uninfected children

[78,79]. It is not clear if this is due to poor absorption or a

potential drug interaction with RTV [79,80]. In HIV-infected

adults, co-treatment with EFV results in a more than 30%

reduction in para-aminosalicylic acid exposure [81]. There are

no recommendations to alter doses of any of the second-line

TB medications or ART in co-treated children, but additional

data is urgently needed.

HIV infection may be a risk factor for adverse events among

children treated for MDR-TB. A higher risk of ethionamide-

induced hypothyroidism has been shown compared to HIV-

uninfected children [82]. Linezolid, used in children with

extensively drug-resistant TB, may have additive adverse

effects with nucleoside reverse transcriptase inhibitors (NRTIs)

due to mitochondrial protein synthesis inhibition and should

be used with caution in HIV-infected children [83].

Novel TB medications

Two novel TB medications, the ATP-synthase inhibitor beda-

quiline and the nitroimidazole delamanid are increasingly

used in adults [84,85]. Phase 1 and 2 studies of delamanid

in children (NCT01856634, NCT01859923) have begun enrol-

ment, and studies of bedaquiline in children are planned.

Current studies exclude HIV-infected children but future
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studies will include them. Metabolism of delamanid is par-

tially mediated by the cytochrome p450 (CYP) 3A4 enzyme,

but healthy volunteer studies indicated no clinically signifi-

cant drug-drug interactions with ART [85]. Bedaquiline is

metabolized by CYP3A4 isoenzyme; co-administration with

the CYP3A4 inducer EFV reduces exposures of bedaquiline and

its main metabolite, M2, by roughly 50%. Co-administration

with lopinavir, an inhibitor of CYP3A4, reduces clearance by

35% for bedaquiline and by 58% for M2, resulting in two- to

threefold higher exposures of bedaquiline and M2. There is no

clinically significant interaction between bedaquiline and NVP

[86�88]. Data on the pharmacokinetics and safety of bedaqui-

line and delamanid in HIV-infected children will be important

to ensure these medications are accessible and able to be

safely used in these children.

Deciding on the appropriate ART in children with TB

Drug-drug interactions between TB medication, especially

rifamycins, and ART are a major concern, as they may in-

fluence the virologic outcomes of co-treated patients, lead-

ing to HIV treatment failure and increasing the risk of ART

resistance, potentially limiting future therapy. The drug in-

teractions between NRTIs and RMP are not considered

clinically significant; however there are significant interac-

tions with non-nucleoside reverse transcriptase inhibitors

(NNRTIs), PI and integrase inhibitors. For some of these

interactions, there is no paediatric data.

Protease inhibitors

LPV/r is superior to NVP in young children regardless of

previous NVP or EFV exposure through PMTCT [89,90]. LPV/r is

now recommended as first line in most children B3 years of

age [91]. Given its more prominent role, drug-drug interac-

tions with TBmedications are important. LPV/r concentrations

are reduced by RMP CYP3A4 induction and through changes in

the p-glycoprotein expression [92]. Adding RTV to alter the

ratio from 1:4 to 1:1 (so called super-boosting) was shown to

overcome this RMP effect in a study of 15 children (median

age 16 months, median weight 8.6 kg). The median Cmax and

AUC0�12 were lower than in controls, but the Cmin (the target

for efficacy) was greater than the minimum recommended.

Children tolerated the strategy and two cases had mild alanine

transaminase elevation that did not require therapy interrup-

tion [93]. Preliminary data from an ongoing study of a large

cohort of young TB-HIV co-treated South Africans receiving

super-boosting (NCT02348177) confirms this finding [94].

In adults, giving double the dose of LPV/r was found to have

acceptable pharmacokinetic and less toxicity [95]. However,

of 20 children (median weight 9.1 kg, median age 1.2 years)

receiving double-dose LPV/r (460/115 mg/m2 twice), 80%

did not achieve a target morning trough of 1 mg/L [96].

Explanations include characteristics of the formulation as

well as drug absorption and metabolism. A modelling study

suggests that overcoming the interaction with RMP using the

LPV/r 4:1 solution with twice daily administration will require

such high doses that there may be adverse events, whereas

an eight-hourly dosing regimen may overcome the drug inter-

action; a study of this is ongoing [97]. The individual RTV

formulation requires refrigeration for storage and has a short

shelf life, complicating its use in resource-limited settings,

and when only used for super-boosting may be a challenge for

supply chains to maintain continuous widespread avail-

ability. Additionally, it is poorly palatable and may be pro-

blematic to administer to children. In settings increasingly

utilizing task-shifting and relying on nurses for ART provision,

these complicated drug-drug interactions between LPV/r and

TB medication may be a barrier to a super-boosting strategy.

The optimal approach to ART in TB-HIV co-infected children

may need to be considered by each high-burden country

depending on these contextual issues, and improved options

are needed. In order to facilitate access to LPV/r, mini-tablets

were developed and are now licensed by FDA.

Rifabutin, which does not affect PI concentrations, is also

problematic. Rifabutin is metabolized by CYP3A4 and dose

adjustments of rifabutin are needed if co-treating with PIs;

however pharmacokinetic data in children is limited. In six

children treated with rifabutin 5 mg/kg three times per week

and with LPV/r, severe transient neutropenia and insufficient

rifabutin exposure was observed [98]. Using rifabutin in a

public health programme is currently not possible due to lack

of data in co-treated children, complex two-way interactions,

cost and lack of an FDC.

There is a lack of paediatric data for boosted atazanavir

(ATV) and darunavir (DRV), which also both interact with

RMP. In adult volunteers, double doses of ATV with RMP did

not correct the ATV exposure but did not cause substantial

toxicity [99]. For DRV, modelling of adult data suggests that

dose increases of DRV and RTV (800/100 mg and 1200/150

mg twice a day) both may overcome the RMP induction;

the usual adult dose is 800/100 mg daily for naı̈ve patients

older than 12 years of age [100]. This dose increase may,

however, cause adverse effects and there are no published

data studying this approach. The interaction and optimal PI

treatment strategy in children with TB is a critical area for

future research given the importance of these medications in

ART regimens.

Non-nucleoside reverse transcriptase inhibitors

EFV is used in older children and is superior to NVP [67].

Recent data suggests that no adjustment of EFV dose is

required when RMP is used [101,102]. Previously a lack of

data in dosing prevented EFV use in children younger than

three years. Though it is now licensed for this age, experts

recommend CYP2B6 genotype prior to EFV initiation in this

age group [103]. Using EFV in this age group with prior NNRTI

exposure has not been studied and data on co-treatment

with RMP-containing TB regimens are not available.

NVP is a commonly used NNRTI in low resource settings,

where it is incorporated in easy-to-use and well-tolerated

FDCs. There are reports of adequate exposure in RMP co-

treatment but larger co-treatment studies found significant

under-dosing even if NVP was given at more than the standard

recommended dose [104�106]. The period of initiating NVP-

containing ART using daily NVP for 14 days may be particularly

risky in children who are also on RMP, as NVP concentrations

may be low; avoiding the induction dosing in all children

younger than two years of age has been suggested [107].

Where NVP use cannot be avoided in TB co-treated children,

a dose of 200 mg/m2/dose twice daily should be used [91].
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Switching children with TB from NVP to EFV should be

considered wherever possible. Lastly, children taking NVP as

PMTCT, where mothers are on RMP or where the infants

require RMP-TB therapy, may have low NVP concentrations

[108]. These low concentrations may reduce the efficacy of

NVP in preventing HIV.

Switching suppressed children from LPV/r to EFV is a stra-

tegy studied in children without TB [109]. Although prospec-

tive studies have not been performed, a switch to EFV can be

considered if children develop TB. If at all possible, viral load

monitoring should be done to detect early failure, in which

case further action must be taken.

Etravirine is not typically available in low resource settings

and is not approved for use in children less than six years of

age. There are no adult studies assessing the interaction of

RMP and etravirine, with the exception of case reports, which

confirm a significant reduction in plasma levels, which did

not impact virologic suppression [110].

Based on results of the Antiretroviral Research for Watoto

(ARROW) study, the WHO recommends triple NRTIs as a

preferred strategy in children age B3 years requiring RMP

co-treatment. In ARROW, three NRTIs were studied as an

intensive induction and a maintenance strategy when com-

bined with NNRTIs. After 48 weeks of initial therapy that

contained a NNRTI children were randomized to a three-drug

NRTI maintenance regimen or to remain on conventional

therapy. Fifty-nine of the 1143 children required a drug

alteration for TB that included stopping or replacing NVP.

Children on EFV did not require drug switch. Triple NRTI was

effective at 36 weeks, but not at 144 weeks. The advantage of

this strategy is that, although viral suppression is inferior, the

risk of progressive NNRTI and PI resistance was avoided and

complicated drug-drug interactions and logistic complications

were easier to manage [69]. Where PIs are available, limited

NRTI resistance may not compromise future suppression.

However, this strategy could be problematic in very ill children

where viral control and immune recovery is essential to

improve the health of the child.

Integrase inhibitors and other issues

Integrase inhibitors are an increasingly important class of

ART, particularly as a key component of third-line regimens.

Raltegravir and dolutegravir are not metabolized by the CYP

P450 enzymes but are metabolized through the liver by

uridine 5-diphospho (UDP)-glucuro-nosyltransferase 1A1,

an enzyme that is also induced by RMP. Healthy volunteer

studies showed a significant reduction in raltegravir exposure

with RMP co-treatment [111]. In a prospective study com-

paring standard and double-dose raltegravir with EFV in ART-

naı̈ve adults requiring RMP, no significant difference was

found in virologic suppression at 24 weeks between the

standard and double-dose raltegravir groups, with both

groups similar to the EFV group [111]. There is no published

data in children; however an ongoing study is assessing the

effective dosing, safety and tolerance of children co-treated

with raltegravir and RMP (NCT01751568).

Adult healthy volunteer studies assessing the effect of

RMP on dolutegravir suggest that doubling the dolutegravir

dose is needed if there is co-treatment with RMP [112].

Children needing third-line therapy and co-treatment with

RMP-containing TB therapy may benefit from a holding triple

NRTI strategy. This may be a good option if the children have

a preserved CD4 count and are clinically stable. Where chil-

dren require a suppressive regimen urgently, consideration

should be given to changing to a non-rifamycin-containing

TB regimen. Rifabutin also has less substantial interactions,

but dose adjustment of rifabutin and ARTmay still be needed.

Rifapentine is not recommended, as there may be a risk of

RMP-monoresistant TB developing [113]. Fluoroquinolone-

based TB regimens could be considered, but have not been

prospectively studied in this context

Approach to timing of ART initiation

The timing of ART initiation in adults with TB has been

extensively studied. Delaying therapy in adults with a CD4

count of B200 cells/mL has been associated with poor viro-

logic and clinical outcomes [112]. The timing of ART initiation

in children with TB has not been studied prospectively.

In observational paediatric cohorts, delaying therapy for up

to two months was not associated with an increased risk of

mortality or poorer virologic response [114]. Whether longer

delay in older children and adolescents with good CD4 counts

and minimal TB disease is acceptable is not known.

TB meningitis (TBM) is an exception regardless of CD4

count, since clinical deterioration due to paradoxical IRIS can

be devastating. In the adult literature, IRIS is associated with

more disseminated forms of the disease and positive culture

in the cerebrospinal fluid. It is common practice to delay ART

four to six weeks in TBM [115]. Although there are fewer

data in children, case series confirm the high morbidity

associated with paradoxical IRIS [116]. There are no pro-

spective data in children and it is important to keep in mind

that the outcomes in patients with TBM are also determined

by the severity of meningitis. Only 20% of HIV-uninfected

children are neurologically normal after full TBM treatment

[117].

If children are already on ART, appropriate anti-TB therapy

should be started as soon as the appropriate diagnostic

testing has been performed. ART should be adapted and the

possibility of virologic and or immunological failure must be

considered and appropriately investigated.

Drug-resistant TB
MDR-TB (resistant to INH and RMP) is a growing health

threat with an estimated 480,000 cases occurring in 2013; 9%

of these cases also had additional resistance to a fluoro-

quinolone and/or a second-line injectable medication [3].

Despite limited data on the burden of MDR-TB in children,

a 2010 model estimates a burden of 32,000 cases. Children

typically have transmitted or primary MDR-TB. Among child-

hood MDR-TB cases in South Africa, HIV infection was

reported in 53.6, 77 and 22% in Johannesburg, Kwa-Zulu

Natal and Cape Town [118�120]. HIV infection was indepen-

dently associated with prevalent TB disease among child

household contacts of adult MDR-TB cases and is associated

with poorer outcome in child MDR-TB household contacts on

MDR preventive therapy [121] HIV-infected children were

also older and had more severe disease [122]. A recent
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review of adults and children with HIV and MDR-TB showed

83.4% treatment success in children [123]. It is becoming

increasingly important to ensure that diagnostic, prevention

and treatment strategies for MDR-TB are developed for HIV-

infected children.

Operational issues
Initially TB and HIV services were introduced as vertical

programmes, but now strategies to integrate these services

and strengthen the linkage to antenatal care are essential to

improving diagnosis and access to care and treatment. HIV

testing remains the entry point for HIV care. Ensuring that

children diagnosed with TB are tested for HIV is absolutely

essential. Given the high risk of HIV co-infection in children

with TB in many settings, routine HIV testing of all children

receiving TB treatment is an important opportunity to in-

crease HIV diagnosis and thus achievement of 90% of HIV-

infected persons knowing their status.

The diagnosis of TB in all children remains challenging. A

study of paediatric ART programmes in diverse resource-

limited settings showed that, although sputum microscopy

and CXR were available in all programmes, they were only

used in 86 and 52% of TB diagnoses. Xpert MTB/RIF was only

used in 8% of TB diagnoses and mycobacterial culture in 17%.

Eighty-six percent of sites provided access to TB treatment,

but 30% never provided IPT to children [124]. Adult contact

tracing and access to IPT remains a vital component of care

in HIV-infected children regardless of the ART therapy.

This undertaking starts with taking the appropriate history

at each health care contact. HIV-infected children who have

defaulted care may be picked up and re-enter care at TB

services.

Screening of pregnant women for both HIV and TB may

improve access not only to PMTCT, but also to IPT. Integrating

TB services into antenatal care of HIV-infected women may

also be key to preventing TB in young infants [125]. In Table 1

we highlight the components of care that require linkage and

integration. Health care providers in all these settings need

competency in all these aspects. Health system strengthening

aimed at meeting the 90�90�90 targets will need to consider

TB services and may have beneficial impacts for TB care in

children as well.

Conclusions
The TB and HIV epidemics remain closely interlinked and TB

is still an important opportunistic infection in HIV-infected

children, with substantial mortality and morbidity and with

co-treatment possibly affecting HIV outcomes. The growing

burden of drug-resistant TB poses new challenges. Increasing

ARTaccess has the potential to greatly impact the TB epidemic

in settings with high dual burden. The reduction in adult cases

will reduce TB infection to both HIV-infected and -uninfected

infants and children. Early ART in HIV-infected children will

further reduce the burden of TB in these children. The provision

of IPT should be strengthened, and innovative prevention

strategies such as influenza and pneumococcal vaccination and

continuing co-trimoxazole should be explored. Treating these

diseases simultaneously presents challenges with regards to

choosing the most appropriate regimens and ensuring that

medications are available in all settings and easy for children

to adhere to. There is a synergy between working towards the

90�90�90 targets and improving TB diagnostic and treatment

programmes. Efforts to meet the 90�90�90 targets for both

adults and children may well have a profound impact on the

burden of childhood TB, while improved prevention, diagnosis

and treatment of TB in co-infected children, as well as strength-

ening and integration of TB-HIV programmes, will be important

if the 90�90�90 targets are to be achieved.
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Table 1. Components of care that require linkage and integration to deliver tuberculosis preventative and treatment services to

HIV-infected children

Tuberculosis services HIV services Antenatal care General healthcare/IMCI

Screen for TB contact and link to IPT ª ª

Trace contacts ª ª ª

Screen for TB ª ª ª

Diagnose TB ª ª ª ª

Diagnose HIV ª ª ª ª

Treat TB/link to TB care ª ª ª ª

Provide ART link to ART care ª ª ª

Adapt drug choices to accommodate rifamycin ª ª ª

Ensure adherence to all therapies ª ª ª

IMCI: Integrated Management of Childhood Illness; TB: tuberculosis; IPT: isoniazid preventative therapy; ART: antiretroviral therapy.
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