
molecules

Review

The Chiral Pool in the Pictet–Spengler Reaction for
the Synthesis of β-Carbolines

Renato Dalpozzo

Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende (Cs) 87030,
Italy; renato.dalpozzo@unical.it; Tel.: +39-0984-492055

Academic Editors: Carlo Siciliano and Constantinos Athanassopoulos
Received: 27 April 2016; Accepted: 24 May 2016; Published: 27 May 2016

Abstract: The Pictet–Spengler reaction (PSR) is the reaction of a β-arylethylamine with an aldehyde or
ketone, followed by ring closure to give an aza-heterocycle. When the β-arylethylamine is tryptamine,
the product is a β-carboline, a widespread skeleton in natural alkaloids. In the natural occurrence,
these compounds are generally enantiopure, thus the asymmetric synthesis of these compounds
have been attracting the interest of organic chemists. This review aims to give an overview of the
asymmetric PSR, in which the chirality arises from optically pure amines or carbonyl compounds
both from natural sources and from asymmetric syntheses to assemble the reaction partners.
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1. Introduction

The reaction named the Pictet–Spengler reaction (PSR) was discovered by Amè Pictet and Theodor
Spengler in 1911. They heated β-phenylethylamine and formaldehyde dimethylacetal in the presence
of hydrochloric acid and recovered 1,2,3,4-tetrahydroisoquinoline as the product (Scheme 1) [1].
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Scheme 1. The Pictet–Spengler reaction. 

For over a century, it has been used for the synthesis of a large variety of aza-heterocyclic compounds. 
A seminal asymmetric synthesis was already presented in the work of Pictet and Spengler, when they 
tested phenylalanine and tyrosine in their reaction. Tryptamine as the amine component was introduced 
20 years later [2], allowing the creation of the 1,2,3,4-tetrahydro-β-carboline skeleton, and, consequently, 
the synthesis of many indole alkaloids of enormous physiological and therapeutic significance [3]. 

After the work of Pictet and Spengler, the first asymmetric PSR was only performed in 1977, 
when an enzyme of the Pictet–Spenglerase class was discovered [4]. The enzyme-catalyzed PSR’s has 
been recently reviewed [5]. 

During the last two decades, the increasing development of the asymmetric synthesis by chiral 
catalysts or chiral precursors has produced remarkable progress in developing new and highly 
enantioselective PSRs. This review aims to provide an overview of the asymmetric PSR, in which the 
chirality arises from optically pure amines or carbonyl compounds both from natural sources and from 
asymmetric syntheses to assembly the reaction partners. However, external asymmetric induction by 
chiral catalysts on symmetric derivatives can also be used in PSR [6–10], but these examples will not 
be covered in this review. 

  

Scheme 1. The Pictet–Spengler reaction.

For over a century, it has been used for the synthesis of a large variety of aza-heterocyclic
compounds. A seminal asymmetric synthesis was already presented in the work of Pictet and Spengler,
when they tested phenylalanine and tyrosine in their reaction. Tryptamine as the amine component
was introduced 20 years later [2], allowing the creation of the 1,2,3,4-tetrahydro-β-carboline skeleton,
and, consequently, the synthesis of many indole alkaloids of enormous physiological and therapeutic
significance [3].

After the work of Pictet and Spengler, the first asymmetric PSR was only performed in 1977, when
an enzyme of the Pictet–Spenglerase class was discovered [4]. The enzyme-catalyzed PSR’s has been
recently reviewed [5].

During the last two decades, the increasing development of the asymmetric synthesis by chiral
catalysts or chiral precursors has produced remarkable progress in developing new and highly
enantioselective PSRs. This review aims to provide an overview of the asymmetric PSR, in which the
chirality arises from optically pure amines or carbonyl compounds both from natural sources and from
asymmetric syntheses to assembly the reaction partners. However, external asymmetric induction by
chiral catalysts on symmetric derivatives can also be used in PSR [6–10], but these examples will not
be covered in this review.
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The Pictet–Spengler reaction starts from the formation of an imine, which, under the acidic
reaction conditions, is turned into an iminium ion followed by nucleophilic attack by the aryl group
and cyclization. In the case of tryptamine, the attack on the iminium ion can occur either directly at
position 2 (Scheme 2, red pathway) or at position 3 of the indole to form a spiroindolenine (Scheme 2,
blue pathway) [11,12]. However, spiroindolenine undergoes fast rearrangement, and the carbonium
ion is the final product anyway [13,14].
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Scheme 2. The mechanism of the Pictet–Spengler reaction. 

2. Starting from Tryptophan Derivatives 

The first natural chiral source used to prepare β-carbolines was tryptophan and its derivatives. 
In fact, since 1979, Cook and co-workers studied the reaction of these compounds with aldehydes 
[14–18]. Thus, they found that the steric bulk of the carbonyl compounds, and the substituents either 
at the Nb nitrogen atom or at the ester group governed the diastereoselectivity of the PSR, leading 
preferentially to trans-1,2,3-trisubstituted tetrahydro-β-carbolines under thermodynamic stereocontrol 
(Scheme 3). 
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Scheme 3. Diastereoselectivity of the PSR of tryptophan derivatives and cis to trans epimerization in 
the PSR. 

If the reaction mechanism involved the spiroindolenine, the trans-isomer of which is more stable, 
the following ring expansion was therefore stereospecific. When a mixture of isomers was obtained, 
the thermodynamically more stable trans isomer could be exclusively obtained by epimerization of the 
cis isomer under acidic conditions [19–21]. Between the two possible mechanisms of the epimerization 
process, the protonation of the Nb, followed by ring-opening and closure to give the more stable isomer 
was demonstrated to occur (Scheme 3). There was no evidence of an alternative protonation of the 
indole-nitrogen (Na) with an olefinic isomerization. However, under these conditions the racemization 
of the products was possible [22]. By this methodology, besides the application of Cook’s group to 
the preparation of natural products [18,23–28], a new class of inhibitors of Mycobacterium tuberculosis 
protein tyrosine phosphatase B was synthesized by Waldmann and co-workers [29]. 

The total synthesis of (−)-affinisine oxindole was also completed in an enantiospecific fashion 
from D-tryptophan in 10% overall yield. The key step was an asymmetric Pictet–Spengler reaction 
carried out under Cook’s conditions on a 300-gram scale [18], followed by diastereospecific oxidative-
rearrangement of the tetrahydro-β-carboline to a spiroxindole (Scheme 4). The most interesting 
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2. Starting from Tryptophan Derivatives

The first natural chiral source used to prepare β-carbolines was tryptophan and its derivatives.
In fact, since 1979, Cook and co-workers studied the reaction of these compounds with aldehydes [14–18].
Thus, they found that the steric bulk of the carbonyl compounds, and the substituents either at the Nb
nitrogen atom or at the ester group governed the diastereoselectivity of the PSR, leading preferentially
to trans-1,2,3-trisubstituted tetrahydro-β-carbolines under thermodynamic stereocontrol (Scheme 3).
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If the reaction mechanism involved the spiroindolenine, the trans-isomer of which is more stable,
the following ring expansion was therefore stereospecific. When a mixture of isomers was obtained,
the thermodynamically more stable trans isomer could be exclusively obtained by epimerization of the
cis isomer under acidic conditions [19–21]. Between the two possible mechanisms of the epimerization
process, the protonation of the Nb, followed by ring-opening and closure to give the more stable isomer
was demonstrated to occur (Scheme 3). There was no evidence of an alternative protonation of the
indole-nitrogen (Na) with an olefinic isomerization. However, under these conditions the racemization
of the products was possible [22]. By this methodology, besides the application of Cook’s group to
the preparation of natural products [18,23–28], a new class of inhibitors of Mycobacterium tuberculosis
protein tyrosine phosphatase B was synthesized by Waldmann and co-workers [29].

The total synthesis of (´)-affinisine oxindole was also completed in an enantiospecific fashion
from D-tryptophan in 10% overall yield. The key step was an asymmetric Pictet–Spengler reaction
carried out under Cook’s conditions on a 300-gram scale [18], followed by diastereospecific
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oxidative-rearrangement of the tetrahydro-β-carboline to a spiroxindole (Scheme 4). The most
interesting feature of this methodology was that the presence or absence of the Nb-benzyl protecting
group permitted access into either the chitosenine series or the alstonisine series [30].
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If Cook developed and studied the reaction condition for the “thermodynamic control”, the 
reaction conditions for “kinetic control” were developed by Bailey. An excellent cis stereocontrol was 
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(+)-geissoschizine and (+)-Na-methylvellosimine starting from D-tryptophan through a pseudo PSR. 
The synthesis involved the preparation of a dihydrocarboline iminium salt followed by a highly 
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methyl ester hydrochloride with piperonal and Cialis™ was thus efficiently synthesized in three steps 
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difference of solubility of the diastereomers was accounted for the shift of the equilibrium between 
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If Cook developed and studied the reaction condition for the “thermodynamic control”, the
reaction conditions for “kinetic control” were developed by Bailey. An excellent cis stereocontrol was
obtained, thus overcoming the need for unnatural D-tryptophan as the source of chirality [31–34].
The highest “kinetic control” was achieved with allyl esters of tryptophan and aryl aldehydes, very
likely owing to a favorable π-stacking between the allyl/aryl groups, thus permitting the cyclization
of the diaxial intermediate. As a consequence, only a small energetic difference between the axial and
equatorial positions should be exist in the transition states of this reaction, if the modest stabilization
through π-stacking might be sufficient to confer the cis-control. This hypothesis was also supported
by the same cis-control observed in (S)-3-amino-4-(1H-indol-3-yl)butanenitrile reaction, in which
a nitrile/aryl π-stacking is also possible [33]. Bailey’s conditions were also applied to the synthesis of
many natural products [22,31–35].

It is worth mentioning also the concise asymmetric synthesis of the indole alkaloids
(+)-geissoschizine and (+)-Na-methylvellosimine starting from D-tryptophan through a pseudo PSR.
The synthesis involved the preparation of a dihydrocarboline iminium salt followed by a highly
selective attack at C-3 of a vinyl ketene acetal from the face opposite to the carboxyl group at C-5
(Scheme 5) [36,37].

Very recently, Balalaie et al. used L-tryptophan propargyl ester and hydrazide in a Pictet–Spengler
reaction in the presence of TFA, under “kinetic control”. The cis-tetrahydro-β-carboline propargyl
esters were obtained as pure stereoisomers in 52%–73% yields (seven examples); whereas the carboline
hydrazides were obtained in 65%–85% yields (five examples) as a mixture of cis and trans isomers with
a ratio of 2:1 [38].

Shi and co-workers accomplished a high stereoselective Pictet–Spengler reaction of D-tryptophan
methyl ester hydrochloride with piperonal and Cialis™ was thus efficiently synthesized in three
steps in 82% overall yield [39]. The yield and cis stereoselectivity were solvent dependent and
a cis:trans = 99:1 could be obtained when the reaction was performed in acetonitrile or nitromethane.
The large difference of solubility of the diastereomers was accounted for the shift of the equilibrium
between these two hydrochloride salts to the less soluble cis product.
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(S)-Tryptophanol was used as the starting material and as the source of chirality in the enantioselective 
two-step route to indolo[2,3-a]quinolizidines. After the stereoselective cyclo-condensation with methyl  
4-ethyl-5-oxopentanoate, the resulting indole piperidone underwent intramolecular α-amidoalkylation 
on the indole 2-position under kinetic control, to give the 6,12b-trans indoloquinolizidine derivative 
(Scheme 7) [43]. It is worth noting that the use of BF·Et2O instead of HCl changed the stereoselectivity 
producing the 6,12b-cis isomer. Analogous results were obtained with dimethyl 3-(1-oxobutan-2-yl) 
pentanedioate. 

Scheme 5. Key step in the synthesis of (+)-geissoschizine and (+)-Na-methylvellosimine.

Then, the reaction was extended to thirteen aldehydes, both aromatic and aliphatic, and high
stereoselectivities and yields could be obtained, but the predominance of the cis- or trans-isomer
was not predictable. It should be noted that yields were improved by performing the process in
a modified two-step procedure: firstly the PSR was performed in isopropanol leading to epimeric
mixtures and then the mixtures were submitted to a crystallization-induced asymmetric transformation
of their hydrochloride salts [40]. The same research group applied this crystallization-induced
asymmetric transformation to the stereoselective PSR of L-tryptophan methyl ester hydrochloride
with 3-hydroxybenzaldehyde (Scheme 6). It is worth noting that unprotected or acetyl-protected
aldehyde was transformed into the cis-derivative, whereas, benzoyl- or allyl-protected aldehyde
afforded the trans-derivative, under the same conditions. Finally, HR22C16, a mitotic kinesin Eg5
inhibitor, could be readily synthesized from the enantiomerically pure (1R,3S)-1,3-disubstituted
tetrahydro-β-carboline [41]. This procedure was also efficiently applied to the synthesis of a series of
tetrahydro-β-carboline diketopiperazines as single isomers starting from L-tryptophan methyl ester
hydrochloride and six aldehydes [42].
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(S)-Tryptophanol was used as the starting material and as the source of chirality in the
enantioselective two-step route to indolo[2,3-a]quinolizidines. After the stereoselective cyclo-condensation
with methyl 4-ethyl-5-oxopentanoate, the resulting indole piperidone underwent intramolecular
α-amidoalkylation on the indole 2-position under kinetic control, to give the 6,12b-trans
indoloquinolizidine derivative (Scheme 7) [43]. It is worth noting that the use of BF¨ Et2O instead of
HCl changed the stereoselectivity producing the 6,12b-cis isomer. Analogous results were obtained
with dimethyl 3-(1-oxobutan-2-yl)pentanedioate.
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The stereoselective synthesis of enantiomerically pure (5S,11bS)-indolo[2,3-a]indolizidinones
was accomplished by a diastereoselective α-amidoalkylation reaction (Scheme 8). The substituent
on carbon atom C-11b influenced the stereoselection, in fact no substitution on C-11b led to the
cis-diastereomers [44].
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Besides aldehydes, also ketones or oxazinanes/oxazolidines can be employed in the Pictet–Spengler
reaction. For instance, cyclization of the imines prepared by the condensation of L-tryptophan methyl
ester and aryl methyl ketones quantitatively furnished a mixture of (1R,3S) and (1S,3S)-1-aryl-3-
isopropoxycarbonyl-1-methyl-1,2,3,4-tetrahydro-β-carbolines (1:1 to 5:1 dr) [45]. Again kinetic and
thermodynamic controls governed the diastereoisomeric ratio being the (1R,3S)-diastereomer the most
thermodynamically stable. Equilibration should occur under acidic conditions according to the pattern
depicted in Scheme 3. Oxazinanes/oxazolidines were used as synthetic equivalents of aldehydes
especially for aldehydes difficult to handle.

The stereochemical outcome was similar to that observed with simple aldehydes under
thermodynamic control (72%–92% yields with 97:3 to 99:1 trans:cis ratio), while kinetic control is
enhanced by sonication (68%–84% yields, up to 9:91 trans:cis ratio) [46].

3. Starting from Chiral Carbonyl Compounds

Besides derivatives of tryptophan, various chiral carbonyl compounds were used in order to
induce enantioselectivity [47]. The total synthesis of (R)-pyridindolol, (R)-pyridindolol K1, and
(R)-pyridindolol K2 (Scheme 9) in 66%, 41%, and 55% overall yield, respectively, was an example.
In fact, although both the starting materials (L-tryptophan methyl ester and (S)-2,3-O-isopropylidene-
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glyceraldehyde) are chiral, the source of chirality in the products was the L-glyceraldehyde, because
the chirality of tryptophan is lost during the aromatization of the six-membered nitrogen ring [48].
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Tetrahydro-β-carbolines prepared from tryptamine and protected α-aminoaldehydes derived
from L-glutamic acid were also studied (Scheme 10) [49]. The cis-diastereomer was mainly formed
independently from the size of the protecting group with carbamates, in particular with Cbz group the
cis-isomer is recovered as single diastereomer. On the other hand, pyrrole or phthalimide protecting
groups overturned diastereoselectivity and, in particular, the trans-diastereomer was exclusively
obtained from pyrrole-protected aminoaldehydes.
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Later further studies on the PSR of D- and L-tryptophan with α-amino aldehydes derived from
D- and L-amino acids showed that when both substrates have the same configuration (L,L or D,D,
‘mismatched’ situation), the trans diastereomer prevailed in the mixture of cis and trans-β-carbolines
(65:35 to 100:0). In the ‘matched’ situation (L,D or D,L), only the cis diastereomer is recovered.
A Felkin-Ahn model could explain this product distribution [50].

During a stereocontrolled 18-step total synthesis of (´)-eudistomin C, Fukuyama and co-workers
developed a Brønsted acid-catalyzed diastereoselective PSR of a tryptamine derivative with Garner
aldehyde (Scheme 11) [51]. It is worth noting that with TFA the undesired diastereomer was the major
product (3:1 dr), thus authors screened various conditions and found that the reaction afforded the
desired diastereomer in the presence of a catalytic amount of dichloroacetic acid.
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Stork’s group prepared (´)-reserpine starting from (S)-3-cyclohexenecarboxylic acid, by modifying
their racemic synthesis (Scheme 12) [52].
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Scheme 12. Key steps in the synthesis of (´)-reserpine.

Interestingly, a reserpine-isoreserpine mixture is recovered if PSR occurred before closure of ring D,
as well as if a tight iminium ion pair was formed before undergoing PSR. A “naked” iminium ion,
instead, could assume the correct chair-axial conformation to lead to the correct C-3 stereochemistry.

Finally, an alternative route to the tetrahydro-β-carboline scaffold has been recently proposed
with amino acid L-alanine or L-proline as the source of chirality. The synthesis contemplated the
de novo construction of the indole ring with the appropriate substituents to give the PSR in the final
step. A gram-scale total synthesis of (S)-eleagnine [53] and (S)-harmicine [54] in enantiopure form
(>99% ee) was achieved.

4. Chiral Auxiliaries

The ideal chiral auxiliaries require ready availability, affordable cost, and, preferably, the
accessibility of both enantiomers, as well as appropriate and efficient methods for their removal without
affecting the optical integrity of the newly generated stereogenic center once the Pictet–Spengler
reaction has been carried out, but these simple requirements seriously restrict the number of potentially
useful candidates.
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The first attempt dates back to 1994 and used Nb-α-methylbenzyl substituted 5,6-dimethoxy-
tryptamine, which provided a 60:40 dr [55]. Then the reaction conditions were optimized and the best
results (up to 86:14 and 69:31 dr for aromatic and aliphatic aldehydes, respectively) were obtained
using trifluoroacetic acid in benzene at reflux (Scheme 13) [56]. Moreover, the auxiliaries benzyl- and
1-naphthyl-1-ethylamine provided similar diastereocontrol for aliphatic aldehydes (70:30 dr) [57].
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(S)-Tetrahydro-β-carbolines were also obtained from Pictet–Spengler reaction using a chiral 
carbamate of tryptamine (Scheme 15). In particular, (−)-8-phenylmenthylcarbamate was found 
superior to (−)-menthylcarbamate. Reaction conditions for auxiliary cleavage were not reported [59]. 
The transition state A was invoked to explain the stereoselectivity. If a 4-phenoxyphenyl substituent 
was present in the chiral auxiliary, the steric interactions favored the transition state B leading to  
(R)-isomers as the major product. 
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N,N-phthaloyl-aminoacids could act as the chiral auxiliary when imines from tryptamine are 
treated with their chloride in the presence of titanium alkoxide. The reaction conditions were suitable 
for both aliphatic and aromatic aldehydes. However, removal of the auxiliary was obtained with 
LiAlH4 in only 66% yield (Scheme 16) [60]. The obtained carboline was R-configured that is 
enantiomeric with that obtained in the previous examples. 

Scheme 13. -α-Methylbenzylamine as chiral auxiliary.

Chiral sulfoxides provided β-carbolines in 57%–63% yields and >98% ee (S-isomer) after removal
of the auxiliary. It should be noted that camphorsulfonic acid was used as the acid catalyst. However,
it did not influence stereochemistry, because either racemic or pure (+)-isomer gave the same
diastereomeric ratio of the N-sulfinyl-β-carboline (Scheme 14) [58].
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(S)-Tetrahydro-β-carbolines were also obtained from Pictet–Spengler reaction using a chiral
carbamate of tryptamine (Scheme 15). In particular, (´)-8-phenylmenthylcarbamate was found
superior to (´)-menthylcarbamate. Reaction conditions for auxiliary cleavage were not reported [59].
The transition state A was invoked to explain the stereoselectivity. If a 4-phenoxyphenyl substituent
was present in the chiral auxiliary, the steric interactions favored the transition state B leading to
(R)-isomers as the major product.
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N,N-phthaloyl-aminoacids could act as the chiral auxiliary when imines from tryptamine are
treated with their chloride in the presence of titanium alkoxide. The reaction conditions were
suitable for both aliphatic and aromatic aldehydes. However, removal of the auxiliary was obtained
with LiAlH4 in only 66% yield (Scheme 16) [60]. The obtained carboline was R-configured that is
enantiomeric with that obtained in the previous examples.
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Tryptamine and 5-methoxytryptamine reacted with optically pure malonaldehyde
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(R)-carbolines in 89% yield (Scheme 17) [61].
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A quite different use of chiral auxiliary was recently introduced by Cook research group [62–64].
They achieved benzo-substituted tryptophan derivatives by Larock indole synthesis of 2-iodo-N-
Boc-anilines and propargyl-substituted Schöllkopf chiral auxiliary. Then the tryptophan derivative
was used in PSR inside the synthesis of numerous natural products (Scheme 18 reports an example).
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Finally, another synthesis of β-carbolines is worth of mention, although it is not a proper
Pictet–Spengler reaction. In fact, cyclo-condensation reactions between 2-acyl-3-indoleacetic acid
derivatives and (R)-phenylglycinol provided tetracyclic lactams, which could easily be converted
into enantioenriched 1-substituted tetrahydro-β-carboline alkaloids (Scheme 19) [65]. The most
relevant feature of this reaction was the ring-opening reaction with retention of configuration under
reductive conditions.
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of malono-monoamides, accessing to (2R,12bS)-indolo[2,3-a]quinolizidines in 56%–95% yields and 
77%–98% ee (12 examples) [69]. Two points are worth noting: (i) conversely from the products obtained 
by Franzén, the C-2 was not asymmetric, because the enol form of the ketone was always recovered; 
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form was recovered in 81% yield. 
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5. Preparing Chiral Compounds Beforehand

The previous sections reported classical chiral pool synthesis. All those reactions employed
common chiral starting materials, the chirality of which is preserved in the remainder of the reaction
sequence, or alternatively achiral compounds are transformed into chiral substrates by addition of
easy removable auxiliary.

In the recent years, the development of asymmetric organocatalysis allowed the preparation of
many structural different compounds, especially chiral carbonyl compounds. These compounds could
find application in the efficient construction of enantioenriched tetrahydro-β-carbolines by PSR.

For instance, the organocatalytic conjugate addition of a nucleophile derived from tryptamine
amide to cinnamaldehydes yielded a hemiaminal with two stereogenic centers (Scheme 20) [66,67].
The Pictet–Spengler cyclization was performed under both kinetic (hydrochloric acid at ´78 ˝C) and
thermodynamic control (trifluoroacetic acid at 70 ˝C) leading to the synthesis of alkaloid scaffolds.
Unfortunately, β-alkyl-substituted acroleins decomposed in this reaction. It should be noted that,
under thermodynamic control, diastereomer ratios depended on the reaction time and temperature,
thus authors supposed that the α-epimer (kinetic product) was formed initially, and then it epimerized
to the thermodynamically more-stable β-epimer.
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This strategy was then applied to the synthesis of many indole alkaloids by the use of 5-
hydroxypent-2-enal as the unsaturated aldehyde [68]. Depending on the reaction conditions,
three out of four possible epimers of the corresponding quinolizidine alkaloids were enantio- and
diastereoselectively prepared.

The group of Wu successfully attempted the reaction of Franzén with β-ketoamides instead
of malono-monoamides, accessing to (2R,12bS)-indolo[2,3-a]quinolizidines in 56%–95% yields and
77%–98% ee (12 examples) [69]. Two points are worth noting: (i) conversely from the products obtained
by Franzén, the C-2 was not asymmetric, because the enol form of the ketone was always recovered;
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(ii) pent-2-enal also worked in this reaction, although an inseparable 1:1 mixture of keto and enol form
was recovered in 81% yield.

The same research group then surmised that the coupling between malonate and α,β-unsaturated
aldehydes could be performed before attaching malonate itself to tryptamine. Thus, they developed
a diastereoselective cascade sequence for the preparation of cis-indolo[2,3-a]quinolizidines, in which
Michael addition of malonate to α,β-unsaturated aldehydes was the first step, then PSR followed
and lactamization was the final reaction step (Scheme 21). Also in this reaction, β-alkyl-substituted
α,β-unsaturated aldehydes can be employed [70]. Then they extended the scope of this reaction to the
synthesis of enantioenriched α-hemiaminal from α,β-unsaturated aldehydes and β-ketoesters, which
in turn were cyclized with tryptamine in the presence of acid [71]. The stereochemistry of the products
was defined in the Michael addition step and the diastereoselectivity of the PSR was shaped by the
kinetically controlled reaction conditions (Scheme 22). Instead of classical Jørgensen-Hayashi catalyst,
its 3,5-bis(trifluoromethyl) derivative was sometimes employed.
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Rueping attempted this reaction with 1,3-cyclohexandiones [72]. The substrate scope was found to
be general (20 examples) and optically active indoloquinolizidines were isolated as single diastereomers
in 64%–85% yields with 78% to >99% ee. The absolute configuration of the indoloquinolizidines was
determined by the X-ray analysis as (12bS,14R). The diastereoselectivity was attributed again to steric
repulsion taking place between the incoming indole nucleophile and the protons of C-13.

In this Michael/Pictet–Spengler sequence, another explored substrate was α-oxo-γ-butyrolactam.
The corresponding butyrolactam-fused indoloquinolizidines were recovered in 53%–87% yields with
75:25 to >95:5 dr and 90%–97% ee of the predominant (4R,5aR)-isomer (16 examples) [73]. Interestingly,
the enantiomer (i.e., that arising from unnatural proline) of the classical Jørgensen-Hayashi catalyst was
employed. With regard to the mechanism, authors assumed a stereoselective Re-facial Michael addition
of iminium ion to the enol of α-oxo-γ-butyrolactam. Then tautomerization and hydrolysis formed
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(4S)-2-hydroxy-4-alkyl-3,4,5,6-tetrahydropyrano[3,2-c]pyrrol-7(2H)-ones. This masked 1,5-dicarbonyl
compound condensed with tryptamine to perform diastereoselective Pictet–Spengler reaction.

Another organocatalytic cascade one-pot reaction sequence has been developed for the
construction of indoloquinolizidines. In this sequence the asymmetric Michael addition, catalyzed
by Jørgensen-Hayashi catalyst, provided the chiral pool for the following aza-Henry reaction,
hemiaminalization, dehydration, and PSR, providing indoloquinolizidines bearing five contiguous
stereocentres (Scheme 23) [74]. It should be noted that only aliphatic aldehydes were used.
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alkylation of indoles with β-CF3-β-disubstituted nitroalkenes. Actually, (R)-3-(1,1,1-trifluoro3-nitro-
2-phenylpropan-2-yl)-1H-indole (96% ee) was reduced and then cyclized with benzaldehyde under TFA 
catalysis, in 78% yield, but only a 67:33 diastereomeric ratio was achieved although the enantiomeric 
excess of both isomers reflected that of the starting material [76]. 
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Arai and co-workers set up a four-step synthetic route to fully substituted chiral tetrahydro-β-
carbolines [75]. Enantioenriched (R,S,S)-tryptamine was obtained from three-component coupling
of an indole, nitroalkene, and aldehyde catalyzed by imidazoline-aminophenol-CuOTf by
a Friedel-Crafts/Henry cascade. Then reduction of-nitro group, protection of the hydroxy function
allowed the PSR with aldehydes affording (1S,3S,4R)-tetrahydro-β-carbolines (Scheme 24).
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Jia et al. reported and example of PSR into their report on the enantioselective Friedel–Crafts
alkylation of indoles with β-CF3-β-disubstituted nitroalkenes. Actually, (R)-3-(1,1,1-trifluoro3-nitro-
2-phenylpropan-2-yl)-1H-indole (96% ee) was reduced and then cyclized with benzaldehyde under TFA
catalysis, in 78% yield, but only a 67:33 diastereomeric ratio was achieved although the enantiomeric
excess of both isomers reflected that of the starting material [76].
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The asymmetric organocatalyzed one-pot three-component cascade reaction of tryptamines, alkyl
propiolates, and α,β-unsaturated aldehydes represented another instance, in which a chiral substrate
was prepared before PSR. The reaction could be carried out in a one-pot sequence leading to the
(2R,12bS)-stereoisomer (Scheme 25) [77].
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Finally, an enzymatic synthesis of optically pure C-3 methyl-substituted strictosidine derivatives,
key intermediates in the biosynthesis of several pharmaceutically relevant monoterpenoid
indole alkaloids, was performed. Both enantiomers of methyl tryptamine were prepared by
either (R)-selective transaminase from Arthrobacter species or (S)-selective transaminase from
Silibacter pomeroyi or Bacillus megaterium, thus providing the first stereogenic center at the β-carboline
core with up to >98% enantiomeric excess. The chiral tryptamines were then condensed with
secologanin in a diastereoselective Pictet–Spengler reaction catalyzed by strictosidine synthase from
Ophiorriza pumila or Rauvofolia serpentina (Scheme 26) [78]. Strictosidine synthase clearly controlled the
diastereoselectivity, in fact both enantiomers at C-3 of the amine led to an (S)-configured center at C-1
of the carboline. Finally the reaction can be carried out either in a one-pot cascade or in a stepwise
fashion in up to 97% yield.
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6. Conclusions

The discovery by Pictet and Spengler provided chemists with a powerful method for the synthesis
of natural biologically active compounds, especially in the total synthesis of alkaloids. Over 100 years
since its discovery and until today, there has always been high demand for the development of new
efficient catalytic systems Impressive results have been obtained with the asymmetric Pictet–Spengler
reaction starting from chiral tryptamine and carbonyl compounds derivatives. In the last years,
however, the classical “chiral pool” methodology, which starts from naturally occurring compounds,
has been replaced by asymmetric synthesis from achiral starting materials and chiral acids or
hydrogen-bond donors. Cascade multi-component reactions resemble the classical “chiral pool”
methodology, since they allow the preparation of enantioenriched compounds, before Pictet–Spengler
cyclization. On the other hand a large number of modern syntheses allow the creation of the asymmetric
carbons in a single-step reaction.
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Abbreviations

The following abbreviations are used in this manuscript:

Ac Acetyl
Boc tert-Butoxycarbonyl
Bz Benzoyl
Cbz Benzyloxycarbonyl
CSA Camphorsulfonic acid
DABCO 1,8-Diazabicyclooctane
MTM Methylthiomethyl
Pht Phthalimide
TBDMS tert-Butyldimethylsilyl
TBDPS tert-Butyldiphenylsilyl
TES Triethylsilyl
TFA Trifluoroacetic acid
Tol 4-Methylphenyl (Tolyl)
Troc 2,2,2-Trichloroethoxycarbonyl
Ts Methylphenylsulfonyl (Tosyl)
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