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Abstract

Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments.
GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we
compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to
a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and
identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells.
Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active
phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase.
We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364)
phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we
also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of
mouse mutant NS cells (INK4a/ARF2/2, or p532/2), as well as the acute genetic deletion of p53 from a conditional p53
floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-
mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative
disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.
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Introduction

Glioblastoma multiforme (GBM) is the most common and

aggressive form of primary brain tumour in adults. Current

standard of care involves surgery, radiotherapy and adjuvant

chemotherapy; however, such treatment regimes fail to provide

long-term survival [1]. Our understanding of the biology and

genetics of GBM has advanced considerably over the past decade

[2]. Concomitant genetic disruptions to the RTK/PI3K, RB/

CDK and P53 pathways through point mutations or focal

amplifications/deletions are frequent in GBMs [3,4]. GBM is also

accompanied by chromosomal instability with frequent whole-

chromosome gains and losses [5]. Gene expression profiling of

primary tumour biopsies has indicated at least three major

subclasses of disease defined by characteristic marker signatures

and associated genetic alterations [6,7].

GBM tumours display intra-tumoural cellular heterogeneity,

with coexistence of distinct subpopulations of cells displaying

either neural stem cell-associated markers [8–10] or more mature

neuronal or glial markers [11,12]. Stem cell markers can be used

to identify cells that are tumour-initiating upon orthotopic

xenotransplantation [13,14]. Thus, the phenotypic cellular
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heterogeneity in GBMs may reflect an underlying developmental

or tissue stem cell hierarchy as originally defined in teratocarci-

nomas and leukaemias; reviewed in [15].

The molecular and cellular heterogeneity of GBM constitutes

an impediment to the identification of a generic therapeutic

strategy. One approach to identify molecular vulnerabilities of

proliferating tumour cells is to compare their behaviour with

normal tissue stem cells in response to chemical/genetic screens.

During the past decade improvements in our ability to propagate

brain tumour stem cells have been made through application of

neural stem cell culture techniques [10,16,17]. Neural basal media

supplemented with EGF and FGF-2 can support expansion of

brain tumour cells that retain stem cell markers and are tumour-

initiating [10,16,17]. Thus, GBM represents one of the few human

cancers where both the genetically normal tissue stem cell and

their malignant counterparts can be continuously expanded in vitro.

These primary cell lines provide more accurate models compared

to ‘classic’ serum-derived glioma cell lines which display in vitro

acquired genetic and epigenetic changes and do not recapitulate

tumour cell heterogeneity and infiltration in xenografts [17,18].

Many investigators have made use of suspension cultures

(‘neurospheres’), for in vitro expansion of GBM stem cells.

However, we and others have suggested that adherent monolayer

culture provides a more uniform environment that suppresses

spontaneous differentiation and cell death [19–21]. Importantly,

adherent monolayer culture also permits visualisation by live-cell

microscopy of cellular phenotypes at the single cell level, which is a

prerequisite for cell imaging-based screening [22].

Kinase inhibitors are the pre-eminent class of therapeutic agents

developed by the pharmaceutical industry and many compounds

are now in preclinical and clinical development as anti-cancer

drugs [23]. Given the spectrum and diverse patterns of structural

and mutational changes in GBM, a major challenge is to identify

which of the many available molecular targeted therapies should

be prioritised for clinical translation. The goal is a therapeutic

strategy that can disrupt growth of all subtypes of tumour-

propagating cells without affecting normal neural stem and

progenitor cell function.

Here we performed a live-cell imaging screen of 160 kinase

inhibitors using malignant GNS cell lines and genetically normal

human NS cell counterparts. We identify heightened vulnerability

to suppression of polo-like kinase 1 (Plk1) across a wide variety of

phenotypically distinct GNS cells. This finding suggests that

inhibitors of this critical mitotic kinase should be explored as a

treatment for GBM.

Materials and Methods

Ethics Statement
Human primary cell lines used in this study were obtained

according to UK regulations and following approval from the local

ethical review board (Lothian Regulatory Ethics Committee; Ref

LREC/2002/6/15). Tissue was donated using written informed

consent from patients or next of kin for tumour biopsies and foetal

tissue, respectively.

Cell culture of NS and GNS
Human GNS and NS cell lines were derived from glioblastoma

biopsies or foetal brain tissues using described protocols

[21,22,24]. Foetal forebrain tissue from Carnegie stage 23

embryos (,56 days) was used to establish NS cell cultures. Cells

were cultured in serum-free complete medium (CM), N2 and B27

supplemented with Laminin at 1 mg/ml (Sigma) and EGF/FGF-2

(Peprotech, 10 ng/ml) and split typically once per week after

dissociation with Accutase solution (Sigma) and centrifugation.

Chromosomal spreads were performed as described [25]. Cells

were incubated with demecolcine (0.1 mg/ml, Sigma) overnight

and subsequently dissociated, harvested by centrifugation and re-

suspended in 5 ml 0.075M buffered KCl and incubated at 37uC
for 30 min. Following centrifugation, the pellets were carefully re-

suspended in 10 ml of ice-cold fixative (methanol: glacial acetic

acid; 3:1 v/v), incubated at room temperature for 30 minutes,

harvested by centrifugation, re-suspended in 1 ml fixative and

examined on glass slides. IENS cells were kindly provided by Prof

M. van Lohuizen [41]. P532/2 mouse forebrain NS cultures were

a gift from Dr P. Dirks.

Gene expression analysis
The expression of glioblastoma subtype signature genes in GNS

cells was examined using published Affymetrix HG-U133 Plus 2

microarray data [22]. Affymetrix HT HG-U133A microarray data

for 171 previously used for subtype discovery was obtained from

The Cancer Genome Atlas (http://cancergenome.nih.gov/) and

used for comparison. Only probesets present on both array types

were used for analysis. The two data sets were individually

background corrected and normalized with the RMA method in

the Bioconductor package affy [26]. Gene expression values were

computed by averaging normalized intensites of corresponding

probesets, using mappings of probesets to genes from Ensembl 67

[27], and centered on the mean across samples. To visualize

subtype signatures for glioblastoma samples, expression values

were scaled by SD across samples, averaged by subtype, and scaled

to units of SD across subtypes.

Proteomic screening
Cell lines G144 and G166 treated with J101 (100 nM for 1, 2 or

4 h, or DMSO control) were lysed in buffer provided by the

manufacturer and tested on a panel of 812 antibodies, 550 pan-

specific and 262 phospho-specific (Kinex antibody microarray

platform, Kinexus Bioinformatics Corporation). Results from this

dataset were filtered using the heuristic z-score threshold of 61.1

on the comparison of treated versus untreated to identify

pronounced effects. To study the known interactions between

modulated proteins/phospho-proteins, pathway analysis was

carried out with Ingenuity software (IPA, Ingenuity Systems).

This approach enabled identification of networks significantly

enriched for the proteins of interest.

Chemical screening
Chemical screening was carried out essentially as described in

detail elsewhere [28]. Cells were seeded in 96-well plates (3000

cells per well) and left to settle and attach for 3 days. Images were

collected at hourly intervals over 3–6 days and included image

acquisition prior to addition of the compounds as the time point

0 h. Each inhibitor was added at a final concentration of 100 nM.

A benchtop 96-well format liquid handling device (CyBi-Selma,

CyBio) was used to plate cells and dispense chemicals. Images were

acquired using the Incucyte HD or Incucyte FLR live-cell imaging

system (Essen Biosciences). Initial confluence values typically

clustered around 20–30% and final confluence values of DMSO

controls around approximately 60–70%.

Image processing
Incucyte experiments were archived separately. Acquired

images were exported as TIF files in the Metamorph ND format

with standardised identifiers from which to extract metadata. The

Sensitivity of Glioblastoma to Plk1 Inhibitors
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CellProfiler image analysis pipeline included loading of images,

identification of primary objects, measurement of the imaging area

and object size and shape. Data analysis was carried out in R using

our in-house developed package ‘Cellprofile-R’ (http://code.google.

com/p/cellprofile-r/). Example time-lapse sequences were assem-

bled in lossless format using Avid Media Composer. Global

brightness and contrast adjustments were applied in Adobe After

Effects and video files were rendered in H.264/MPEG-4 from

Adobe Media Encoder.

A similar pipeline in CellProfiler was used to quantify DAPI and

pHH3 positive nuclei in fixed immunohistochemistry. To char-

acterise the degree of mitotic arrest images of phospho-histone H3-

positive cells (n#100) were exported to a thumbnail gallery and

classified based on the appearance of the spindle as ‘No spindle’,

‘Unipolar’, ‘Bipolar’ or ‘Multipolar’.

InhibitorSelect 96-Well Protein Kinase Inhibitor Library I and

II (EMD, Cat No. 539744) and II (EMD, Cat No. 539745)

consists of 160 well-characterised, cell-permeable, potent and

reversible protein kinase inhibitors, the majority of which are

ATP-competitive. J101 was obtained from Sigma for validation

experiments. BI2536, BI6727 and GSK 461364 were obtained

from Selleck Chemicals and Imatinib from EMD Merck.

Quantitative RT-PCR
Total RNA was collected from human and mouse cell samples

using QIAGEN RNeasy Mini kit (Qiagen) and cDNA was

synthesized with Superscript III (Invitrogen). Quantitative real-

time PCR was performed using the LightCycler system (Roche)

and data were analysed with the Bioconductor package HTqPCR

[29]. Samples were normalised to GAPDH or 18S ribosomal RNA

for human and mouse samples, respectively. Averages of technical

duplicates were used in each experiment. For human samples

experimental data were calculated relative to CB660 NS cell

expression levels, whereas for mouse samples experimental data

were calculated relative to ANS4 cells. PCR primers and

associated Universal ProbeLibrary (Roche) sequences are provided

in supporting methods.

Immunocytochemistry and immunoblotting
For immunocytochemistry analysis, medium was carefully

removed to avoid cell detachment and cells were fixed with

paraformaldehyde 4% for 10 min. After washing with PBS

supplemented with 0.1% Triton X-100 (PBS-T), blocking solution

with PBS-T+1% BSA+3% goat serum (Sigma) was added for

30 min. Primary antibodies were added to the blocking solution

and incubated overnight at 4uC. Primary antibodies used were:

goat polyclonal Lamin B (Santa Cruz, sc-6216), rat or rabbit anti-

pHH3 (Sigma), mouse alpha-tubulin (Sigma). Appropriate goal

secondary antibodies conjugated with Alexa Fluor dyes (Life

Technologies) were used throughout.

Immunoblotting
Cells were lysed in 150 mM NaCl, 20 mM Tris-HCl pH 7.5,

0.5% NP-40, 2 mM EDTA, 1 mM NaF and protease inhibitors.

Protein sample buffer was added to lysates and proteins were

analyzed by SDS-PAGE followed by wet blotting. The following

antibodies were used: anti-a Tubulin (rat monoclonal hybridoma

supernatant, kind gift of Dr. A. Hergovich, UCL, London), anti-

Plk1 (rabbit polyclonal, Cell Signaling, #4535), anti-Phospho-Plk1

(rabbit polyclonal, Cell Signaling, #5472), anti-Plk2 (rabbit

polyclonal, kind gift of Dr. I. Hoffmann, DKFZ, Heidelberg),

anti-Sox2 (mouse monoclonal, R&D ab2017), anti-Sox9 (ab3697,

rabbit polyclonal, Abcam), anti-GFAP (mouse, monoclonal, Sigma

G3893), secondary antibodies ECL anti-rat, anti-mouse and anti-

rabbit HRP linked whole antibody (Thermo Fisher).

Flow cytometry
Unlabelled ANS4 and GFP-labelled 223.2 (p532/2) cell lines

were analysed by flow cytometry. In 6-well plates, 50,000 cells of

ANS4, 223.2 or a 1:1 mixture of both cell lines were seeded in

duplicate wells. Cells were treated with DMSO, J101 (100 nM) or

BI 2536 (100 nM) and at day 3 inhibitors were withdrawn by

media replacement. Percentages of GFP-positive cells were

determined at days 0, 2, 4, and 6 on the CyAn flow analyser

(Beckman Coulter, USA). Data analysis was performed with

Kaluza Flow Cytometry software version 1.1 (Beckman Coulter,

USA).

In vitro blood-brain barrier assay
Porcine brain endothelial cells (PBECs) were isolated and

cultured as described [30,31]. Inserts with confluent PBECs were

co-cultured with GNS cells and compounds applied to determine

their capacity to cross the endothelial barrier to the GNS cells

below. After 24 h the cell culture inserts containing PBECs were

removed and GNS cells were cultured for a further 24 h, fixed,

and then analysed by immunocytochemistry. Sodium fluorescein

(Sigma) was used as a control to determine levels of paracellular

permeability and therefore integrity of the barrier function of

PBECs (applied at 7.5 mg/ml in the top insert). Samples of culture

media below the insert were collected and fluorescence was

measured at an excitation wavelength of 485 nm and an emission

wavelength of 530 nm.

Results

Screening of a small molecule kinase inhibitor library
identifies compounds that are cytostatic against GNS
cells but not normal NS cells

We previously characterised three glioblastoma-derived NS cell

(GNS) lines, termed G179, G166 and G144, with distinct

molecular and genetic features [22,32]. To ascertain whether

these correspond to specific molecular subtypes of GBM [7], we

assessed levels of the gene expression signatures described by

Verhaak et al., comprising 840 genes (Figure 1A and B). We found

that G179 and G166 display similarities to the ‘neural/mesen-

chymal’ and ‘mesenchymal’ subtypes, respectively, while G144

cells express markers associated with the ‘proneural’ subtype

[22,33].

These three primary cell lines were used in a chemical screen to

identify small molecules that block proliferation of GNS cells but

not normal NS cells. As a control we used a karyotypically normal

human foetal NS cell line (CB660) [24]. We utilised a library of

160 known kinase inhibitors (InhibitorSelect I and II, EMD

Millipore). This included a broad spectrum of inhibitors of kinases,

including tyrosine kinases, cyclin dependent kinases, and protein

A, G and C kinases.

Cellular responses to the compounds were monitored each hour

over a 3–6 day period using live-cell imaging in 96-well format

(Figure 1C). This approach was previously used by our laboratory

in a screen of the NIH clinical collection library [22]. Pilot

experiments using a 1 mM dose revealed widespread non-specific

effects on foetal NS cells (not shown) and prompted us to screen

the library at a lower concentration (100 nM). Rates of cell

proliferation were extracted from the time-course data by

estimating cell confluence at each time point and plotting

proliferation curves (Figure 1D). These data were also used to

determine a value for the change in confluence between start and
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endpoints of the treatment (mean of triplicate experiments).

Statistically significant events were identified through comparison

of library compounds to negative (DMSO) controls for each plate

(P-values and z-score; Figure 1E and Table S1). The pan-kinase

inhibitor staurosporine (assayed in two independent wells) served

as a positive control and effectively blocked proliferation of all

GNS cells and NS cells.

Many compounds had clear cell line-specific effects (Table S1).

For example, Cdk/Crk inhibitor was cytostatic against G144 and

G166 and stimulated increase in GFAP expression (data not

shown), indicating promotion of differentiation, but had virtually

no effect on G179. Of particular interest to us was JNJ-10198402

(J101), as this compound disrupted proliferation of all three GNS

cell lines, whereas it had no significant effect on the growth of

CB660 cultures (P,0.00005; z = 4.44) (Figure 1F).

JNJ-10198402 induces mitotic arrest of GNS cells at
prometaphase

The live-cell-imaging screens generated approximately 300,000

image files. These raw data contain a wealth of morphological

information regarding cellular responses to each compound.

Confluence values generated by the Incucyte system provide only

an indirect estimate of cell number, and can be error-prone if

morphological changes occur (e.g. flattening of cells). To extract

quantitative measurements of cell numbers and morphologies we

processed the imaging data with CellProfiler and CellProfiler

Analyst (Figure 2) [34,35]. A principal component analysis (PCA)

of the quantitative data for morphological signatures indicated that

J101 imposed a unique cellular response in terms of morphology in

GNS and not in NS cells (Figure S1).

Individual images were processed using a feature discovery

pipeline to segment objects and collect a diverse spectrum of

morphological parameters (e.g. size, texture and shape). Using

these data we were able to establish prototypes for the

identification and subsequent counting of specific cell morpholo-

gies. We defined three classes of object/event: 1) cells undergoing

mitosis, which have a characteristic rounded morphology with

bright halo in the phase channel and visible condensed chromo-

somes; 2) viable interphase cells; 3) dying cells/debris and cellular

processes that were incorrectly segmented [35,36] (Figure 2A and

Movie S1). This analysis provided an independent measure of the

Figure 1. Live-cell imaging screen to determine responses of 160 kinase inhibitors against normal and glioblastoma-derived neural
stem cells. (A) Glioblastoma subtype gene expression signatures established Verhaak et al. [7] (left panel) were assessed in a set of GNS cell lines
(right panel). (B) Correlations between subtype centroid values determined by Verhaak et al. and gene expression in GNS cells. G144 exhibits clear
correspondence to the ‘proneural’ subtype, whereas G166 and G179 have greater similarities to the mesenchymal and neural/mesenchymal
subtypes, respectively. (C) Summary of screening strategy based on these three GNS cell lines and a genetically normal NS cell (CB660). (D)
Proliferation curves generated for each compound over a 3–6 day period identify J101 (red line) as an agent that can selectively block expansion of
GNS cells. (E) Significant events were identified affecting GNS cells but not NS cells, and cytotostatic/cytotoxic compounds reducing confluence in all
GNS cells .2.2 standard deviations from the average of DMSO controls are shown (P = 0.01). The full data for the screen are presented in Table S1. (F)
Example phase contrast images acquired for G179 and CB660 prior to treatment with J101 (0 h) and 60 h.
doi:10.1371/journal.pone.0077053.g001
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total viable cell numbers and relative number of mitosis events

within each culture well over the experimental timecourse.

JNJ-10198402 (J101) was confirmed as blocking cell prolifera-

tion in GNS cells, as no increases in total cell number were

recorded. Surprisingly however, J101 was found to induce a ,7-

fold increase in the numbers of mitotic objects scored during a

two-day period compared to DMSO controls (Figure 2B). The

increase in cells undergoing mitosis without a concomitant

increase in total cell numbers (Figure 2C) suggested that mitotic

arrest might be triggered in GNS cultures, but not NS cells,

following J101 exposure.

Immunocytochemistry for the condensed chromosome marker

phospho-histone H3 (pHH3) confirmed that J101-treated cells, but

not normal NS cells, had clearly undergone mitotic arrest

(Figure 3A). The pHH3-arrested cells displayed a fragmented

nuclear membrane, as assessed by co-immunostaining for Lamin

B, indicating that arrest occurred specifically at prometaphase

(Figure 3B). Manual tracking of individual cells in time-lapse

movies revealed that while CB660 engagement in mitosis was

transiently prolonged by J101 (2–5 hr), for G144 and G166 we

found that cells were often arrested for .10 h, then typically

underwent apoptosis (Figure S2). Withdrawal of the inhibitor was

not sufficient to enable arrested cells to re-engage in cell cycle, as

similar numbers of pHH3 events were measured at 1, 2, 4 and 8 h

after drug withdrawal (Figure S3).

We next investigated whether the effects of J101 could be

reproduced across a larger set of GNS cells. Four additional GNS

cell lines, derived from independent tumour specimens (termed

G7, G14, G19, G26) and two newly-derived foetal NS cell lines

(CB11130 and CB11171) were tested for responses. GNS cells

typically displayed a .10-fold increase in pHH3+ cells relative to

DMSO controls after 24 h in the presence of 100 nM J101. This

represents a 2- to 5-fold increase in the percentage of arrested cells

compared to normal NS cell cultures (Figure 3C). Through

analysis of gene expression signatures in these four additional GNS

lines [7], we found them to mirror features of established GBM

tumour subtypes (Johnstone et al., in preparation). G14 and G19

display ‘mesenchymal’ features, while G26 was classified as

‘neural/mesenchymal’; G7, the cell line displaying the most acute

response to J101 (Figure 3C), belonged to the ‘proneural/classical’

subtype. Visual inspection of time-lapse movies constructed for G7

revealed that cell division was stalled following entry into mitosis

(Movies S2, S3, S4 and S5). These effects were validated on G7

cultures using an independent batch of J101, and by testing the

J101 compound synthesized by a different manufacturer (data not

shown). In summary, high-content chemical screening identified a

kinase inhibitor, J101, that triggers mitotic arrest in a diverse set of

GNS cells with limited inhibition of the growth of normal NS cells.

JNJ-10198402 triggers mitotic arrest of GNS cells through
suppression of polo-like kinase 1 and failure to form a
bipolar mitotic spindle

J101 (PDGF Receptor Tyrosine Kinase Inhibitor IV, PubChem

ID: 9797370) is a cell-permeable indenopyrazole compound acting

as an ATP-competitive and reversible inhibitor of platelet-derived

growth factor receptors (PDGFRs), with IC50 of 4.2 nM and

45 nM for b and a variants, respectively. To explore whether

reduced PDGFR signalling imposed by J101 might influence

critical cell cycle regulators, we assessed the transcription factor

FOXM1, as its regulatory function is imparted downstream of

receptor tyrosine kinase (RTK) signalling pathways. Although

levels of FOXM1 were higher in GNS cells than NS cells, we

found no change in levels of FOXM1 transcripts or downstream

targets Plk1, Aurora, CENP-A, CENP, or p21 upon exposure to

J101 (Figure S4). This indicates that J101 acts in parallel or

downstream pathways to FOXM1.

Cell-permeable chemical inhibitors can often bind multiple

targets, confounding the interpretation of responses and conclu-

sions regarding the critical molecular pathways involved. In

addition to PDGFRs J101 also inhibits c-Abl (IC50 = 22 nM) and

to a lesser extent c-Kit and several other kinases. We noted that

three different PDGFR inhibitors present in the screened library

did not phenocopy the effect of J101, even at high doses. Imatinib,

which shares a similar target profile to J101, also failed to elicit

mitotic arrest (data not shown). This suggests that the observed

Figure 2. JNJ-10198402 induces mitotic arrest in GNS cells but not in normal NS cells. (A) Segmentation of phase contrast images with
high-content analysis software (CellProfiler & CellProfiler Analyst). Objects were assigned into different classes/bins. Interphase cells (blue) and
mitoses (red; ‘i–iii’). Erroneously segmented debris or dead cells (green; ‘x’) are isolated and discarded from event counts. (B) Relative number of
mitoses scored within 48 h from the start of the experiment for each line and all 160 inhibitors. (C) Kinetics of change in total cell number and mitosis
for G179. J101 significantly increased the number of mitoses in G179, but not CB660, without parallel increases in cell number (top panel; blue dots),
whereas cells with mitotic morphology increased dramatically during the first 1–2 days (bottom panel; red dots).
doi:10.1371/journal.pone.0077053.g002
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phenotype might be triggered by inhibition of one or more distinct

molecular targets.

To investigate the key molecular pathways affected by J101

treatment, we used antibody microarrays (Kinexus) to search for

changes in levels of 812 proteins and their associated phosphor-

ylated forms. This set represents members of many of the

canonical kinase signalling pathways. We assessed G144 at 0, 1,

2, and 4 h time points. In addition to expected changes to

downstream components of PDGFR signalling (e.g. RAF1, SRC,

p85), we observed a significant decrease in the levels of the active

phosphorylated (T210) form of polo-like kinase 1 (Plk1) at each

time point (Figure 4A). We then performed kinase profiling, using

in vitro kinase assays to directly assess the ability of J101 to inhibit

activity of 234 kinases (Table S1). This identified Plk1, and its

upstream kinase Aurora-A [37], as one of many off-targets

resulting from exposure to J101 (Table S2).

The serine/threonine kinase Plk1 is a key regulator of multiple

events during mitosis and cytokinesis [38], and is transcriptionally

activated by FOXM1 [39]. By western blot we confirmed a

reduction of P-Plk1 (T210), but not total levels of Plk1, in response

to J101 across a panel of nine GNS cell lines, compared to four

independent normal NS lines (Figure 4B). This is likely due to

suppression of autophosphorylation and/or a positive feedback

circuit (Plk1 is known to phosphorylate itself or upstream kinases

such as Auroras). We also noted higher levels of total Plk1 protein

in GNS cells compared to the normal NS cell lines.

A reduction of Plk1 activity would likely result in aberrant

mitotic spindle formation. To assess spindle morphologies we

performed immunocytochemistry for a-tubulin in both DMSO-

treated and J101-treated G7 cells. As a control we used the potent

and selective Plk1 inhibitor BI 2536 [40], not present in the library

originally screened, which suppressed P-Plk1 T210 based on

western analysis (Figure 4B). We observed a total lack of viable

bipolar spindles or metaphase cells in cultures exposed to J101,

with cells often displaying a monopolar or multipolar spindle,

similar to BI 2536 treatment (Figure 4D). Thus, GNS cells stall at

prometaphase and likely trigger the spindle assembly checkpoint.

Similar proportions of abnormal monopolar and multipolar

spindles were found at 4, 8 and 24, suggesting this as the primary

trigger of cytostasis (Figure 4D). Taken together, these observa-

tions lead us to conclude the effects of J101 on GNS cells may be

explained by loss of Plk1 activity.

Low doses of the potent and selective Plk1 inhibitor BI
2536 induce mitotic arrest of GNS cells but not normal
NS cells

The clinical value of J101 will likely be limited by its lack of

specificity. We therefore investigated whether more specific Plk1

Figure 3. Immunocytochemistry confirms arrest at prometaphase in response to J101. (A) Phospho-histone H3 (pHH3) staining (green) for
CB660, G179, G166, G144 and G7 after following treatment with DMSO or J101 (100 nM) for 24 h with nuclear counterstaining using DAPI (blue). (B)
Mitotically arrested cells (G7), were immunostained for pHH3 (white), Lamin B (green) and counterstained with rhodamine-phalloidin to visualise actin
(red). Arrows indicate the fragmented nuclear membrane, a feature of prometaphase, in mitotic cells as similar in DMSO controls and following
inhibitor treatment. (C) Quantification of the ratio between pHH3 stained and total cell numbers (DAPI) from experiments in panel A. Greater
sensitivity of GNS cells is observed across seven different cell lines.
doi:10.1371/journal.pone.0077053.g003
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inhibitors, such as BI 2536, would also have selective effects on

GNS cells while leaving NS cells unaffected. BI 2536 was tested at

several doses (10 nM, 25 nM, 50 nM and 100 nM). Of the three

GNS cell lines assayed (G7, G144 and G166), all displayed

increased sensitivity to BI 2536 at 50 nM, and even 10 nM, when

compared to three normal NS cell lines (Figure 5A). This

differential response and arrest at G2/M was confirmed by flow

cytometry (Figure 5B). We also explored depletion of Plk1 mRNA

transcripts by siRNA and confirmed sensitivity of GNS cells to loss

of Plk1 activity, albeit less striking than the inhibitor responses,

perhaps due to incomplete knockdown (Figure S5).

The effects of BI 2536 on Plk1 were assessed across a panel of

GNS cells using immunoblotting. This identified a striking

reduction of active Plk1 T210 (Figure 4B), likely due to elimination

of a critical positive or autoregulatory feedback mechanism. To

explore the potential downstream consequences of mitotic arrest,

we examined the neural stem cell self-renewal factors SOX2,

SOX9 and the astrocyte differentiation marker GFAP (Figure 5C).

Figure 4. GNS cells arrest at prometaphase due to loss of Plk1 activity and failure of spindle assembly. (A) 812 (550 pan- and 262
phospho-specific) proteins were assessed before and after drug treatment by antibody microarrays. Significant hits are shown and their suggested
interactions presented following pathway analysis (Ingenuity). Several kinases (bold) were affected including downstream components of the PDGFR
signalling pathway. However, we also noted a suppression of levels of active Plk1 (shown in bold). (B) Western immunoblot for PLK1 and phospho-
T210, and PLK2 in a panel of NS and GNS treated with DMSO, J101 or the PLK1 inhibitor BI2536. (C) Immunostaining for spindle protein (a-tubulin)
and pHH3 confirms that arrest at prometaphase is associated with aberrant spindle formation. Failure of viable bipolar spindle formation was
observed for G7 cells treated with J101 or BI 2536. Photomicrographs show aberrant representative spindles of different morphologies (blue, DAPI;
green, (a-tubulin; red, PHH3). (D) Quantification of data from (C) indicates that cells treated with J101 or BI2536 fail to progress to metaphase.
doi:10.1371/journal.pone.0077053.g004
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It has recently been reported that Plk1 inhibition may promote

differentiation of glioblastoma stem cells triggered through loss of

SOX2 [41]. Although we did observe a reduction in SOX2 levels

following Plk1 inhibition we also found that levels of SOX2

protein decrease normally during mitosis in untreated cells, as

assessed following mechanical dissociation and immunoblotting of

the mitotically-enriched fraction (Figure 5D). We also did not

observe an increase in GFAP expression, or reduction of SOX9

(Figure 5C). Thus, the reduction in SOX2 protein following

inhibitor treatment can be explained by the presence of enriched

mitotic cells in the population, and is not an indicator of a pro-

differentiation response.

To directly confirm the differential responses and viability of

normal NS cells using an internally controlled experiment we

plated a 1:1 mix of GFP-transgenic G144 cells together with NS

cells treated with 50 nM BI 2536 (Figure 6A). After co-culture for

10 days ,5% GNS cells remained, whereas the NS cells had

expanded (albeit to a slightly less extent than controls exposed to

DMSO at an equivalent concentration). NS lines displayed many

viable mitoses and progression through anaphase and telophase

after several days without the presence of lagging chromosomes.

This suggests that mitotic slippage and subsequent genetic crisis

does not occur (Figure 6B).

Plk1 inhibitors in clinical development induce mitotic
arrest in GNS cells and can cross an in vitro blood-brain
barrier model

BI 2536 has performed poorly in phase II trials against a range

of solid tumours [42]. However, improved Plk1 inhibitors with

more favourable pharmacological profiles have since been

developed, including BI 6727 [43] and GSK461364 [44]. Each

of these inhibitors triggered increased mitotic arrest in GNS cells

compared to normal NS cells (Figure 6C).

To stimulate interest in clinical application of Plk1 inhibitors in

the treatment of GBM it is critical to establish blood-brain barrier

(BBB) permeability. We tested relative BBB permeability for each

of the Plk1 inhibitors investigated above, using an established

porcine brain endothelial cell (PBEC) BBB model system [30,31].

PBECs are cultured to confluence on a polycarbonate culture plate

insert (filter) which is placed directly above proliferating GNS cells.

Inhibitors are then added to the insert chamber and must cross the

PBEC layer to affect the GNS cells below.

BI 2536, BI6727, GSK461364 and J101 were tested in the in

vitro system (Figure 6D). GNS cells affected by the compounds

produced the typical mitotically arrested phenotype and were

positive for pHH3. As a control the direct influence of the

inhibitors on GNS cells without PBECs in the absence of the

Figure 5. BI 2536, a potent and selective PLK1 inhibitor, disrupts GNS cell proliferation but does not trigger astrocyte
differentiation. (A)Dose responses to J101 and BI2536 for three different NS and GNS cell lines, assayed using pHH3 immunocytochemistry 24 h
after treatment. (B) Cell cycle profiles of BI 2536-treated NS and GNS cells by flow cytometry confirm a clear increase in the proportion of cells in G2/M
for GNS cells, but not normal NS cells. (C) Following BI 2536 treatment, GNS cells display reduced levels of SOX2 but do not have significantly altered
levels of the neural stem cell marker SOX9 or upregulation of the astrocyte marker GFAP. (D) Mitotic shake-off was used to enrich for GNS cells in
mitosis (confirmed by enrichment for Cyclin B1; left panel). Levels of SOX2 protein were compared in the population as a whole and those
undergoing mitosis by immunoblotting. These results suggest a reduction of SOX2 occurs normally during mitosis.
doi:10.1371/journal.pone.0077053.g005

Sensitivity of Glioblastoma to Plk1 Inhibitors

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e77053



PBEC-containing inserts was monitored in parallel. The non-

specific inhibitor J101 identified in our original screen served as a

negative control and exhibited poor permeability (P,0.001).

Encouragingly, all Plk1 inhibitors tested at 100 nM concentration

were able to effectively cross the in vitro BBB model and induce a

response in the GNS cells. GSK461364 showed comparable

efficacy to BI 2536 whereas BI 6727 was less permeant.

To confirm the selective effects of GSK461364 we carried out

independent dose-response curves relative to BI 2536. We used the

two GNS lines (G7 and G166; which showed the greatest and least

sensitivity in earlier experiments, respectively) and two normal NS

lines (CB660 and CB11171) (Figure 6E). IC50 values of 3.3 nM (BI

2635) and 6.4 nM (GSK461364) were obtained for G7. The NS

cell line CB11171 had IC50 values of 15.6 nM and 20.2 nM,

respectively, confirming differential sensitivity to Plk1 inhibition

between GNS cells and NS cells. No significant sensitivity of G166

cells was identified, consistent with our earlier experiments, which

was possibly due to the greater levels of total Plk1 protein observed

in this cell line (Figure 4B).

Loss of p53 sensitises NS cells to inhibition of Plk1
Loss of functional p53 signalling is one of the most frequent

alterations in GBM and the majority of GNS cell lines contain

mutations in TP53 [45]. Recent analysis of genome-wide

expression and somatic mutations in a large cohort of GBMs

has identified a putative synthetic lethal interaction between p53

and Plk1 [46,47]. In addition, several observations in other cancer

models have suggested that ablation of p53 may increase

dependence on Plk1 activity [48,49].

To explore whether loss of functional p53 signalling might

explain the sensitivity of GNS cells to Plk1 inhibition, we made use

of genetically modified mouse NS cells. A p53 mutant GFP-

labelled NS line was compared to a wild-type NS cell line for

responses to either J101 or BI 2536. We performed a co-culture

assay where the two cell lines were plated in equal numbers, and

quantified respective populations by flow cytometry. We found

that p532/2 cells displayed a greater sensitivity to suppression of

Plk1 (Figure 7). A similar result was observed using an independent

conditional floxed mutant p53 NS cell line, which displayed

increased Plk1 inhibitor sensitivity following acute Cre recombi-

nase-mediated excision of the p53 locus.

Finally, a mouse glioma-initiating NS cell line (IENS cells),

lacking INK4A/ARF and overexpressing EGFRvIII [50], also

displayed greater sensitivity to BI 2536 or J101 (Figure S6). In

contrast to the p53 mutant NS cells, both IENS cells and floxed

p53 cells were karyotypically normal (Figure S6). Taken together

Figure 6. Alternative Plk1 inhibitors in clinical development compare favourably with BI 2536 in selectivity against GNS cells and
blood-brain barrier permeability. (A) Co-culture of equal numbers of GFP-transfected G144 cell lines together with wild-type CB660 cells. In the
presence of BI2536 GNS cells are selectively lost in the culture, while normal NS cells continue to proliferate. (B) DAPI staining of day 10 cultures of
GNS or NS cells confirms that NS cells continue to undergo normal mitosis (anaphase events in red circles), without evidence of mitotic slippage and
lagging chromosomes. (C) Two other Plk1 inhibitors in clinical development are selective against GNS cells (G7) compared to foetal NS cells (CB11130
and CB11171; chosen as they have a similar doubling time to G7). (D) Relative numbers of GNS cells arrested in mitosis after 48 h treatment with Plk1
inhibitors using an in vitro blood-brain barrier co-culture model. Inhibitors were added directly or via cell culture inserts containing a confluent layer
of endothelial cells, and anti-mitotic responses were assessed in G7. J101 displayed poor blood-brain barrier permeability (P,0.001). GSK461364
performed similarly to BI 2536. Values shown are percentages of pHH3-positive cells relative to no-insert value of GSK 461364 treated GNS cells
(n = 3). (E) Dose-response curves and IC50 values for specific Plk1 inhibitors BI 2536 and GSK 461363. NS and GNS cells were treated with different
concentrations of the Plk1 inhibitors BI 2536 and GSK461364. Five days after treatment the total number of viable cells was counted and normalised
to DMSO control values. Calculation of IC50 values confirmed the differential effect of both inhibitors on NS and GNS cells, with G7 being most
sensitive.
doi:10.1371/journal.pone.0077053.g006
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these results indicate that it is the loss of functional p53 signalling,

rather than the aneuploidy inherent to glioma-derived cell lines,

that explains the sensitivity of tumour-initiating mouse neural stem

cells to Plk1 inhibitors.

Discussion

Common genetic disruptions in GBM have now been identified

and include many of the canonical kinase signalling pathways

found in solid tumours. This raises the exciting prospect of

exploiting inhibitors developed for other human cancers in the

treatment of GBM. In this study we used disease-relevant cellular

models of GBM to search for kinase inhibitors that may be

prioritized for clinical translation. Our study has identified a

sensitivity of GNS cells to inhibition of polo-like kinase 1 (Plk1).

This finding complements and extends recent reports indicating a

critical importance of Plk1 as a therapeutic target in GBM [41,46].

GBM is one of the few current examples of a human cancer in

which tumour-initiating cells can be expanded continuously in vitro

and compared alongside normal counterparts. We exploited the

experimental advantages and disease relevance of adherent GNS

cell lines and were able to compare responses to genetically normal

NS cells grown in identical conditions [22,32]. GNS cells retain

hallmarks of distinct disease subtypes, and therefore line-specific

molecular sensitivities may help in patient stratification and

identification of subtype-specific targeted therapies.

While the identified agent J101 is classified as a ‘PDGFR

inhibitor’, our data point to a different molecular target as the

likely effector of its cellular response. It remains unclear whether

the critical response of J101 is triggered by an effect on Plk1 itself,

upstream kinases such as Aurora-A, or a combined effect. We have

not explored this further given the same responses are observed

using potent and selective Plk1 inhibitors already in clinical

development, and also considering the poor performance of J101

in BBB permeability assays.

As reported for other solid cancers, Plk1 protein levels in GBM

are higher compared to lower-grade tumours or normal tissues

[41,51]. This is due either to higher proportions of cycling cells in

the tumour population or higher Plk1 levels within individual cells.

Our data are consistent with the latter explanation. NS and GNS

cell cultures have similar doubling times and present no significant

apoptosis, yet we observed higher levels of both Plk1 mRNA and

protein in GNS cells compared to NS cells. The higher levels of

Plk1 in cycling GNS cells may signify an acute dependence on this

pathway.

Given the role of Plk1 in many of the key regulatory events

during mitosis, we were initially surprised that normal NS cells

Figure 7. p53 null mouse NS cells display increased sensitivity to Plk1 inhibitors. (A) Wild-type and GFP positive p532/2 mouse NS cells
were co-cultured in equal numbers. Both J101 and BI2536 preferentially affect GFP-positive p53 mutant cells. (B) Quantification of flow cytometry
data over a 6-day timecourse. (C) Acute genetic deletion of tp53 sensitizes mouse NS cells to BI 2536 treatment in the absence of aneuploidy. Cells
were sensitised to BI 2536 treatment following loss of p53, similarly to an independent p532/2 NS cell line (used in panel A–B). * P,0.05. *** P,0.001
(n = 4; two biological and two technical replicates). (D) Immunoblotting before and after Cre delivery confirms efficient excision of p53 (P = passage
number).
doi:10.1371/journal.pone.0077053.g007
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were able to tolerate reduced Plk1 activity. However, our

observations are consistent with previous studies using transformed

cell lines [52] and mouse conditional knockdown models, which

found no dramatic consequences of Plk1 deletion in normal

somatic tissues or cultured fibroblasts [53]. These results suggest a

therapeutic window may be defined whereby GBM stem cells are

eliminated at a dose that imparts only minor effects on normal

somatic cells. It is noteworthy that neuroblastomas, pediatric

tumours of the peripheral nervous system, also display greater

sensitivity to Plk1 inhibitors [54].

Chromosomal instability is a hallmark of GBM, with frequent

whole chromosome gains and losses (e.g. gains of chromosome 7)

evident by genetic profiling. Our data using mouse glioma NS cell

lines suggests that aneuploidy per se is not likely to explain Plk1

sensitivity, but instead point to a role for p53. Altered p53

signalling and RTK/RAS/PI3K signalling pathways are the most

common gene alterations observed in GBM (found in 87 and 88%

of tumours, respectively) [3]. A consequence of the lack of

functional p53 signalling is a widespread upregulation of genes

involved in the G2/M checkpoint, including Plk1. This aberration

may lead to synthetic lethality [48]. A similar conclusion has been

reached for GBM from systems-level pathway analysis of data

from the Cancer Genome Atlas project datasets [46]. One possible

downstream consequence of the functional p53 pathway in normal

NS cells is the increased expression of related family members Plk2

and Plk3, which might compensate for lack of Plk1 and drive cells

through mitosis. However, we have found no clear indication that

Plk2 or Plk3 are upregulated in response to the inhibitor (Figure 4

and data not shown).

BI 2536 has emerged through phase I trials with adequate safety

[55]. However, recent phase II trials failed to report therapeutic

benefits for BI 2536 against a wide range of solid cancers [42]. In

addition to BI 2536, we found that other classes of Plk1 inhibitor in

clinical development (GSK464361 and BI 6727) could also affect

GNS cells at low doses. Given the highly infiltrative nature of GBM

cells, a critical issue to address for clinical translation of Plk1

inhibitors will be optimisation of blood-brain barrier permeability.

Our in vitro model demonstrating transit across brain endothelial

cells suggests that GSK464361 should be explored further in this

regard, with in vivo pharmacokinetics and survival benefits in mice

harbouring human xenografts across the spectrum of glioma

subtypes constituting important future directions.

In summary, combining improved cellular models of GBM and

focussed kinase inhibitor libraries with high content imaging-based

screening assays, we have been able to identify an acute sensitivity

of cells mirroring different GBM subtypes to inhibition of Plk1,

likely due to loss of p53 signalling. Given the prognosis for GBM

patients, it is now important that those Plk1 inhibitors displaying

adequate blood-brain barrier permeability are assessed in clinical

trials.

Supporting Information

Figure S1 Principal component analysis (PCA) for a set
of morphological parameters obtained from the kinase
inhibitor screen. None of the agents in the library, including

several PDGFR inhibitors, were able to induce similar mitotic

phenotypes. J101 (red dots) was identified in GNS cells but not NS

cells as imposing a distinct cellular morphology that was

subsequently validated as mitotic arrest. The morphological

features of J101-treated cells are distinct from the similar rounded

morphology resulting from cell death in response to staurosporine

(yellow dots).

(TIF)

Figure S2 Tracking of individual cells confirms J101
treatment imposes mitotic delays that can lead to
mitosis. Images were obtained at hourly intervals and manually

analysed to track individual cells following treatment with DMSO

or J101 (100 nM). For NS cells (top), although J101-treated cells

were stalled during mitosis, this was resolved after several hours.

By contrast, GNS cells (bottom panels) typically arrested at mitosis

and eventually underwent apoptosis (see red arrow, frame 14).

(TIF)

Figure S3 Removal of J101 from GNS cells does not
enable progression through mitosis. GNS cells (G7) were

treated with J101 (100 nM) for 24 h. Inhibitor was then removed

0, 2, or 4 h later and cells fixed and stained for the mitotic marker

PHH3. Mitotically arrested cells did not immediately proceed

through mitosis following drug removal and the majority

underwent apoptosis by 24 h.

(TIF)

Figure S4 mRNA expression levels of FoxM1 down-
stream targets and related genes in CB660 foetal NS
cells (black) and G7 GNS cells (red) as determined by
qRT-PCR. mRNA was harvested after cells were treated with

DMSO, BI 2536 (100 nM) and J101 (100 nM) for 5 or 24 h. Data

are expressed as fold change relative to CB660 (DMSO). Values

are normalised to GAPDH expression. There is no downregula-

tion of FOXM1 transcriptional targets, suggesting the inhibitor lies

downstream of FOXM1 activity.

(TIF)

Figure S5 Transient knockdown of Plk1 mRNA using
RNAi. (A) Four different shRNAs were tested and relative cell

numbers were scored. We tested G166 and G7 as these exhibited

the least and greatest response to J101 treatment, respectively. For

both lines we observed a greater suppression of proliferation in

GNS cells (G166 or G7) than normal NS cells. (B) qRT-PCR for

Plk1 confirms Plk1 knockdown using these shRNAs.

(TIF)

Figure S6 Metaphase spreads of mouse mutant NS cell
lines. (A) p53fl/fl cells. (B) p53fl/fl cells transduced with CRE

recombinase. (C) p532/2 cells. (D) IENS cells (INK4A/ARF2/2

plus EGFRvIII over-expressing NS cells) also display greater

sensitivity to Plk1 inhibitors. Genetically normal mouse NS cells

(ANS4) were less sensitive than the mouse glioma NS cell (IENS)

to both J101 and BI 2536 treated (100 nM each). Cells were

treated for 24 h and fixed and immunostained for pHH3. DAPI

nuclear counterstain (blue). Sensitivity to Plk1 inhibitors is

associated with loss of p53 signalling and occurs in the absence

of aneuploidy.

(TIF)

Table S1 Spreadsheet containing the full data extracted
from the inhibitor screen. Compounds are ranked based on

z-score.

(XLSX)

Table S2 234 kinases were assessed for their activity
following binding with J101. Significant off-target effects were

observed against Plk1, Aurora-A and Aurora-B (highlighted in

yellow).

(XLSX)

Movie S1 High-content image analysis using CellProfi-
ler and CellProfiler Analyst enables identification and
scoring of mitotic cells and total cell numbers. Example

time-lapse movie reconstructed with images processed by

CellProfiler Analyst to identify objects as either mitotic (red dots),
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interphase viable cells (blue dots) or cellular debris/processes

(green dots).

(MOV)

Movie S2 Cellular responses of NS cells (CB660) to
DMSO and J101, respectively.
(MOV)

Movie  S3 Cellular responses of NS cells (CB660) to
DMSO and J101, respectively.
(MOV)

Movie S4 Cellular responses of GNS cells (G7) to DMSO
and J101, respectively.
(MOV)

Movie S5 Cellular responses of GNS cells (G7) to DMSO
and J101, respectively.
(MOV)
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53. Raab M, Kappel S, Krämer A, Sanhaji M, Matthess Y, et al. (2011) Toxicity
modelling of Plk1-targeted therapies in genetically engineered mice and cultured

primary mammalian cells. Nat Commun 2: 395. doi:10.1038/ncomms1395.
54. Grinshtein N, Datti A, Fujitani M, Uehling D, Prakesch M, et al. (2011) Small

molecule kinase inhibitor screen identifies polo-like kinase 1 as a target for
neuroblastoma tumor-initiating cells. Cancer Research 71: 1385–1395.

doi:10.1158/0008-5472.CAN-10-2484.

55. Hofheinz RD, Al-Batran SE, Hochhaus A, Jäger E, Reichardt VL, et al. (2010)
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