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Abstract: Flavor is one of the most important characteristics that directly determines the popularity
of a food. Moreover, the flavor of fruits is determined by the interaction of multiple metabolic
components. Pepino, an emerging horticultural crop, is popular for its unique melon-like flavor. We
analyzed metabolomics data from three different pepino growing regions in Haidong, Wuwei, and
Jiuquan and counted the status of sweetness, acidity, flavor, and overall liking ratings of pepino fruit
in these three regions by sensory panels. The metabolomics and flavor ratings were also integrated
and analyzed using statistical and machine learning models, which in turn predicted the sensory
panel ratings of consumers based on the chemical composition of the fruit. The results showed that
pepino fruit produced in the Jiuquan region received the highest ratings in sweetness, flavor intensity,
and liking, and the results with the highest contribution based on sensory evaluation showed that
nucleotides and derivatives, phenolic acids, amino acids and derivatives, saccharides, and alcohols
were rated in sweetness (74.40%), acidity (51.57%), flavor (56.41%), and likability (33.73%) dominated.
We employed 14 machine learning strategies trained on the discovery samples to accurately predict
the outcome of sweetness, sourness, flavor, and liking in the replication samples. The Radial Sigma
SVM model predicted with better accuracy than the other machine learning models. Then we used the
machine learning models to determine which metabolites influenced both pepino flavor and consumer
preference. A total of 27 metabolites most important for pepino flavor attributes to distinguish pepino
originating from three regions were screened. Substances such as N-acetylhistamine, arginine, and
caffeic acid can enhance pepino‘s flavor intensity, and metabolites such as glycerol 3-phosphate,
aconitic acid, and sucrose all acted as important variables in explaining the liking preference. While
glycolic acid and orthophosphate inhibit sweetness and enhance sourness, sucrose has the opposite
effect. Machine learning can identify the types of metabolites that influence fruit flavor by linking
metabolomics of fruit with sensory evaluation among consumers, which conduces breeders to
incorporate fruit flavor as a trait earlier in the breeding process, making it possible to select and
release fruit with more flavor.

Keywords: fruit flavor; pepino; flavor metabolites; machine learning

1. Introduction

Pepino (Solanum muricatum) is a genus of eggplant in the family Solanaceae, native to
the Andes of South America [1]. In recent years, pepino has gained widespread recognition
worldwide, not only for its unique taste and distinctive aroma, but also for its health
benefits; its fruits have many benefits, they have been used traditionally as remedy of
mellitus diabetic, hypertension, and sprue [2,3]. Unlike most crops of the Solanaceae family,
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pepino is considered a “false fruit” when other crops are consumed as vegetables, some
have argued it is a vegetable-type fruit due to light-flavor and taste, but highly appreciated
worldwide not only for its unique taste and distinct flavor also for its health benefits. It
was provided that name by the Spaniards because its flavor resembles cucumber when it is
unripe [4]. The most commonly used modifier is dulce (sweet), in reference to the sweeter
taste of pepinos as compared with cucumbers [5]. In China, pepino is mainly grown in the
Jiuquan and Wuwei regions in western Gansu and the Haidong region in Qinghai [6]. Our
previous study examined the types and contents of metabolic substances in pepino fruits
produced in these three regions by LC-MS [7], but we did not investigate the substances
affecting the flavor of pepino fruits.

The flavors of fruits are not determined by a single dominant compound, but rather
by the interaction of multiple metabolic components. As for many fruit species, varieties
differ in their flavor and taste, ranging from sourness to sweet such as Punica granatum L. [8],
Prunus persica L. [9], Cucumis melo L. [10], etc., with a complicated taste combination.
Metabolomics techniques have been used in recent studies to explore metabolites in various
plants. Metabolomics is one of the more “distal” of the omics techniques [11]. In addition
to technological advancements, the metabolomics field is evolving rapidly [12]. In numer-
ous cash crops, especially of horticultural crops, metabolomics have been identified and
characterized because of their agronomic importance. Except for fewer analyses focusing
on targeted metabolites (between 1 and 23), untargeted metabolites (between 50 and 200)
analysis was used in most studies [13]. Some of the metabolites are well-characterized,
but have not been fully investigated in others [14]. One main reason is the lack of clear
definition potential untapped in the metabolic network. This technique is only beginning
to be applied to biological questions.

A fruit’s flavor is understood to be influenced most by sweetness and acidity [15]. Mod-
ern fruit breeding has focused considerable effort on improving yield, shelf life, and disease
resistance, while flavor has been relatively neglected [16]. As shown by the decreased
sucrose equivalent levels and similar ratios of sucrose equivalents to citric or glutamic
acid contents, despite being useful to reduce the incidence of pests and viral diseases, it
reduces the organoleptic quality [17,18]. As a result of these studies, we know more about
the metabolite composition in relation to fruit flavor. This can contribute significantly to
the evaluation of fruit’s nutritional value and freshness. Several factors are responsible for
flavor perception in fruit flavor, including sugars and acids. The taste buds on the tongue
detect sugars and acids, resulting in the sense of taste. Over the years, many surveys have
been conducted on fruits to examine their flavor profile and hundreds of metabolites have
been reported from different pathways, especially in the terpenoids and volatile organic
compounds [19–22]. The metabolomics profile of fruits has only been compared with hu-
man evaluations in a few of these studies. Since fruit flavor is a complex feature, it is more
difficult to determine the correlation between phenotypes and metabolites accurately [23].
However, recently, great effort has been taken predominantly on blueberry flavor by Vin-
cent and Luís Felipe [24,25]. They identified which VOCs both impact blueberry flavor and
influence consumer liking by machine learning models. Machine learning is the study of
computer algorithms that are automatically improved through experience and can be clas-
sified as supervised learning, unsupervised learning, and deep learning depending on the
learning method, with a variety of algorithms including Bayes models, Regression Models,
Random Forest, Support Vector Machines, and Neural Network applied to different types
of data [26–28]. A variety of topics have been successfully predicted using machine learning.
With big data technologies and high-performance computing, machine learning has opened
up new opportunities for multidisciplinary biotechnology research including accurate
prediction of protein structures [29], plant–pathogen interactions [30] and image-based
plant phenotyping [6,31]. We can explore the relationship between metabolomics data and
flavor phenotypes through machine learning, allowing flavor to be incorporated earlier in
the breeding process and fruit varieties with more flavor can be selected and released.
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Taken together, an LC-MS/MS-based metabolic profiling method was applied to
quantify three planting areas of pepino fruit metabolites to explore the reasons why certain
territoriality characteristic fruit were preferred over others. A sensory evaluation of pepino
fruit from three regions was conducted and based on our previous metabolic analysis
data, we evaluated and derived pepino flavor by using machine learning to research
suitable pepino flavor prediction models and their main metabolites affecting pepino
flavor. Our comprehensive analysis provides new insights into the metabolomics control of
pepino flavor and provide a roadmap for future breeding and cultivation efforts to enhance
pepino flavor.

2. Materials and Methods
2.1. Experimental Materials

The pepino used in the sensory analysis was collected from Minhe, Qinghai, China
and Jiuquan, Wuwei, Gansu, China, where light-oval fruit (LOF)-type pepino varieties are
grown mainly through greenhouses. The metabolomic detection used pepino grown in
the same conditions and harvested at the same time. A total of 85 differential metabolites
were used for analysis, including amino acids and derivatives, nucleotides and derivatives,
organic acids, phenolic acids, lipids, saccharides, and alcohols identified in a total of 18
samples from these three regions [7]. Metabolomics profiling identified metabolites and
their relative contents are shown in Table S1.

2.2. Methods
2.2.1. Sensory Evaluation of Pepino

The flavor of pepino fruit was assessed by a sensory panel of 123 consumers who
evaluated the flavor attributes of sweetness, sourness, flavor intensity, and liking preference
of pepino fruit (Table S2). The taste panel consisted of 123 teachers and students and faculty
members from Qinghai University, and each member of the panel was informed about the
experiment and agreed to conduct it. Pepino from all three regions was cut into small pieces
and blended thoroughly in each. They randomly tasted pepino from three selected regions
and were asked to rinse their mouths with salt water after tasting the fruit from each region.
Scores were based on the general markers of the hedonistic degree scale (gLMS) [32]. The
panelists were informed of the scoring procedure prior to the test, and all scores were based
on the strongest sensation they had ever felt, ratings from 0 to 100 for all attributes indicate
an increase in the intensity of consumer perception of the attribute.

Statistical analysis was performed with the ggstatsplot package (https://github.com/
IndrajeetPatil/ggstatsplot, accessed on 13 August 2022). Metabolomics data as well as
scores were normalized by R’s scale function (Table S3) for further analysis. The purpose of
the assessment was to understand the potential flavor preferences of people in the three
regions for pepino fruit.

2.2.2. Data Analysis

We used WGCNA [33] to calculate correlations between metabolites to facilitate our
understanding of the relationships between metabolites, and then visualized this metabolite
association network through Cytoscape 3.9.1 [34]. For the contribution of metabolites to
flavor ratings, we drew on the linear model fitted by Colantonio et al. [25] to estimate the
proportion of variation in flavor ratings explained by each metabolite group including
amino acids and derivatives, nucleotides and derivatives, phenolic acids, organic acids,
lipids, saccharides and alcohols with the aid of the ASReml-R package [35]. The fourteen
models include Bayes A, Bayes B, Bayes C, Ridge Regression, Linear Regression, LASSO,
Random Forest, Elastic Net, Reproducing Kernel Hilbert Space, Neural Network, Kernel
Partial Least Squares, Linear Support Vector Machines, Radial Support Vector Machines,
and Radial Sigma Support Vector Machines, which based on conventional machine learning
algorithms were used to predict sensory traits. We assessed the predictive ability of each
model through a 5-fold cross-validation method. In each fold, 18 sets of metabolic groups
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and score data from three regions were randomly divided into three groups, each containing
5 data, and 4 of the 5 data were used as the training set, and the remaining one was used as
the test set. The prediction accuracy was calculated with reference to the method provided
by Colantonio et al. All the above calculations were implemented in R 4.2.1., exploring
important metabolites affecting pepino flavor attributes using β coefficients of Bayesian
A models and variable importance of Neural Network models. MetaboAnalyst 5.0 [36]
generated the PCA scores plot and loading plot, visualized with R-package ggplot2 [37],
and graphically enhanced with Adobe Illustrator CC 2019. PCA was used to determine
whether the screened important metabolites could distinguish pepino fruit originating
from three regions.

3. Results
3.1. Statistics of Sensory Evaluation

We tallied the assessment ratings of 123 evaluators on the sweetness, sourness, flavor
intensity, and liking of pepino fruit from the three locations in order to identify the prospec-
tive consumer preferences for pepino from the three regions (Figure 1, Table S2). There was
a significant difference in perceived sweetness of pepino fruit between the three regions,
Jiuquan (72.91) having the highest sweetness score, followed by Haidong (71.11), and
pepino produced in the Wuwei (62.79) region receiving the lowest sweetness score. Jiuquan
(p = 0.00114), Haidong (p = 0.0091), and Wuwei regions reached significant differences in
sweetness scores. The liking for pepino from the three regions also differed significantly,
with pepino from the Jiuquan region receiving more favorable ratings from testers in the
same way as sweetness, and correspondingly, pepino from the Wuwei was perceived less
favorable by more people. Although there was no significant difference between the three
regions on sourness and flavor intensity, there was a similar scoring trend, Jiuquan pepino
scored highest in flavor intensity and lowest in sourness, while Wuwei pepino scored
lowest in flavor intensity and lowest in sourness. The Haidong was always in the middle.
In all indicators, the testers scored more concentratedly, with only a few scoring lower.
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Figure 1. Stats-violin plot of testers’ sensory evaluation of pepino in three regions.

3.2. Metabolic Network

An analysis of all pepino fruits from three regions was conducted using weighted
correlation networks (Figure 2). The results indicate the relationship between metabolites,
based on the weighted with threshold value of (>0.3); out of the 85 metabolites, 23 amino
acids and derivatives, 1 lipid, 8 nucleotides and derivatives, 8 organic acids, 7 phenolic acids,
2 saccharides and alcohols metabolites make up this network of metabolite relationships,
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which is largely consistent with the pathway of biosynthesis. For example, amino acids and
derivatives, and nucleotides and derivatives as precursors for the synthesis of metabolites
in the organism, have the most connections with the rest of the metabolites throughout
this metabolic network, suggesting that amino acids and derivatives, and nucleotides and
derivatives play an important role in pepino metabolism, affecting phenolic acids, organic
acids, lipids, saccharides, and alcohols substance accumulated in the pepino. Moreover,
the presence of sucrose was closely related to organic acids. Histamine (6), Nepsilon (14),
proline (18), sarcosine (20), adenine (25), cytidine (27), aconitic acid (33), citric acid (35), and
caffeic acid hexoside (43) are present as large nodes in the metabolism-related network,
indicating that these metabolites are important relational hubs in the metabolic network,
closely linking individual metabolites.
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Figure 2. Each metabolite node is sized based on its betweenness centrality. The thickness of the line
connecting the metabolites is indicated by the weighted value (Tables S5 and S6). Identification of
each metabolite is indicated by a number in the legend.

3.3. Contribution of Various Metabolites to Flavor Perception

The fruit metabolome was partitioned into modules according to their biochemical
classifications to determine if variation in consumer sensory panel ratings can be explained
by metabolites. After that, each module was analyzed individually to determine how it
explained the variance in consumer sensory perception. Metabolites grouping accounted
for a large proportion of variance, whereas residuals explained little. The sweetness of
pepino was mainly explained by nucleotides and its derivatives explaining 74.40% of the
variation, while the remaining 16.85% and 8.74% of the variation was explained by amino
acids and derivatives, and phenolic acids, respectively. The variation in pepino acidity
was mainly explained by phenolic acids (51.57%). Moreover, amino acids and derivatives
(16.76%), and nucleotides and derivatives (29.82%) also played a large role. Saccharides
and alcohols also explained 1.84% of the variation. Amino acids and derivatives (56.41%)
and phenolic acids (43.18%) alone explained 99.59% of the variation in flavor intensity in
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pepino fruit, with the remaining 0.41% provided by lipids. The liking level of consumer
preference for pepino fruit required a combination of metabolites, with organic acids, lipids,
amino acids and derivatives, and phenolic acids explaining 33.73%, 17.18%, 33.73%, and
15.35% of the variation, respectively (Figure 3).
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Figure 3. Contribution of metabolite groups to sensory characteristics.

3.4. Consumer Flavor Preference Prediction

To predict the sensory characteristics of various metabolites, we explored the relation-
ship between metabolites and sensory characteristics by using 14 statistical and machine
learning methods. All validation metrics were calculated on the predictions from the 5-fold
cross-validation. The mean of the five cross-validations was the final accuracy value of the
predictions. The results showed that the 14 statistical and machine learning methods were
more accurate in predicting the pepino sweetness and liking preference, and the prediction
accuracy of all methods was above 0.92 except for the Linear Regression method. For
sweetness, the SVM and Neural Net model with the highest prediction accuracy improved
the prediction accuracy by 44.8% compared with the Linear Regression model with the
lowest prediction accuracy. Moreover, the Random Forest and Bayes C models with the
highest prediction accuracy for liking improved by 9.4% compared with the Linear Regres-
sion model with the lowest prediction accuracy. As for the two sensory characteristics of
sourness and flavor intensity, not all methods were applicable, and the prediction accuracy
ranged from 0.38 to 0.89. The Elastic Net model had the highest prediction accuracy of 0.81
for sourness, while the Random Forest model provided the highest prediction accuracy of
0.89 for flavor intensity. Meanwhile, the Linear Regression model predicted the pepino
sourness and flavor intensity with an accuracy of only 0.38 and 0.54, respectively. Overall,
the more accurate model for predicting all sensory features is the SVM Radia Sigma, with
prediction accuracy above 0.80 for all features and 0.97, 0.80, 0.84, and 0.92 for sweetness,
sourness, flavor intensity, and liking, respectively (Figure 4).
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Figure 4. Model prediction of sensory characteristics.

3.5. Important Metabolites Associated with Sensory Characteristics

Using Bayes A and Neural Networks, we calculated the correlation between metabo-
lites and sensory characteristics in order to understand how they affect sensory perception.
The β coefficient indicates whether sensory characteristics have been enhanced or sup-
pressed. On the other hand, the Variable Importance of Neural Net explains the degree
of effect provided by a metabolite on the flavor profile as a result of the joint action with
other metabolites, and the value of Variable Importance from 0 to 100 corresponds to an
enhanced effect. The graphs (Figure 5) show metabolites with β Coefficients >0.3 or <−0.3
and Variable Importance >75. For pepino flavor strength, amino acids and their derivatives
including N-Acetyl-histamine, histamine, N-omega-acetylhistamine, arginine, proline, two
phenolic acids including caffeic acid and phenylacetic acid, nucleotides and derivatives
such as adenine and adenosine, and FA 18:2 in lipids all play an important role and have
a positive enhancement effect on pepino flavor intensity. In contrast, organic acids such
as glycolic acid, orthophosphate, methylmalonic acid, aconitic acid, and other metabolites
such as Methionine, UDP-xylose, and glycerol 3-phosphate had a reverse inhibitory effect
on flavor intensity. The liking of consumer preference for Pepino fruit was mediated by
a combination of metabolites, and metabolites such as Methionine, glycerol 3-phosphate,
UDP-xylose, aconitic acid, phenylacetic acid, and sucrose all acted as important variables in
explaining the liking preference. Organic acids such as glycolic acid, orthophosphate, and
sucrose appeared as positive enhancing and negative inhibiting variables in sourness per-
ception, respectively. Conversely, for sweetness enhancement and reduction, sucrose and
organic acids such as glycolic acid and orthophosphate acted as significant contributors.
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3.6. Metabolites Distinguish Pepino Regional Origin

We selected 27 metabolites of high importance for consumer sensory characteristics,
which were used as important metabolites for PCA analysis, and we wanted to investigate
whether we could distinguish pepino fruit from the three regions by these substances.
Based on the results of the PCA analysis (Figure 6a) we found that the 18 samples were
divided into three groups according to their regional origin, the first two components of
PCA explained 40.6% and 21.8% of the variance, respectively. Consumer perceptions of
sweetness, liking, and flavor intensity were located on the left side of the plot, and were
closer to phenolic acids, lipids, and saccharides and alcohols including sucrose, indicating
that these substances were more influential on consumer perceptions of sweetness, liking,
and flavor intensity of pepino fruit. The sourness of pepino fruit appeared on the right side
and was more closely related to organic acids such as glycolic acid, orthophosphate, and
amino acids and its derivatives (Figure 6b, Table S6).
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4. Discussion

Flavor is one of the most important characteristics that directly determines the pop-
ularity of a food. The most frequently reported flavor category was fruit (high school:
66.1% (95% CI, 62.4–69.5%)) [38]. Plant breeders have traditionally focused on improving
producers’ traits such as yield, while neglecting consumer-oriented traits such as flavor.
Fruit quality is an integrative combination of several metabolites. An important human se-
lection trait is the flavor of fruits which is primarily a balance between sugars and acids [39].
Different cultivars produce fruits with diverse sugar compositions which contribute to a
distinctive flavor profile, although studies in this area lack examination of the relationship
between incredibly complex metabolites and difficult appraised flavor [40,41]. Several re-
cent studies have demonstrated that high-throughput metabolomics and flavor-evaluative
integration analysis using statistical and machine learning models were able to predict
consumer sensory panel ratings based on a fruit’s chemistry [24,25]. It is a new and elegant
approach that means flavor and nutritional alterations can be corrected with precision
molecular breeding, especially for non-model species. Pepino is one of neglected and
underutilized horticultural crop growing widely on the Loess Plateau, China; here, we
analyzed the metabolomic data of the three different pepino growing areas belonging to
Haidong, Wuwei, and Jiuquan from south to north on the west of the plateau. The purpose
of this study was to investigate the flavor phenotype in a group to select three different
pepino growing areas that can be distinguished and were preferred by consumers.

The contributions of sugars, acids, and volatiles in the minority of Solanaceae crops
flavor have been well-characterized, but those of other metabolites detected by LC-MS
have not been as well-investigated. Pepinos are considered orphan crops because of low
genetic resources, and exotic and intense flavors. Early pepino metabolic has not been
completely investigated despite improvements in metabolomics technologies. Currently,
there are only two studies on the literature which used HS-GC-MS to determine volatile
compounds in pepino [42,43]. Among these approaches, metabolite detection is frequently
used to understand volatiles metabolic status, making a direct link between phenotypes and
genotypes. As a result of these data, pre-existing aroma were identified, and an important
group of volatile compound was characterized. The mechanism by which these volatiles
modulate our taste preferences remains unclear, despite their importance and are limited
due to no high-throughput metabolomics data being available for pepino. In this work, we
developed three different pepino growing areas of fruit metabolomics data that addressed
the above problems. Application of the LC-MS-based metabolic profiling method has been
a routine way to analyze how continuous dependent variables interact with independent
variables, such as environment, plays a significant role in specialized metabolite accumu-
lation [44]. There are numerous conceptual parallels between metabolites and biological
species, which make it possible to ask questions about flavor-related metabolites through
statistical analysis, and machine learning in particular.

There is no doubt that these technologies are poised to transform food metabolomics
research in the near future. As a main hypothesis, we focused explicitly on flavor notes, a
trait systematically observed by pepino customers. Three identical pieces of pepino were
rated in three different contextual settings for sweetness, sourness, flavor, and overall
liking. Variations exist in the metabolite properties of the same pepino varieties grown
in different regions. This context may be agricultural management or influenced by the
environment [45–47]. This is clear from the sensory evaluation analysis of variation in
three different pepino growing areas. Consumers rated the pepino fruits from Jiuquan
to have the greatest (p < 0.01) sweetness, flavor, and linking, while the Haidong rated
similar (p < 0.01) to Jiuquan. Clearly, pepino fruits from Jiuquan were greeted more
enthusiastically. In our previous study, soil nutrients were used as an environmental
factors analysis which showed that total nitrogen (TN), total phosphorus (TP), available
phosphorus (AP), available potassium (AK), and organic matter (OM) altered the metabolite
profile in both Jiuquan, Haidong, and Wuwei of pepino fruits [7]. It is not difficult to explain
this observation. Soil nutrients significantly altered the metabolite profile of pepino fruits,
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which in turn altered consumer preferences. This is a complex and systemic issue because
fruit flavors are not influenced by a single dominant compound but rather by a multitude
of volatile components interacting together. These questions were at the center of our
study: What kind of metabolites are responsible for flavors perception of pepino [44]?
The highest contribution results according to sensory evaluation showed that nucleotide
and its derivatives, phenolic acids, amino acids and derivatives, saccharides, and alcohols
were dominant in the sweetness (74.40%), sourness (51.57%), flavor (56.41%), and liking
(33.73), respectively. It is believed that nucleotides and their derivatives have umami, which
enhances the sweet and mellow taste of food [48,49]. In addition, the overall distribution
of nucleotides and their derivatives was similar when taken in three areas. In fruits,
although most sensory studies have not explicitly addressed taste perception in their
sensory panels, there is evidence suggesting that adenine, arginine, and proline contribute
to “umami”, “floral”, and “fruity” taste notes [50–52]. These nucleosides are biologically
important, but their effects on the sensory quality of fermented products were smaller than
those that resulted from their phosphorylated forms and other metabolites we found [53].
Additionally, a variable importance analysis was performed for significant metabolites
identified in the aforementioned sensory analyses. Where indicated, sucrose includes
contribution from sweetness, sourness, and linking. Undoubtedly, Consumer acceptance of
pepino fruits were expected to contain more sweetness because pepino is recommended
for diabetic and sugar-free diets due to its low sugar content [54,55]. However, Sensory
evaluation of pepino is based on general population judgment of evaluation criteria, which
is subjective.

There is little consensus about what constitutes an ideal snack, but the most common
items are sweetened fruits [56]. Only some sweet fruits produce long-term memory [57].
The main targets of current fruit breeding programs are weight, acidity, sweetness, firmness,
and polyphenol content, as do other horticultural crops including pepino [54,58]. The
information provided by this study is essential new information for pepino breeders who
must rethink breeding strategies to increase diversity of sweetness. More directly, sensory
diversity studies can help us to adjust our strategies for evaluation and breeding. In
this article, we argue that metabolites analysis can provide a more accurate assessment
of taste and consequently flavor. Unfortunately, plant breeding is currently restricted to
incremental improvements in quantitative traits that often depend on the selection of rare
and naturally occurring mutations in gene-regulatory regions. However, new editing
technologies allow us to make genetic edits very efficiently to achieve big data-assisted
targeted breeding [59,60]. A similar approach has been used in other contexts in the plant
literature and applied directly to fruit sweetness enhancement. Some recent examples are
reported in Vitis vinifera L. [61], Fragaria vesca [62], and Zea mays. L [63]. It has also been
shown that the CRISPR/Cas9 gene-editing system is capable of creating heritable targeted
mutations in transgene free plants [64]. A. tumefaciens has been injected into aboveground
meristems and used to improve plant regeneration recently [65,66]. This is advantageous
in the case that CRISPR/Cas9-based editing for the fine-tuning sugar content using the
above genome editing and transformation regeneration system strategy is adopted as the
fast and effective for pepino.

In addition to plant breeding, metabolomics can also be used in genetics and food
science research to predict flavor characteristics. To our knowledge, few studies have identi-
fied baseline metabolomic predictors since model calibration requires many sensory panels
and comparison of different statistical methods, particularly machine learning. However,
the most advanced research concerning metabolomic selection for enhanced fruit flavor has
been performed on the blueberry [24,25]. Despite its widespread potential, the continuing
success of flavor phenotyping depends upon an adequate supply of metabolomics data.
An analysis of the test accuracies obtained from supervised machine learning algorithms
showed that the machine learning phases significantly influenced the accuracies [67]. Our
work included the evaluation of a range of statistical and machine learning models for
the prediction of flavor quality based on metabolite information. Finally, we employed
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14 machine learning strategies trained on the discovery samples to accurately predict the
outcome of sweetness, sourness, flavor, and liking in the replication samples. It is evident
that the majority of the sweetness and liking exhibit similar behavior in both models except
for Linear Regression analysis. The results of a multivariate Linear Regression analysis can
be skewed by a small sample size [68]. As a result, the Radial Sigma SVM model performed
better than other machine learning models. Through linear or nonlinear kernel functions
(Radial SVM), SVM is a supervised learning classification algorithm that constructs a hyper-
plane in a higher dimensional space [69]. Across all tasks, we found that overall prediction
accuracy was high. However, we wanted to quantify prediction accuracy separately for
each task. However, in consideration of the practical solution and application of calculation
procedure, a Neural Net model was selected. The reasons may be that some algorithms
may have some disadvantages in our study, such as Bayes A, linear support vector machine,
and kernel partial least squares. Compared with the other algorithms aforementioned, this
can be due to more iteration rounds, a large amount of training data, K-mean selection or
unstable results, and possible interference between variables [70].

Using Bayes A and Neural Network models, 27 metabolites closely related to consumer
sensory characteristics were identified. We found that the result of PCA loadings of these
27 metabolites were similar to those predicted by the model when analyzing PCA data,
with phenolic acids such as caffeic acid, lipids such as FA18:2, and sucrose having a positive
effect on consumers’ sensory characteristics including sweetness, liking, and flavor intensity.
Correspondingly, there was an inverse inhibition of sourness. For sourness, despite the
enhancement of sourness in the pepino fruit by organic acids such as glycolic acid and
orthophosphate, other sensory characteristics of the fruit are diminished in consumer
perception. As a result, there is a high degree of confidence in Bayes A and Neural Network
models in predicting pepino flavor. Accordingly, we speculate that caffeic acid, FA18:2,
sucrose, glycolic acid, and orthophosphate are important substances that affect the flavor
of pepino fruit. However, we know little about the effect of substances other than sucrose
on fruit flavor, so more in-depth research is needed.

The present study also has several limitations. Furthermore, for some metabolites,
although we observed high prediction accuracy in the machine learning models, their
response in the real world might not reach the expectations. Cultivation fosters plant
naturalization by reducing environmental stochasticity [71]. However, the complexity
becomes high, and metabolic assays in vitro do not capture the complexity of environment
or all the biological context in the same way as simulation and prediction methods. In
addition, most statistical methods used in compound selection assume that metabolites are
being sampled independently, which is certainly not true given the intricate correlations
and connections seen among metabolites in metabolic networks [72].

5. Conclusions

Several conclusions can be drawn based on the experimental results. Consumers
generally prefer pepino grown in Jiuquan. These sensory characteristics are mainly influ-
enced by nucleotides and derivatives, phenolic acids, amino acids and derivatives, and
saccharides and alcohols such as sweetness, acidity, flavor intensity, and liking. A total of 14
machine learning models were tested for their ability to predict consumer preferences, with
the Radial Sigma SVM model showing the best results. A screening of metabolites affecting
pepino’s flavor revealed that caffeic acid, FA18:2, sucrose, glycolic acid, and orthophosphate
were able to influence four sensory characteristics of consumers, and distinguish between
pepino fruits from three different regions. As a result of our study, it appears that machine
learning is capable of detecting pepino flavor substances accurately. However, the generic
recommendations for one algorithm cannot be made due to the differences in research
environments and subjects. There may be cases in the future where more algorithms are
used to develop models to make appropriate development of desirable flavors from a
particular study.
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