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Host/microbiota interactions in health and diseases—Time for
mucosal microbiology!
Noëmie Daniel1, Emelyne Lécuyer2 and Benoit Chassaing 1

During the last 20 years, a new field of research delineating the importance of the microbiota in health and diseases has emerged.
Inappropriate host-microbiota interactions have been shown to trigger a wide range of chronic inflammatory diseases, and defining
the exact mechanisms behind perturbations of such relationship, as well as ways by which these disturbances can lead to disease
states, both remain to be fully elucidated. The mucosa-associated microbiota constitutes a recently studied microbial population
closely linked with the promotion of chronic intestinal inflammation and associated disease states. This review will highlight
seminal works that have brought into light the importance of the mucosa-associated microbiota in health and diseases,
emphasizing the challenges and promises of expending the mucosal microbiology field of research.
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INTRODUCTION
The intestinal microbiota is a vast and complex community of
microorganisms inhabiting the gastrointestinal tract, encompass-
ing 1013 bacteria per intestine and about 100–500 different
species per individual.1,2 Among its functions in numerous aspects
of host physiology, the gut microbiota is essential to promote
maturation of the intestinal immune system as well as digestion
by providing extraction of calories and nutrients that would
otherwise be excreted in feces. This beneficial equilibrium
between the host and its microbiota, or symbiosis, can also turn
detrimental and participate in the development and/or the
worsening of chronic inflammatory diseases.3,4 Hence, efforts
have been made toward characterization of gut microbiota
composition and function in health and diseases. Numerous
studies have reported microbiota alterations in both preclinical
and clinical models of chronic inflammatory diseases. Although
those alterations may, in part, be driven by the disease state,
recent works have highlighted that an altered microbiota can also
play a central role in driving the disease itself, with the
observation that disease can be transferred to germ-free mice
through microbiota transplantation.5

Altogether, these findings suggest that the intestinal microbiota
holds the potential for innovative therapeutic approaches, where
microbiota modulations through fecal microbiota transplantation,
diet, prebiotic or probiotic can be used to treat and/or prevent
diseases. However, except for recurring Clostridium difficile
infections, none of these approaches have demonstrated effi-
ciency to restore host-microbiota homeostasis in chronic inflam-
matory disease patients. First, a great resilience is observed
regarding human microbiota composition, so that its modulation
is difficult to achieve and often only transient.6 Second, high
interindividual variations, driven by genetic and environmental
factors, are observed in human microbiota composition, suggest-
ing the need for microbiota-based patient stratifications.7 Third,

more work is still required to identify select microbiota alterations
that are playing a role in disease progression, instead of simply
being associated with it. Finally, the vast majority of the research
performed on the intestinal microbiota is focusing on stool
samples, while accumulating data demonstrate the importance of
mucosa-associated microbiota in health and diseases. While some
reviews previously elegantly described the role of host/microbiota
interactions, they highlighted that these interactions are far from
being characterized at the mucosal interface.8–11 Hence, we will
highlight here several works that demonstrate the importance of
the mucosa-associated microbiota, and we will discuss the
promises of expanding the mucosal microbiology field of research.

INTESTINAL MICROBIOTA COMPOSITION—3 DIMENSIONS
MATTER
Longitudinal axis
As previously summarized by Donaldson et al., the lower
gastrointestinal tract (i.e., the small intestine, the cecum, and the
colon) harbors different habitats populated by specific bacterial
communities, in a way that several microbial communities can be
identified within the same individual and along a longitudinal
axis.12 Each of these intestinal compartments is characterized by
specific physiological, chemical, nutritional and immune condi-
tions, which altogether shape region-specific communities. For
example, and following the discovery of Helicobacter pylori, a
limited microbiota comprising few genera (Propionibacterium,
Lactobacillus, Streptococcus and Staphylococcus) was found in the
stomach, while this organ was previously regarded as sterile.13 The
small intestine harbors Lactobacillaceae (Firmicutes) and Enter-
obacteriaceae (Proteobacteria) facultative anaerobe families able
to tolerate the acidic environment, as well as high levels of oxygen
and antimicrobial molecules (e.g., bile acids).14,15 Finally, the
cecum and the colon are mainly intended for complex
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carbohydrate fermentation and contained a denser and more
diversified population, composed of the following dominant
bacterial phyla: Bacteroidetes, Firmicutes, Actinobacteria, Proteo-
bacteria, and Verrucomicrobia. This final part of the gastrointest-
inal tract is harboring what is considered the densest bacterial
community on earth.

Transversal axis
The impact of the transversal axis on microbiota composition has
been recently questioned. Work from several research teams
revealed that several microenvironments exist and influence radial
spatial distribution of bacterial communities.

From the lumen to the epithelium
It was for example demonstrated, in several mammal models
(murine, swine, macaque or human), that the luminal and the
mucosa-associated microbiota are significantly different in terms
of composition (Table 1).16–21 From 1965 to 1972, a series of
histological studies reported that bacteria embedded in the
mucous layers of the epithelium had a distinct fusiform shape
compared to those present in the lumen.16–18 Novel approaches,
such as laser capture microdissection (LCM), further attempted to
understand the impact of the transversal axis on microbiota
composition. In the mouse ascending colon, Nava et al. notably
demonstrated that the mucosa constitutes a specialized niche
enriched in Firmicutes phylum (Lachnospiraceae, Ruminococcaceae
families), while the luminal region is colonized by Bacteroidaceae,
Enterococcaceae, and Lactobacillaceae families.22 In another
interesting study, Liu et al. used the in vitro Twin Simulator of
the Human Intestinal Microbial Ecosystem (TWIN-SHIME) model to
compare luminal and mucosal communities tropism. With such an
approach, unique mucosa-associated and lumen-associated
microbial communities were observed in each of the colonic
regions tested (ascending, transverse, and descending).23 While
multiple studies demonstrated the existence of a transversal axis
influencing microbiota composition, crypts- and inner mucus-
associated microbiota have recently gained a lot of attention.

Crypt-associated microbiota
While the distribution of the gut microbiota along a radial axis was
unraveled, pioneering work from Sansonetti’s team,24 combining
Whartin—Starry (silver/nitrate) staining and FISH with 16S rRNA
probes, established the existence of a “crypt-specific core
microbiota” (CSCM).25 This CSCM was composed of limited
bacterial members, which exclusively colonized the cecum and
the proximal part of the colon, while being absent in the
duodenum, jejunum and distal colon. Using microdissection and
sequencing approaches, Firmicutes and Proteobacteria phyla were
observed to be predominant in luminal crypts, while Bacteroidetes
phylum was poorly represented.25 Interestingly, aerobic bacteria
belonging to the Burkholderiales or Xanthomonadales groups
dominated the CSCM, suggesting an oxygen-enrich environment
close to the crypt. Follow-up studies demonstrated that Acineto-
bacter genera (Proteobacteria phylum, Moraxellaceae family) is
more abundant in the crypts compared to the luminal environ-
ment, in both mice and humans.25,26 Besides Acinetobacter, the
same group demonstrated that Delftia tsuruhatensis and Steno-
trophomonas maltophilia are also important members of the
CSCM.27 Following monocolonization of germ-free mice, these
bacteria were detected in the colonic crypts, while the small
intestinal crypt remained sterile.27 Highlighting their impact on
intestinal homeostasis, the study of these CSCM members
revealed their ability to decrease proliferation of epithelial cells,
hence suggesting a central role for this community in intestinal
homeostasis.27 Using an organoids approach, it was reported that,
compared to a sonicated sample of Gram-positive bacteria grown
in vitro, purified lipopolysaccharide (LPS) from CSCM-associated
species led to organoid hypotrophy and stimulation of goblet cell

differentiation that associated with IL-33 and Muc2 upregulation.27

Hence, this research elegantly demonstrated that the intestinal
crypt environment harbors a unique microbial community of
central importance for the mutualistic relationship between the
host and its microbiota.

Inner mucus layer-associated microbiota
Besides crypt-associated microbiota, the role of the inner-mucus
layer-associated microbiota in health and diseases has recently
gained attention. While studies focusing on mucosa-associated
microbiota are using crude extract from colonic biopsies,
encompassing outer mucus-, inner mucus-, epithelium- and
crypt-associated bacteria,17,19,22,23,25,26 more targeted approaches
on microbiota members specifically colonizing the inner-mucus
layer have demonstrated their association with detrimental
outcomes in preclinical and clinical models. The importance of
this mucus-associated microbial community in health and diseases
will be described below (Chapter “Why is mucosa-associated
microbiota important?”)

TIME ALSO MATTERS
From birth to old age
Intestinal colonization by microorganisms starts at birth and
undergoes significant changes during the first years of life.28,29

Fecal analyses have for example demonstrated that the Bacilli
class is dominant after birth and subsequently decreases during
the first 2 months, with concomitant increases in Clostridia and
Gammaproteobacteria.30 Moreover, various perinatal parameters,
encompassing health status of the mother, mode of delivery,
antibiotic usage and type of feeding, are influencing bacterial
colonization of the infant gut.31–33 Bergström et al. reported that
the intestinal microbiota is subjected to significant changes
between 9 and 18 months of age, with cessation of breastfeeding
and introduction of solid food being essential factors impacting its
composition.34 Interestingly, such microbiota shifts around the
weaning period are associated with profound impacts on the host
immune system maturation and function.35,36 Al Nabhani et al.
elegantly demonstrated that the intestinal immune system
undergoes a strong “weaning reaction” in young mice during
which the intestinal microbiota is a key actor for the development
of a balanced immune system.37,38 Importantly, such weaning
reaction is central to protect against numerous inflammatory
diseases later in life, in part through the induction of RORγt+
regulatory T cells.37,38

In adults, a core microbiota of around 40 species that account
for more than 75% of the community can be detected per subject
over a 1-year period, suggesting that some microbiota members
may be residents for decades.39,40 In the elderly population, fecal
microbiota appears enriched in Enterobacteriaceae and depleted
in Clostridium cluster IV and XIVa as well as Bifidobacterium.41

While some links have been established between alterations in the
intestinal microbiota composition and type 2 diabetes (T2D),
cancer (see below) and Alzheimer’s disease,42 the exact impact of
microbiota evolution on senescence and age-associated diseases
remains to be fully elucidated.43,44

Circadian oscillations
The intestinal microbiota is also subjected to circadian oscillations.
In humans, Kaczmarek et al. demonstrated that the intestinal
microbiota composition fluctuates during the day.45 Moreover,
elegant mouse studies bring into light the close relationship
between microbiota and the light/dark cycle, as well reviewed by
Parkar et al.46 Importantly, perturbations of these circadian
oscillations can trigger microbiota perturbations and intestinal
barrier dysfunction.47,48 Moreover, circadian oscillations of serum
metabolites are a microbiota-dependent process, and the
intestinal microbiota has been observed as a central actor in
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Table 1. Studies demonstrating the importance of the mucosa-associated microbiota in health and diseases.

Model Main findings Ref.

Steady state Mouse - Discovery of the “autochthonous bacterial flora”. Bacterial populations are different between
the epithelium and the lumen.

16–18

Mouse - Mucosa-associated microbiota is different from the luminal microbiota: Actinobacteria is more
abundant in the lumen, while Acidobacteria, Deferribacteres and Proteobacteria are enriched in
the mucosa.

19

Macaque - The lumen harbors obligate anaerobes, while mucosa-associated microbiota is enriched in
oxygen-tolerant bacteria.

20

Pig - Firmicutes are more abundant in the digesta, while Proteobacteria and Bacteroidetes are
enriched in the mucosa.

21

Mouse - In the ascending colon, the digesta is enriched in Bacteroidaceae, Enterococcaceae and
Lactobacillaceae, while crypts constitute special niches sheltering Lachnospiraceae and
Ruminococcaceae families.

22

Mouse
& Human

- Lachnospiraceae and Ruminococcaceae are present at the same relative abundance in human
biopsies than in the interfold region in mice. Some bacteria are species and region dependent:
Faecalibacterium or Subdoligranulum are only detected in human biopsies, while Marvinbryantia
is inherent to mice and Butyrivibrio only localized in mice interfold region.

187

Mouse - Identification of the colonic crypt-associated microbiota (CSCM). Lumen is richer in Firmicutes
while CSCM is composed of Proteobacteria, aerobic genera (Burkholderiales, Xanthomonadale).

25

Mouse
& Human

- Acinetobacter genus has a particular tropism for the crypt environment 25,26

Mouse - SFB is a commensal bacterium adherent to the ileal epithelium and playing a symbiotic role. 89,94,95,99,100,102

Mouse - Citrobacter rodentium is able to attach to the intestinal epithelium and grow through the
hydrogen peroxide (H2O2) respiration, with a central role played by the NAPDH oxidase NOX1.

126

IBD/IBS Human - Colonic biopsies from IBD patients are characterized by increased bacterial encroachment
and paracellular and vascular permeability.

56

Human - E. coli, Clostridium and Bacteroides are enriched in the mucosa of IBD patients compared to
controls, while Bifidobacteria is decreased. In active UC disease, E. Coli and Bacteroides are found
in the lamina propria.

58

Human - Reduced bacterial diversity is found in the mucosa-associated microbiota of IBD patients
compared to controls.

59,61,62

Human - Crohn’s disease recurrence following a partial bowel resection can be predicted by analysis of
the ileal mucosa-associated microbiota (role of Gammaproteobacteria, Ruminococcus gnavus and
Corynebacterium)

72

Human - Brachyspira is found in the mucosa-associated microbiota of 30–40% IBS patients. 73

Human
& Mouse

- Faecalibacterium prausnitzii is reduced in IBD patients. Multiple strains, as well as
Faecalibacterium prausnitzii supernatant, polymeric extracellular matrix and a purified protein
are sufficient to decrease intestinal inflammation in animal models.

62,188–190

Human - Adherent-Invasive Escherichia coli (AIEC) pathobionts (Enterobacteriaceae) are found in the
mucosa of 30–40% IBD patients, compared to 5–10% in healthy individuals.

64,66

Mouse - AIEC are flagellated and express a mucinase, which enhance their ability to adhere to and
penetrate the intestinal mucus barrier.

71,191

Mouse - Emulsifier-induced colitis is associated with microbiota encroachment, altered microbiota
composition and increased pro-inflammatory potential.

50

Mouse - Flagellin immunization increase host-microbiota distance and protect against colitis and
obesity.

184

Diabetes Mouse - Emulsifier-induced metabolic syndrome is associated with microbiota encroachment, altered
microbiota composition and increased pro-inflammatory potential.

50

Mouse - A complex microbiota containing specific species infiltrating the mucus layer is required for
the detrimental effects of emulsifiers.

144

Human - Microbiota encroachment is a feature of metabolic disease, particularly hyperglycemia, in
humans.

51

Mouse - Western diet (WD) affects the growth rate and penetrability of the colonic mucus layer. 131

- WD-associated deleterious effects are reversed by soluble fiber consumption. 131,135,140,141

Mouse
& Human

- Akkermansia muciniphila is a commensal bacterium whose administration strengthens
intestinal epithelium integrity and reverse metabolic disorders.

149,157,161

Colorectal cancer Human - Fusobacterium and Bacteroides fragilis are enriched in biopsies from right-side tumors, while
Parvimonas micro is enriched in biopsies from left-side tumors.

26

Human - Identification of Fusobacterium nucleatum in biopsies of CRC patients. 55,80

Human - Identification of Enterotoxigenic E. coli and Bacteroides fragilis (ETBF) in colonic mucosa-
associated biofilm from familial adenomatous polyposis patients.

81
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modulating the circadian liver transcriptome and detoxification
ability.49 Altogether, these data demonstrate that numerous
spatial and temporal factors act in concert to finely regulate the
intestinal microbiota composition and function.

WHY IS THE MUCOSA-ASSOCIATED MICROBIOTA IMPORTANT?
Metabolic disorders
The potential role played by mucosa-associated microbiota in
chronic inflammatory diseases was highlighted by multiple
models of inflammation describing an “aggressive” microbiota
able to penetrate the normally sterile inner mucus layer (Fig. 1).
For example, consumption of synthetic dietary emulsifiers,
carboxymethylcellulose (CMC) and polysorbate 80 (P80), altered
mucosa-associated microbiota composition and function, leading
to low-grade intestinal inflammation and metabolic disorders in
mice50 (cf. details below). Importantly, it was also previously
reported that microbiota encroachment is a feature of metabolic
deregulations in humans, with the observation that microbiota-
epithelium distance is inversely correlated with body mass index,
fasting glucose levels, and hemoglobin A1C.51 Moreover, pioneer-
ing work by Cani et al. elegantly demonstrated that endotoxemia,
referring to the elevation in circulating LPS, is associated with the
promotion of metabolic disorders such as T2D and obesity.52 Such
endotoxemia can occur following microbiota disturbance and/or
increase in intestinal permeability, for example induced by a high-
fat diet (HFD) regimen.53 Hence, these studies further illustrated
the need for a well-controlled host/microbiota interaction at the
mucosal surface.

Inflammatory bowel diseases (IBD) and irritable bowel syndrome
(IBS)
IBD include Crohn’s disease (CD) and ulcerative colitis (UC) that are
chronic idiopathic disorders causing inflammation in the gastro-
intestinal tract.54 The etiology of these diseases has been linked to
genetic factors and aberrant immune response to the gut
microbiota.55–58 Decreased microbiota diversity was repeatedly
found in fecal59,60 and mucosal61,62 samples from IBD patients,

with depletion in anaerobic bacteria such as Bacteroides,
Eubacterium or Lactobacillus.61 For example, lower abundance of
Faecalibacterium prausnitzii (Firmicutes phylum) was observed in
IBD patients60,62 in a way that associates with a higher risk of
relapse.62,63 Furthermore, investigating microbiota organization
along the transversal intestinal axis appears of central importance
in IBD, with the presence of adherent and invasive microbiota
members. Members of the Enterobacteriaceae family, such as the
adherent invasive Escherichia coli (AIEC) pathovar,64,65 have an
increased prevalence in the mucosa of IBD patients compared
with healthy controls.66–69 AIEC pathobionts are flagellated and
express multiple virulence factors with unique regulation of their
expression, such as the Vat mucinase that allows mucins
degradation.70 Altogether, these factors enhance AIEC’s ability to
penetrate the mucus layer and to adhere to and invade intestinal
epithelial cells in a way that promotes chronic intestinal
inflammation.71 Ongoing studies suggest that fecal screening of
AIEC bacteria fails to properly identify people carrying such
bacteria in their intestinal mucosa, highlighting the importance to
characterize this specific microbial population in IBD patients.
Supporting this concept, a recent study demonstrated that CD
relapse following partial bowel resection can be predicted by
mucosa-associated microbiota composition in the ileum.72

IBS is a gastrointestinal disorder syndrome whose etiology
remains unclear. The rectal mucosa-associated microbiota has
been proposed as a potential predictor of small intestinal
overgrowth, a common feature of IBS.73 Jabbar et al. recently
analyzed mucus from sigmoid colon biopsies through metapro-
teomic approaches. They identified Brachyspira in 30–40% of IBS
patients, suggesting a role for this bacterium in IBS, and further
highlighting the importance of the mucosal microbiota in
gastrointestinal disorders.74

Colorectal cancer
Colorectal cancer (CRC) is the third most prevalent cancer
worldwide and is associated with a high lethality rate.75

Alterations of fecal and tumor-associated microbiota composition
have been described.76,77 Some bacterial strains have been

Physiological state

Oxygen
level

Microbiota
Pathobiont

Mucus
layer

«Steady» state mucosa-
associated microbiota

Immune system maturation
Protection against infection

Chronic
inflammation

Pathological state

Perturbators (diet, ...)

Microbiota
enroachment

• High fiber diet
• Akkermansia muciniphila
• IL-33
• Targeted immunization

Intestinal
epithelium

Fig. 1 Host/microbiota interaction at the mucosal surface. At steady state (left part), the mucus layer keeps the bacterial community at a
safe distance, while select symbionts favor maturation of the mucosal immune system by interacting with the host epithelium. In response to
various stressors (right part), the mucus layer is altered in a way that leads to microbiota encroachment and chronic inflammatory diseases.
Such altered host/microbiota relationship can be reversed by fiber-rich diet consumption, Akkermansia muciniphila administration or targeted
mucosal immunization.
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associated with susceptibility to CRC and have focused particular
attention during the past decade, such as Fusobacterium
nucleatum, enterotoxigenic Bacteroides fragilis (ETBF) and Escher-
ichia coli expressing the polyketide synthase genomic island that
enables colibactin expression.55,78–82 Efforts toward identification
of CRC-associated microbiota have also highlighted the impor-
tance of mucosa-associated microbiota.26,81,82–87 For example,
Saffarian et al. characterized crypt-associated and mucosal
communities in CRC. They identified Bacteroidetes, Firmicutes
and Proteobacteria in murine and human colonic crypts, as well as
differential microbial signatures according to the colonic area. For
example, Fusobacterium and Bacteroides fragilis were enriched in
right-sided tumors, while Parvimonas micro abundance was
elevated in left-sided tumors.26 However, the exact role played
by such alterations in tumorigenesis remains to be fully
characterized.

ARE MUCOSA-ASSOCIATED BACTERIA ALWAYS BAD?
While, as highlighted above, mucosa-associated microbiota is
involved in various disease states, it also appears as a critical factor
influencing maturation of the intestinal immune system.

Segmented filamentous bacteria
The best example illustrating this concept is the work on
Segmented Filamentous Bacteria (SFB), which is able to stimulate
both innate and adaptive immune responses, notably Th17 (Fig. 1).
This bacterium is adhering to the epithelium in the terminal
region of the small intestine. It harbors a nipple-like appendage
inserted into the epithelium, especially in the follicle-associated
epithelium of Peyer’s patches,88 which forms an attachment site
with pronounced actin rearrangements.89–91 While adherence to
the epithelium is a hallmark of enteropathogens, SFB are
autochthonous bacteria found to play an essential role for the
host immune system. SFB colonization is observed after weaning
and for 2 months before declining in mice, while in humans, its
presence is detected in the first 2 years of life.92–95 Studies using
SFB-monocolonized mice showed that SFB stimulate mouse
intestinal and peripheral IgA responses with a potent activation
of Peyer’s patches germinal centers, gut-associated lymphoid
structures required for SFB-mediated intestinal IgA responses.96–98

Gaboriau-Routhiau et al. demonstrated that SFB monocolonisation
is sufficient to recapitulate both innate and adaptive immune
priming with strong Th1, Th2, Th17 and Treg responses compared
to germ-free mice,99 and Ivanov et al. also demonstrated the
central role played by SFB in Th17 responses. Associated with its
strong immunostimulatory capacities, SFB has also been described
to contribute to colonization resistance against several enteric
pathogens such as Citrobacter rodentium and Salmonella
enteritidis.100,101 More recently, Shi et al. reported that SFB
colonization is sufficient to protect mice against rotavirus
infection.102 Hence, while mucosa-associated bacteria can pro-
mote chronic inflammatory diseases, data on SFB demonstrate
that this microbial community is also involved in central aspects of
symbiosis. Modulation/inhibition of mucosa-associated bacteria
should therefore be performed with extreme caution, and recent
success in in vitro culture of SFB should bring important
knowledge on such duality.103

Bacteroides fragilis
Works from Mazmanian et al. bring into light the central role of
Bacteroides fragilis at the mucosal surface. After observing that this
bacterium can bind to the mucus layer,104 they demonstrated that
B. fragilis possesses a unique genetic locus of commensal
colonization factors, referred to as the CCF system, enabling this
bacterium to reside within the mucosal surface.105 It was also
observed that, at steady state, the immune system tolerates B.
fragilis despite its mucosal localization, with a mechanism that

involves intestinal IgA.106 Moreover, B. fragilis is an obligate
anaerobe but can nonetheless tolerate the oxidative stress caused
by the epithelium through the alkyl hydroperoxide reductase,
suggesting that this bacterium is well equipped for a mucosal
niche colonization.107 Importantly, through the expression of its
polysaccharide (PSA), B. fragilis can modulate T cell responses and
cytokine production.108 Mechanistically, B. fragilis delivers its PSA
to dendritic cells through outer membrane vesicles recognized by
TLR2, which subsequently trigger immunomodulatory effects.109

In several models, including colitis, CRC and viral encephalitis, this
bacterium was observed to be highly protective, further demon-
strating the ability of select mucus-associated microbiota mem-
bers to promote health.110–112

REGULATION OF THE MUCOSA-ASSOCIATED MICROBIOTA
The oxygen hypothesis
The gut microbiota is influenced by several environmental factors,
including oxygen concentration. As mentioned previously, the
CSCM niche is mainly dominated by aerobic genera (e.g.,
Acinetobacter, strictly aerobic), suggesting an oxygen-enriched
environment in the proximity of the epithelium.113 Combining an
intraluminal probe with a phosphorescent quenching method,
Albenberg et al. assessed oxygen distribution along the radial axis
of the mouse intestine and demonstrated that it diffuses from
epithelial cells to the lumen.114 In humans, the analysis of mucosal
biopsies showed that adherent bacteria (Proteobacteria, Actino-
bacteria) were more aerotolerant than luminal bacteria and
preferentially metabolize proteins instead of carbohydrates as
substrates. Moreover, fecal microbiota composition is altered
following hyperbaric oxygen therapy in mice, suggesting the
impact of oxygen on the transversal microbiota
compartmentalization.114

Several observations indicate that alteration in this radial
oxygen distribution may lead to opportunistic pathogens invasion
and disease development.113,115,116 Expansion of the aerobic
zone is notably suspected of playing a role in inflammatory
bowel diseases (IBDs). Indeed, IBD-associated dysbiosis is char-
acterized by a decreased proportion of strict anaerobes (Faeca-
libacterium prausnitzii) in combination with the overgrowth of
facultative aerobes, particularly the Enterobacteriaceae family
(AIEC).60–62,66,67,69,117,118 Rigottier-Gois assimilated this dysbiosis
to dysanaerobiosis, creating a favorable environment for the
growth and invasion of aerotolerant bacteria that can enhance
inflammation.113

The oxygen hypothesis was further consolidated by works from
Baümler et al. exploring mechanisms lowering colonization
resistance against Enterobacteriaceae, which demonstrated that
antibiotic treatment promotes the shift from anaerobe to aerobe
bacteria through various mechanisms.116 Streptomycin was
reported to disrupt gut microbiota composition, depleting
Clostridia class.116,119,120 Yet, Clostridia are important producers
of short-chain fatty acids, such as butyrate, which is used as an
energy source by mature colonocytes.121,122 Butyrate metaboliza-
tion requires substantial quantities of oxygen, promoting a
hypoxic environment close to the epithelium and avoiding
aerobic bacteria colonization.123,124 In the absence of butyrate,
colonocytes switch to glucose fermentation to obtain ATP. Hence,
streptomycin, by reducing Clostridia, indirectly favors Enterobac-
teriaceae bacteria by generating an aerobic niche.116,120 In
addition, streptomycin was reported to promote synthesis of the
inducible nitric oxide synthase and subsequent production of
nitric oxide, a reactive nitrogen species suggested to catalyze
monosaccharide oxidation, leading to an increase in resources
critical for pathogens (e.g., glucarate and galactarate that
constitute a nutrient niche for species like E. coli and S.
typhimurium).125 These studies elegantly indicate that controlling
oxygen concentration at the epithelium surface may represent a
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possible mechanism to shape bacterial colonization of this specific
intestinal niche. Interestingly, recent work from Bäumler’s team
demonstrated that Citrobacter rodentium pathogen is able to
intimately attach to the intestinal epithelium and grow through
hydrogen peroxide (H2O2) respiration in the non-inflamed gut,
with a central role played by the NAPDH oxidase NOX1. These
data suggest that H2O2 can also be an important player in the
regulation of the mucosa-associated microbiota.126

Dietary factors
Among factors modulating bacterial colonization at the mucosal
side, diet is certainly one of the most important. As highlighted
below, several dietary factors may alter mucosa-associated
microbiota in a way that promotes chronic intestinal inflammation.

Western diet
Western Diet (WD) is characterized by an increased fat intake,
refined sugars/sweeteners and animal proteins, and a decreased
consumption of fruits, vegetables, and whole grains.127 WD
consumption is strongly associated with metabolic disorders,
such as obesity, T2D, and non-alcoholic liver disease. Over the last
decades, the role of the host/microbiota relationship was
demonstrated in several WD-induced pathologies (reviewed
in128,129). It was for example shown that HFD shifts commensal
bacterial composition, increasing Proteobacteria, while decreasing
Bacteroidetes relative abundance.130 Interestingly, Schroeder et al.
reported that WD affects the growth rate and penetrability of the
colonic mucus layer compared to a control fiber-rich diet.131

Moreover, WD-fed mice displayed reduced inner mucus layer
thickness and slower mucus growth.131 They also observed
increased mucus penetrability of pathogens, as well as goblet
cells hypertrophy and Muc2 and Dmbt1 overproduction, likely
reflecting host compensatory mechanisms.131 Fructose is another
nutrient part or the WD, and Montrose et al. recently demon-
strated, in both Citrobacter rodentium-induced colitis and IL10−/−

models, that a high fructose diet is sufficient to worsen intestinal
inflammation and damage the integrity of the gut barrier. A
reduction of the mucus layer thickness associated with bacterial
colonization was observed, demonstrating that numerous dietary
factors are acting in combination to regulate the host/microbiota
interactions at the mucosal surface.132

Fiber-free diet
Studies indeed demonstrated that a fiber-depleted diet partici-
pates in chronic inflammatory diseases through modulation of
microbiota composition and function.133,134 For example, mice fed
a low-fat low-fiber diet exhibit increased body weight and altered
metabolism compared to mice fed a fiber-rich diet.135 Other
studies demonstrated that supplementation with oligofructose, a
chicory inulin-type fructan, is sufficient to improve metabolic
parameters altered by a HFD.136–139

Desai et al. elegantly demonstrated that fiber deprivation
altered the intestinal microbiota in a way that promoted
degradation of the colonic mucus barrier and enhanced pathogen
expansion, exacerbating susceptibility to colitis.140 Using a
synthetic minimal microbiota, they demonstrated that, in the
absence of fiber, the gut microbiota shifted towards mucin
degraders to fulfill its nutritional needs. Consequently, bacteria
such as A. muciniphila or B. thetaiotaomicron, erode the colonic
mucus barrier, hence enabling epithelium colonization by
pathogenic bacteria, as demonstrated using the Citrobacter
rodentium infection model. In 2016, Sonnenburg et al. demon-
strated, in a mouse model, that dysbiosis and associated disorders
induced by a fiber-deprived diet are reversible within a genera-
tion, but became non-reversible after multiple generations.141

Hence, a fiber-rich diet appears as an effective way to reinforce the
intestinal barrier via its beneficial impact on mucosa-associated
microbiota.

Emulsifiers
Select food additives appear to play an important role in
regulating mucus-associated microbiota composition and func-
tion. It has been hypothesized that emulsifiers, which are added to
most processed foods to improve texture and extend shelf life,
might have contributed to the rapid post–mid-20th century
increase in the incidence of chronic inflammatory diseases.142,143

Investigation of this hypothesis demonstrated that dietary
emulsifiers can indeed detrimentally impact the intestinal micro-
biota in a way that drives chronic inflammatory diseases. In wild-
type mice, bacteria were only rarely observed within 10 µm of the
epithelium, and the average closest bacteria detected over
multiple high-powered fields was about 25 µm from the
epithelium.50 In contrast, in mice fed with dietary emulsifying
agents CMC and P80, bacteria could be found in direct contact
with the epithelium, and the average distance of the closest
bacteria per field was <10 µm.50 Such effects of emulsifier
exposure on the microbiota were associated with the develop-
ment of chronic colitis in susceptible mice, while wild-type mice
developed chronic low-grade intestinal inflammation and meta-
bolic deregulations. Importantly, microbiota/epithelium distance
inversely correlated with the extent of intestinal inflammation,
supporting the central and direct role played by mucus
penetrating bacteria in emulsifier-induced promotion of chronic
intestinal inflammation.50 It was also reported that in gnotobiotic
mice colonized with a highly restricted microbiota comprised of
only eight bacteria (namely “Altered Schaedler Flora”, ASF),
emulsifier consumption was not sufficient to induce microbiota
encroachment, intestinal inflammation, nor metabolism alteration.
This thus suggested that a complex microbiota containing specific
species infiltrating the mucus layer is required for the detrimental
effect of emulsifiers.144 In more recent work, pathobiont coloniza-
tion of ASF mice was observed to be sufficient to make the
animals susceptible to microbiota encroachment and chronic
intestinal inflammation induced by emulsifier consumption.145

Hence, this demonstrates that select bacteria are needed to
mediate the detrimental effect of emulsifier exposure through
their encroachment within the mucus layer and subsequent
promotion of chronic intestinal inflammation. Further research is
now warranted to identify these mucus invaders in both animal
and human models.

MUCOSA-ASSOCIATED MICROBIOTA—OPENING OF
THERAPEUTIC AVENUES?
As detailed above, there is now evidence that mucosa-associated
microbiota is crucial for host-bacteria interactions, which may
open the door for therapeutic strategies in the coming years. On
one hand, some commensals, such as Akkermansia muciniphila,
may help to maintain mucosal integrity through a probiotic-type
mechanism. On another hand, microbiota encroachment was
reported to associate with an array of poor health outcomes, with
the observation that a reduced epithelium-microbiota distance
correlates with the severity of intestinal inflammation in mice and
dysglycemia in human.50,51 While any causal link between
microbiota encroachment and chronic inflammatory diseases
remains to be studied, this underscores the need for novel
approaches to target and inhibit encroachment of deleterious
bacteria (Fig. 1).

Probiotic approach: the example of Akkermansia muciniphila
Isolated in 2004 by Derrien et al.,146 A. muciniphila is a mucin-
degrading bacterium and one of the most described commensal
bacterium residing in the intestinal mucus layer.147,148 Its
abundance is positively associated with metabolic health, as
elegantly demonstrated by the work of De Vos’ and Cani’s
teams.149–151 Everard et al. for example reported that mucus
thickness is reduced by half in diet-induced obese mice, a
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phenomenon that can be prevented by A. muciniphila treat-
ment.149 It was also reported that this bacterium can increase the
number of regulatory T cells and goblet cells, as well as the
expression of the antimicrobial Reg3 γ peptide, in the intes-
tine.152–154 In vitro, A. muciniphila adheres to the intestinal
epithelium and strengthens enterocyte monolayer integrity.155

More recently, a single protein, called Amuc_1100, was sufficient
to improve gut barrier and partly recapitulate the previously
observed beneficial effects in vivo.156,157 Moreover, it was reported
that treatment with A. muciniphila-derived extracellular vesicles
could enhance intestinal tight junction function, reduce body
weight gain and improve glucose homeostasis in obese mice.158

Plovier et al. demonstrated that pasteurization of this bacterium
did not affect its beneficial effects, but even potentiated it.157,159

Finally, in a human pilot study, pasteurized A. muciniphila tended
to decrease fat-mass gain and hip circumference, as well
as improved insulin sensitivity, total cholesterol and blood markers
of liver dysfunction, inflammation and endotoxemia in a cohort of
overweight human volunteers.120 Altogether, these data elegantly
support the therapeutic interest of this bacterium able to colonize
the mucosa.149,160,161

Interleukine-33 (IL-33)
IL-33 belongs to the IL-1 cytokine family, binds the ST2 receptor,
and is involved in various cellular pathways, including cytokine
secretion, epithelial repair process and cell replication and
survival.162–165 IL-33 appears as a crucial amplifier of the mucosal
and systemic innate and acquired immune response.166,167

Interestingly, IL-33−/− mice displayed a dysbiosis and a decrease
in Paneth and goblet cells that associated with an increased
susceptibility to colitis.168–170 In a mouse model of chronic colitis,
IL-33 administration led to disease improvement and increased
mucin production.163,168,171–174 Several publications demonstrated
that IL-33 plays a role in preventing encroachment by pathogens
such as helminths,175–178 Clostridium difficile,174 Salmonella Typhi-
murium179 and H. pylori.180 Thus, IL-33 emerges as a central actor
in regulating the host/microbiota interactions at the mucosal
surface. However, caution appears warranted, as some studies
reported a colitogenic impact of IL-33. In the DSS-induced colitis
model, IL-33 administration was found to exacerbate intestinal
inflammation, while IL-33KO mice were protected against
colitis.181–183 Hence, while this cytokine could be a therapeutic
tool to prevent microbiota encroachment, its exact role in
modulating the host/microbiota relationship remains to be fully
elucidated.

Mucosal immunization
It was recently hypothesized that the mucosal adaptive immune
system, in close contact with the microbiota at the mucosal side,
can be used to prevent microbiota encroachment by excluding
motile bacteria from the mucus layer through targeted anti-
flagellin response. This idea stemmed from a study revealing that
flagellum appendage is central to the ability of bacteria to
penetrate the colonic mucus layer,71 and from recent observations
indicating that purified anti-flagellin antibody can rapidly shut
down flagellin expression, and thereby bacterial motility.184 Based
on these findings, it was speculated that flagellin immunization
might result in lower levels of bioactive flagellin in a way that will
prevent microbiota encroachment. Mice immunized with purified
flagellin displayed strong fecal anti-flagellin IgG and IgA responses
that associate with reduced expression of flagellin by the intestinal
microbiota. Moreover, flagellin immunization was sufficient to
increase the distance separating the microbiota from the
epithelium in a way that correlated with protection against colitis
and diet-induced obesity.184 Overall, these data support the
concept that vaccination strategies aiming to prevent microbiota
encroachment might protect against, or perhaps even treat,
chronic inflammatory diseases with a microbiota component.

CONCLUSION
Multiple lines of evidence point to the importance of mucosa-
associated microbiota in health and diseases. Additional research
is warranted to characterize this “hidden” ecosystem, and uncover
mechanisms by which it can promote health as well as
inflammatory and metabolic disorders. To date, most microbiota
studies have relied on analyzing microbiota composition via 16S
rRNA gene sequencing of fecal material. While the mucosa-
associated microbiota is of central importance, its study requires
access to intestinal biopsies combined with molecular/culturomic
approaches. Moreover, the causal link between microbiota
encroachment and the promotion of chronic inflammatory
diseases remains to be fully elucidated. Recently developed
approaches allowing to specifically study mucus-associated
microbiota should help in this endeavor.185,186 Besides its
composition, identification of gene expression by this specific
community also appears warranted in order to understand
mechanisms by which select microbiota members colonize this
unique niche in a way that induce chronic intestinal inflammation.
Hence, while this mucosal microbiology field of research is just
emerging, it holds exciting promises for the prevention and/or
treatment of chronic inflammatory diseases!
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