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In recent years numerous improvements have beenmade in multiple-electrode recordings (i.e., parallel spike-train recordings) and
spike sorting to the extent that nowadays it is possible to monitor the activity of up to hundreds of neurons simultaneously. Due
to these improvements it is now potentially possible to identify assembly activity (roughly understood as significant synchronous
spiking of a group of neurons) from these recordings, which—if it can be demonstrated reliably—would significantly improve our
understanding of neural activity and neural coding. However, several methodological problems remain when trying to do so and,
among them, a principal one is the combinatorial explosion that one faces when considering all potential neuronal assemblies,
since in principle every subset of the recorded neurons constitutes a candidate set for an assembly. We present several statistical
tests to identify assembly neurons (i.e., neurons that participate in a neuronal assembly) from parallel spike trains with the aim of
reducing the set of neurons to a relevant subset of them and this way ease the task of identifying neuronal assemblies in further
analyses. These tests are an improvement of those introduced in the work by Berger et al. (2010) based on additional features like
spike weight or pairwise overlap and on alternative ways to identify spike coincidences (e.g., by avoiding time binning, which tends
to lose information).

1. Introduction

The principles of neural coding and information processing
in biological neural networks are still not well understood
and are the topic of ongoing debate. As a model of network
processing, neuronal assemblies were proposed in [1], which
are intuitively understood as groups of neurons that tend to
exhibit synchronous spiking.

In recent years considerable improvements have been
made in multiple-electrode recordings and spike sorting
(see, e.g., [2, 3]) that allow monitoring the activity of up to
hundreds of neurons simultaneously. These improvements
open the possibility of identifying neuronal assemblies from
multiple-electrode recordings using statistical data analy-
sis techniques. However, several methodological problems
remain when trying to do so and, among them, a principal
one is the combinatorial explosion that we face when con-
sidering all potential neuronal assemblies (since in principle
every subset of the recorded neurons constitutes a candidate
set for an assembly). For this reason, most studies that

deal with temporal spike correlation still resort to analyzing
only pairwise interactions (see, e.g., [4–7]), thus considerably
reducing the computational complexity of such task. There
are approaches in the literature that try to infer higher-
order correlation and potential assembly activity by building
primarily on these pairwise interactions (see, e.g., [8–11])
but, although they can sometimes provide a hint of higher-
order correlation and even closely identify assembly activity
(provided it is sufficiently pronounced), higher-order cor-
relations need to be checked directly in order to properly
identify neuronal assemblies, mostly for two reasons: first,
to make sure that the activity reported is actually that of
an assembly and not just of several overlapping pairs and,
second, to increase the sensitivity for assembly activity as
pairwise tests may not be affected sufficiently by assembly
activity (see, e.g., [12, 13]). Some approaches already do so
(see, e.g., [14–16]) yet they are all generally limited to a small
number of neurons. Others presented in some of our recent
companion papers (see, e.g., [17–19]) push this limitation
by employing frequent item set mining methodology and
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algorithms to ease and speed up the search through all the
candidate sets for potential assemblies, yet combinatorial
explosion remains a fundamental problem (especially since
statistical tests aiming at identifying assembly activity often
rely on randomization or surrogate data approaches, which
drive up the computational complexity even further).

In this paper we present several statistical tests to identify
individual assembly neurons (i.e., neurons that are part of
an assembly). Our tests extend and considerably improve
those presented in [20], which were based on time binning
and were mostly intended to identify exact (or almost exact)
spike synchrony—which is more a theoretical simplification
for modelling purposes rather than a realistic assumption.
With the new tests introduced in this paper we can do much
better: first, we introduce new features into the tests that
make themmore sensitive (like, e.g., spikeweights or pairwise
overlap of spikes) and, second, we introduce new ways to
identify spike coincidences (i.e., we introduce alternatives
to time binning to avoid the loss of detectable synchronous
activity).Themain motivation of our tests is to reduce the set
of neurons only to a relevant subset of them and in this way
ease the task of identifying neuronal assemblies in further
analyses (i.e., by reducing the total number of neurons to
those that tested positive in our approach, the combinatorial
explosion can be reduced significantly). The idea of all tests
that we present in this paper is fairly simple: we evaluate
whether an individual neuron is involved significantly more
often in some correlated-spiking event (that depends on the
particular test) than it would be expected by chance under the
assumption of noncorrelation (i.e., independence). In order
to assess significance we estimate the distribution of our test
statistics by means of randomized trials (i.e., collections of
parallel spike trains): modifications of our original data that
are intended to keep all its essential features except synchrony
for the neuron we are testing.

The paper is structured as follows: in Section 2 we mainly
introduce some notation that we will be using throughout
the paper and briefly discuss the notion of spike synchrony,
central to our research. In Section 3 we introduce our test
statistics to identify assembly neurons. First, in Section 3.1
we provide four statistical tests that rely on a window-
based approach to identify spike coincidences. Technically
speaking, different collections of windows provide different
ways of counting spike coincidences and thus different tests.
We consider in our evaluations two collections of windows:
the first one we consider is a partition of the recording time
of our spike data into equal intervals (i.e, time bins), on
which the bin-based model (the almost exclusively applied
model of synchrony in the neurobiology literature) relies
in order to identify spike coincidences. The second one we
consider, more in keeping with a time-continuous account
of spiking activity, is a collection of sliding windows (one for
each spike time) able to account for all spike coincidences in
our spike trains that fall within the window length and that
is consistent with the common, intended characterization
of spike synchrony in the field, which regards two or more
spikes as synchronous if they lie within a certain distance
from each other (to be determined by the modeller). Second,
in Section 3.2, we offer a graded, continuous alternative to

some of the previous tests. In Section 4 we briefly discuss
the complexity of computing the test statistics presented
in the two previous sections. In Section 5 we evaluate the
performance of our new test statistics on artificially generated
collections of spike trains based on parameters learned from
typical real recordings, compared to the performance of those
in [20], and show that the former clearly outperform the
latter. Finally, in Section 6 we summarize results.

2. Preliminary Definitions,
Remarks, and Notation

Let 𝑁 be our set of items (i.e., in our context, neurons).
We will be working with parallel spike trains, one for each
neuron in 𝑁, formalized as spike-time sequences (i.e., point
processes) of the form {𝑡

𝑖

1
, . . . , 𝑡

𝑖

𝑘𝑖
} ⊂ (0, 𝑇], for 𝑖 ∈ 𝑁 and

𝑇 ∈ R (the recording time), where 𝑘
𝑖
is the number of times

neuron 𝑖 fires in the interval (0, 𝑇]. We denote the set of all
these sequences byS. Sets of sequences likeS constitute our
raw data.

In order to identify (potential) assembly neurons and,
ultimately, neuronal assemblies we need to determine first
what constitutes spike synchrony: exact spike coincidences
cannot be expected and thus an alternative, nontrivial charac-
terization of synchrony is needed. Generally it is considered
that two or more spikes are synchronous (or coincident)—
that is, they constitute a synchronous event—if they lie within
a certain (user-defined) distance from each other, say𝑤 ∈ R+.
We will assume this notion of spike synchrony throughout.

The bin-based method, the almost exclusively applied
method for dealing with synchronous spiking in the neu-
robiology literature, builds on the notion of synchrony
above: the recording time is partitioned into time bins (i.e.,
windows) of equal length (𝑤 above, the time distance within
which the modeller intends to define synchrony) and all
those spikes that lie in the same time bin are regarded
as synchronous. Notice though that the bin-based method
can fail to identify some synchronous events: two or more
spikes can be separated by a time distance way smaller
than 𝑤 and lie in two distinct time bins—what we called
in other companion papers the boundary problem, which
we addressed by means of an alternative method to identify
and count spike coincidences which builds on an alternative
window set, defined in the next section (that matches the
intended characterization of spike synchrony given above),
introduced in [17]. In order to illustrate the relevance of
the boundary problem and the huge impact that time-bin
boundaries have on the identification of synchrony we show,
in Figure 1, the probability that spike coincidences of different
sizes (with respect to different ratios between the scatter of the
spikes—the time span of the spikes in the coincidence—and
bin width) are cut by a time-bin boundary.

3. Statistics

In order to identify assembly neurons from S-like data we
propose here several statistics based on a variety of ideas
(already briefly sketched in Section 1).
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Figure 1: Probability that a group of 𝑛 spikes (i.e., an 𝑛-spike
coincidence) is cut by a bin boundary.The parameter 𝜎 is the scatter
in the group (i.e., the time span or maximum distance that can exist
between any two spikes in the group) and 𝑤 is the bin width (i.e.,
time span within which we characterize synchrony). Probabilities
are on the vertical axis.

3.1. First Set: Window-Based Tests. We first present four test
statistics that are based on counts of spike coincidences in
a collection of (sliding) bins or windows X. We denote the
number of such windows by 𝑊 (i.e., |X| = 𝑊).

We denote by 𝑊
𝐼
the number of windows, where all

neurons in a set 𝐼 ⊆ 𝑁 fire. To simplify we sometimes avoid
set notation: instead of writing, for example, 𝑊

{𝑖,𝑗}
, we write

𝑊
𝑖𝑗
, for {𝑖, 𝑗} ⊆ 𝑁.
𝐼
𝑛

⊆ 𝑁 is the subset of neurons that fire in the 𝑛thwindow.

Conditional Pattern Cardinalities (CPC1). This test (first
introduced in [20] for time binning) builds on the idea
that neurons participating in assemblies should have more
neurons firing synchronously with them (due to the spikes of
the other assembly neurons and the background spikes that
aremerely synchronous by chance) than it would be expected
by chance under the assumption that they are not assembly
neurons. Therefore, if 𝑖 ∈ 𝑁 belongs to a neuronal assembly,
the average cardinality of the spike coincidences in which
neuron 𝑖 participates should be bigger than that expected by
chance (i.e., under the assumption of independence).

In order to formalize our test statistic (Tcpc1
𝛼

) we first
define the amounts 𝜇

𝛼
and 𝜇

𝛼
as follows, for 𝑖 ∈ 𝑁:

𝜇
𝛼

(𝑖) =
1

𝑊

𝑊

∑

𝑛=1

𝐼𝑛 \ {𝑖}


𝛼
,

𝜇
𝛼 (𝑖) =

1

𝑊
𝑖

𝑊

∑

𝑛=1

1
𝐼𝑛

(𝑖)
𝐼𝑛 \ {𝑖}



𝛼
,

(1)

where 1
𝐼𝑛
is the indicator function of the set 𝐼

𝑛
(i.e., 1

𝐼𝑛
(𝑖) =

1 if 𝑖 ∈ 𝐼
𝑛
and 1

𝐼𝑛
(𝑖) = 0 otherwise) and 𝛼 ∈ [1, ∞)

is a user-specified variable that, for values greater than 1,
weights large cardinalities more strongly than smaller ones
(on the understanding that mainly large cardinalities tell us
about assembly activity while small ones can simply respond
to chance events). In other words, 𝜇

𝛼
is the unconditional

average (for 𝛼 = 1) pattern cardinality (taking all windows
into account) while 𝜇

𝛼
is the conditional average pattern

cardinality given neuron 𝑖 (i.e., conditional on neuron 𝑖:

only windows containing a spike of neuron 𝑖 are taken into
account). If neuron 𝑖 does not participate in an assembly
the two averages should not differ significantly. However, if
neuron 𝑖 participates in an assembly then we would expect
𝜇
𝛼
to be (significantly) larger. Therefore, by comparing the

two averages we obtain a test for assembly participation. We
formalize this comparison by defining the test statisticTcpc1

𝛼

with respect to neuron 𝑖 ∈ 𝑁, as follows:

T
cpc1
𝛼

(𝑖) =
𝜇
𝛼 (𝑖) − 𝜇

𝛼
(𝑖)

𝜇
𝛼

(𝑖)
. (2)

Conditional Item Frequencies (CIF1). This test (first intro-
duced in [20] for time binning) is based on the idea that, if
𝑖 ∈ 𝑁 belongs to one or more neuronal assemblies, it should
firemore oftenwith other neurons, namely, those that are also
part of the assembly or assemblies, than it would be expected
by chance under the assumption that it is not an assembly
neuron.

For each neuron 𝑗 (for 𝑗 ̸= 𝑖) we consider 𝑊
𝑖𝑗
the number

of windows, where neurons 𝑖, 𝑗 fire together and its expected
number �̂�

𝑖𝑗
to build our test statistic (the latter is estimated

as 𝑊
𝑗
𝜂
𝑖
, with 𝜂

𝑖
= 𝑊
𝑖
/𝑊—the estimated firing frequency of

neuron 𝑖). If 𝑊
𝑖𝑗
exceeds �̂�

𝑖𝑗
(significantly) then neurons 𝑖, 𝑗

are likely to be part of the same assembly, due to which we see
more cooccurrences of spikes of these two neurons that can
be expected by chance. If, on the contrary,𝑊

𝑖𝑗
is less than �̂�

𝑖𝑗
,

it is highly likely that the observed cooccurrences are merely
chance events.We formally express this intuition bymeans of
our test statisticTcif1

𝛼
as follows, for neuron 𝑖:

T
cif1
𝛼

(𝑖) =
1

|𝑁| − 1
∑

𝑗∈𝑁\{𝑖}

𝜁 (𝑊
𝑖𝑗

> �̂�
𝑖𝑗

) (𝑊
𝑖𝑗

− �̂�
𝑖𝑗

)
𝛼

, (3)

where 𝜁 is, here and throughout the rest of this section, a
boolean operator that returns value 1 if the condition holds
(i.e., in this statistic, if 𝑊

𝑖𝑗
> �̂�
𝑖𝑗
) and 0 otherwise (note that

we are only interested in the former case, which could be
indicative that neuron 𝑖 belongs to an assembly). The value
𝛼 ∈ [1, ∞) offers the possibility of weighting large numbers
of spike coincidences for pairs of the form {𝑖, 𝑗} (over the
expected ones) more than smaller ones.

Conditional Item Weight (CIW1). The previous test statistic
(i.e., Tcif1

𝛼
) was built based on the number of observed and

expected spike coincidences of sets of the form {𝑖, 𝑗} (where
𝑖 is the neuron tested and 𝑗 ∈ 𝑁 \ {𝑖}) without taking into
account the cardinality of the sets 𝐼

𝑛
⊂ 𝑁 in the windows,

where such {𝑖, 𝑗}-coincidences occurred. It is plausible that
{𝑖, 𝑗}-coincidences that cooccur with many more spikes are
more indicative of correlation (assembly activity) than only
a few cooccurrences. Basically, in order to build this new
statistical test, we combine the idea on which Tcpc1

𝛼
is based

(i.e., that larger pattern cardinalities are possibly indicative
of assembly activity) and that of Tcif1

𝛼
(i.e., that a neuron

participating in an assembly fires more often together with
some other specific neurons—those also in the assembly)
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and combine them by weighting spike cooccurrences with
the corresponding pattern cardinality. This test statistic goes
beyond what was presented in [20] and, given that we are
bringing together two pieces of information that proved
effective for our purposes (pattern cardinality and coincident
spiking with other specific neurons), it can be expected to
yield considerably better performance.

We formalize this idea bymeans of our test statisticTciw1
𝛼

.
In order to define such statistic we first need the values𝜔

𝑖𝑗
and

𝜔
𝑖𝑗
defined as follows:

𝜔
𝑖𝑗

=

𝑊

∑

𝑛=1

1
𝐼𝑛

(𝑗)
𝐼𝑛 \ {𝑖}

 ,

𝜔
𝑖𝑗

=

𝑊

∑

𝑛=1

1
𝐼𝑛

(𝑖) 1𝐼𝑛 (𝑗)
𝐼𝑛 \ {𝑖}

 .

(4)

In other words, 𝜔
𝑖𝑗
gives us the sum of the cardinalities

of all sets of neurons in 𝐼
𝑛

\ {𝑖} that fire together with neuron
𝑗 over our collection of windows X (i.e., the occurrences of
spikes of neuron 𝑗 are weighted with the cardinality of the
pattern in the window they appear in. Thus, 𝜔

𝑖𝑗
is the total

size of patterns containing a spike of neuron 𝑗). Similarly, 𝜔
𝑖𝑗

gives us the sum of the cardinalities of all sets of neurons in
𝐼
𝑛

\ {𝑖} that fire together with neurons 𝑖 and 𝑗 overX (i.e., the
cooccurrences of spikes of neurons 𝑖, 𝑗 are weighted with the
cardinality of the pattern in the window inwhich they occur).

We define the test statistic Tciw1
𝛼

, with a user-specified
power 𝛼, as follows:

T
ciw1
𝛼

(𝑖) =
1

|𝑁| − 1
∑

𝑗∈𝑁\{𝑖}

𝜁 (𝜔
𝑖𝑗

> 𝜔
𝑖𝑗

𝜂
𝑖
) (𝜔
𝑖𝑗

− 𝜔
𝑖𝑗

𝜂
𝑖
)
𝛼

, (5)

with 𝜂
𝑖

= 𝑊
𝑖
/𝑊 the estimated firing frequency of neuron

𝑖. The parameter 𝛼 ∈ [1, ∞), as in previous statistics and
in those that follow, offers the possibility of weighting larger
(average) spike coincidences more than smaller ones.

Conditional Pattern Overlap (CPO1). While all preceding
statistics were computed from aggregates over values com-
puted from individual windows, for the test statistic we
present now, we consider pairs of windows in which the
neuron 𝑖 ∈ 𝑁 tested fires together with another set of neu-
rons. The idea underlying this statistic is that cooccurrences
of spikes of neuron 𝑖 with those of any other neuron 𝑗 (as
considered in the two preceding statistics)may still be chance
events. However, if spikes of several other neurons all occur
together twice (as we look at pairs of windows) with spikes
of the tested neuron 𝑖, this is a much stronger indicator of
assembly activity. Apart from this difference, this statistic
employs the same idea asTciw1

𝛼
, only that the overlap of pairs

takes the role of a single pattern.
We formalize this idea bymeans of the test statisticTcpo1

𝛼
,

which we define as follows:

T
cpo1
𝛼

(𝑖) =

𝑊

∑

𝑛=2

𝑛−1

∑

𝑚=1

1
𝐼𝑛∩𝐼𝑚

(𝑖) 𝜁 (
𝐼𝑛 ∩ 𝐼

𝑚
\ {𝑖}

 > 1)

⋅
𝐼𝑛 ∩ 𝐼

𝑚
\ {𝑖}



𝛼
,

(6)
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Figure 2: Example: A collection of spike trains for neurons
𝑎, 𝑏, 𝑐, 𝑑, 𝑒 that contain a neuronal assembly formed by {𝑎, 𝑏, 𝑐}—
three injected coincidences in the example, circled in blue. The
window set X𝑏 (i.e., time binning) is considered in our example
(yielding a partition with ten windows). We are interested in testing
whether neuron 𝑎 is part of an assembly. CPC

1
: in order to compute

𝜇
1
(𝑎) we consider the number of spikes of neurons 𝑏, 𝑐, 𝑑, 𝑒 in each

window and sum over. We get, for our example, 𝜇
1
(𝑎) = 1.8. We

proceed in a similar way to assess 𝜇
1
(𝑎) by only considering those

windows in which neuron 𝑎 fires, which yields 𝜇
1
(𝑎) = 2. We thus

get that Tcpc1
1

(𝑎) = 1/9 (concluding that 𝑎 is an assembly neuron
depends on the significance of the value 1/9—see Section 5.1). CIF

1
:

we have that 𝑊
𝑎𝑏

= 3 and �̂�
𝑎𝑏

= 2 and that 𝑊
𝑎𝑏

= 3 and
�̂�
𝑎𝑏

= 1.6 (for the other two pairs—i.e., 𝑎, 𝑑 and 𝑎, 𝑒—its number
of coincidences is lower than its expected one under independence).
These numbers yieldTcif1

1
(𝑎) = 0.6. CIW

1
: on one hand we have, for

the cardinalities of the patterns, where neuron 𝑎 does not necessarily
occur, 𝜔

𝑎𝑏
= 11, 𝜔

𝑎𝑐
= 9, 𝜔

𝑎𝑑
= 7, and 𝜔

𝑎𝑒
= 9 and, on the

other hand, 𝜔
𝑎𝑏

= 6, 𝜔
𝑎𝑐

= 6, 𝜔
𝑎𝑑

= 0, and 𝜔
𝑎𝑒

= 3. For such
values and 𝜂

𝑎
= 0.4 we have that Tciw1

1
(𝑎) = 1. CPO

1
: for this test

statistic we only consider the windows that contain a spike of neuron
𝑎. Of those, only three of them—that is, those containing an instance
of the assembly {𝑎, 𝑏, 𝑐}—yield pairwise intersections of cardinality
bigger than 1. Each such intersection contributes with a cardinality
of 2 to the total value of our statistic, yieldingTcpo1

1
(𝑎) = 6.

where 𝜁(|𝐼
𝑛

∩ 𝐼
𝑚

\ {𝑖}| > 1) excludes patterns overlapping only
in one neuron.

A simple example on how these test statistics that we have
just presented are computed is given in Figure 2.

In Section 5 we report results on the evaluation of these
statistical tests for two window sets of particular interest,
which we denote by X𝑏 and X𝑤S (except T𝑐𝑝𝑜1

𝛼
, which was

only evaluated on X𝑏). “b” stands for “bin” and “w” for
“(sliding) window.” The subscript S reflects the dependence
ofX𝑤S on the underlying collection of spike trains S:

(i) X𝑏 is a partition (of intervals of length 𝑤, the time
span within which we define spike synchrony) of the
recording time 𝑇;

(ii) X𝑤S is the set given by all the intervals of the form
[𝑡
𝑖
, 𝑡
𝑖
+ 𝑤], for all 𝑡

𝑖
∈ {𝑡
𝑖

1
, . . . , 𝑡

𝑖

𝑘𝑖
} (inS) and all 𝑖 ∈ 𝑁.

The real value𝑤 refers to the particular (user-defined)
time span.

Our definition of X𝑏 is motivated by the bin-based
model of synchrony that, as mentioned earlier, partitions the
recording time 𝑇 into time bins of equal length and counts
as synchronous those spikes that lie in the same bin (which
constitutes the most popular method for the identification of
synchronous spiking in the neurobiology literature and the
reference for the statistical tests presented in [20]). However,
as we explained earlier (and illustrated by means of Figure 1),
such an account of synchronous spiking leads to missing
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potential synchronous groups: groups of spikes that lie within
the time span that determines synchrony (say 𝑤, as above)—
and thus should be identified as synchronous—but that, due
to the placement of the bin boundaries, fall into different
time bins and are thus not reported as synchronous by the
bin-based model. In order to bring more flexibility to the
placement of the bin boundaries and this way achieve a better
account of spike synchrony some possibilities come naturally
to our mind. Maybe the most natural way would be to look at
each spike and check its neighborhood, considering a time
span 𝑤/2 in each direction (i.e., considering the window
[𝑡 − 𝑤/2, 𝑡 + 𝑤/2], for 𝑡 the corresponding spike time).
However, this has the disadvantage that looking only at 𝑤/2

in each direction may still miss synchronous spiking, hence
the natural possibility of considering a neighborhood with
span 𝑤 in each direction, but this increases the number of
chance occurrences. The next option is then to let a window
(of length𝑤) slide over the spike trains stopping at each spike,
which captures each spike coincidence in the range given by
𝑤 at least once. Such a collection of windows is given byX𝑤S.

3.2. Second Set: Time-Continuous Approach. In this section
we offer a continuous version of some of the previous sta-
tistical tests that are implicitly built on a graded, continuous
notion of spike synchrony.

We consider, for each spike 𝑡
𝑖

∈ {𝑡
𝑖

1
, . . . , 𝑡

𝑖

𝑘𝑖
} and 𝑖 ∈ 𝑁, an

influence region that corresponds to the distancewithinwhich
two or more spikes are regarded as synchronous (i.e., for a
time span 𝑤 ∈ R+, we would define the influence region of
spike 𝑡

𝑖 as the interval [𝑡
𝑖
−𝑤/2, 𝑡

𝑖
+𝑤/2]). From the influence

region we define the function 𝑓
𝑖 as follows:

𝑓
𝑖
(𝑥) =

{

{

{

1, if 𝑥 ∈ [𝑡
𝑖

−
𝑤

2
, 𝑡
𝑖

+
𝑤

2
] ,

0, otherwise.

(7)

In what follows we will represent spikes by these maps
(i.e., 𝑡

𝑖 will be represented by 𝑓
𝑖 above). We call functions

of this form influence maps (and the windows of the form
[𝑡
𝑖

− 𝑤/2, 𝑡
𝑖

+ 𝑤/2] underlying them are called influence
regions). Such functions constitute the building blocks of the
synchrony model that we introduce in our companion paper
[21], which is characterized by a graded notion of synchrony
(which differs substantially from the intended notion of
synchrony in this paper, which is bivalent): the degree of
synchrony among twoormore spikes is defined as the integral
(i.e., area) of the intersection of their corresponding influence
maps. Such degree is thus a value in the interval [0, 1] (e.g., 0

if the time distance between any two spikes is greater than
or equal to 𝑤 and 1 if there is exact time synchrony between
them).

Next we defineF𝑖 as follows:

F
𝑖
(𝑥) = max

𝑛∈{1,...,𝑘𝑖}

𝑓
𝑖

𝑛
(𝑥) , (8)

where𝑓
𝑖

𝑛
is themap corresponding to spike 𝑡

𝑖

𝑛
. In otherwords,

any spike time that lies in an interval of the form [𝑡
𝑖
−𝑤/2, 𝑡

𝑖
+

𝑤/2], for 𝑡
𝑖 a spike of neuron 𝑖 ∈ 𝑁 (and that, thus, should

be regarded as synchronous with 𝑡
𝑖), will be given, byF𝑖(𝑥),

value 1.

3.2.1. Conditional PatternCardinalities (CPC2). We introduce
now a continuous version of the test statisticTcpc1

𝛼
, in terms

of influence regions and influence maps, which we denote by
Tcpc2
𝛼

.
Formally, for 𝑖 ∈ 𝑁, we define the values 𝜇

𝛼
and 𝜇

𝛼
as

follows:

𝜇
𝛼

(𝑖) =
1

𝑇
∫
(0,𝑇]

( ∑

𝑗∈𝑁\{𝑖}

F
𝑗

(𝑥))

𝛼

𝑑𝑥,

𝜇
𝛼 (𝑖) =

1

𝑠 (𝑅
𝑖
)

∫
𝑅𝑖

( ∑

𝑗∈𝑁\{𝑖}

F
𝑗

(𝑥))

𝛼

𝑑𝑥,

(9)

with

𝑠 (𝑅
𝑖
) = ∫
(0,𝑇]

F
𝑖
(𝑥) 𝑑𝑥. (10)

Here 𝛼 ∈ [1, ∞) is, as in previous statistics and all
others that we will be presenting in this section, a weighting
parameter that, for values greater than 1, weights large spike
coincidences more strongly than smaller ones. As withTcpc1

𝛼
,

𝜇
𝛼
and 𝜇

𝛼
measure average spike cardinalities (notice that

∑

𝑗∈𝑁\{𝑖}

F
𝑗

(𝑥) (11)

gives us, at each 𝑥, the number of influence regions corre-
sponding to spikes of neurons in𝑁\{𝑖} that overlap and, thus,
the number of spikes that lie in thewindow [𝑥−𝑤/2, 𝑥+𝑤/2]).
As with 𝜇

𝛼
and 𝜇

𝛼
inTcpc1 , we expect 𝜇

𝛼
(𝑖) to be bigger than

𝜇
𝛼

(𝑖) if 𝑖 ∈ 𝑁 is an assembly neuron. Based on this intuition,
we formally define the test statisticTcpc2

𝛼
as follows, for 𝑖 ∈ 𝑁:

T
cpc2
𝛼

(𝑖) =
𝜇
𝛼 (𝑖) − 𝜇

𝛼
(𝑖)

𝜇
𝛼

(𝑖)
. (12)

3.2.2. Conditional Item Frequencies (CIF2). We present now
an adaptation of the test statisticTcif1

𝛼
to influence maps and

a continuous domain, which we will denote byTcif2
𝛼

, and that
responds to the same ideas asTcif1

𝛼
.

For each neuron 𝑗 we define the values 𝐿
𝑖𝑗
and �̂�

𝑖𝑗
as

follows:

𝐿
𝑖𝑗

= ∫
(0,𝑇]

F
𝑖
(𝑥)F

𝑗
(𝑥) 𝑑𝑥,

�̂�
𝑖𝑗

=
1

𝑇
(∫
(0,𝑇]

F
𝑖
(𝑥) 𝑑𝑥) (∫

(0,𝑇]

F
𝑗

(𝑥) 𝑑𝑥) .

(13)

We formally define the statistic Tcif2
𝛼

as follows, for
neuron 𝑖:

T
cif2
𝛼

(𝑖) =
1

|𝑁| − 1
∑

𝑗∈𝑁\{𝑖}

𝜁 (𝐿
𝑖𝑗

> �̂�
𝑖𝑗

) (𝐿
𝑖𝑗

− �̂�
𝑖𝑗

)
𝛼

, (14)

where 𝜁 is the boolean operator returns value 1 if 𝐿
𝑖𝑗

> �̂�
𝑖𝑗

and 0 otherwise.
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3.2.3. Conditional ItemWeight (CIW
2
). A continuous version

of the test statisticTciw1
𝛼

is that which we denote byTciw2
𝛼

.
In order to formalize our continuous version of the

statistic we first define the values 𝜔
𝑖𝑗
and 𝜔

𝑖𝑗
as follows:

𝜔
𝑖𝑗

= ∫
(0,𝑇]

F
𝑗

(𝑥) ∑

𝑘∈𝑁\{𝑖}

F
𝑘

(𝑥) 𝑑𝑥,

𝜔
𝑖𝑗

= ∫
(0,𝑇]

F
𝑖
(𝑥)F

𝑗
(𝑥) ∑

𝑘∈𝑁\{𝑖}

F
𝑘

(𝑥) 𝑑𝑥.

(15)

We defineTciw2
𝛼

as follows, for neuron 𝑖:

T
ciw2
𝛼

(𝑖) =
1

|𝑁| − 1
∑

𝑗∈𝑁\{𝑖}

𝜁 (𝜔
𝑖𝑗

> 𝜔
𝑖𝑗

𝜂
𝑖
) (𝜔
𝑖𝑗

− 𝜔
𝑖𝑗

𝜂
𝑖
)
𝛼

,

(16)

where 𝜂
𝑖
is the frequency 𝑠(𝑅

𝑖
)/𝑇.

As before, 𝜁 is the boolean operator returns value 1 if𝜔
𝑖𝑗

>

𝜔
𝑖𝑗
and 0 otherwise.

4. Computational Complexity

In this sectionwe briefly analyze the complexity of computing
our statistics.

First of all, if we take as reference the window set X𝑏
(i.e., binning), we have that CPC

1
, CIF
1
, and CIW

1
are linear

in the number of windows in X𝑏. Also, as it is probably
clear, CPC

1
is constant in the number of neurons (only the

pattern cardinality is taken into account; the composition of
the pattern itself is irrelevant) and CIF

1
and CIW

1
are linear

(since one needs to loop over the neurons). More formally,
we have that the complexity of computing CPC

1
is at most of

the order 𝑂(𝑘), where 𝑘 is the number of time bins, and that
the complexity of CIF

1
and CIW

1
is of the order 𝑂(𝑠 + 𝑛),

where 𝑠 is the number of spikes and 𝑛 is the number of
neurons. As for CPO

1
, it is quadratic in the number of time

bins and linear in the number of neurons. More formally, we
have that its complexity is of the order 𝑂(𝑛 𝑘

2
) (this bound

could be reduced by the size of the largest set of neurons
that fires together in a window, which would replace 𝑛). If,
instead, we consider the window set X𝑤S then we have that
the computation of CPC

1
, CIF
1
, and CIW

1
is linear in the

total number of spikes and that CIF
1
andCIW

1
are also linear

in the number of neurons. Formally, the complexity of CPC
1

is of the order 𝑂(𝑠) and that of CIF
1
and CIW

1
is of the

order 𝑂(𝑛 𝑠) (where, as before, 𝑛 could be replaced by the
largest number of neurons firing together in a window). The
statistics CPC

2
, CIF
2
, and CIW

2
have the same complexities

as its window-based counterparts.

5. Evaluation

In this section we show some results concerning the evalu-
ation of our statistical tests on artificially generated collec-
tions of spike trains. Such artificially generated collections,
in which all assemblies—and thus assembly neurons—are
known, are necessary in order to assess whether our test

statistics do what they are supposed to do which is to identify
all assembly neurons and discard all those that are not. Only
on such data a proper evaluation of our test statistics is
possible.

For the results reported in this section we generate our
collections of spike trains as follows: for each signature

⟨𝑧, 𝑐⟩ ∈ {3, . . . , 12} × {3, . . . , 12} , (17)

(where 𝑧 stands for the size of the neuronal group and 𝑐

for the number of spike coincidences injected) we generate
1000 trials, each consisting of 100 spike trains (one for
each neuron) independently generated as 3-second Poisson
processes (i.e., 𝑇 = 3) of constant rate 20Hz (which represent
the background activity), with 𝑐 injected spike coincidences
of a particular 𝑧-neuron pattern containing the neuronwe are
testing for (for the neurons with injected synchronous spikes,
a corresponding number of background spikes were removed
and thus the background firing of the assembly neurons was
adjusted accordingly). In order to generate such coincidences
a random choice of 𝑐 points in the interval (0, 𝑇] is considered
for each trial and added to the background spiking activity.
In trials with nonexact coincidences (i.e., jittered trials, as
opposed to nonjittered trials with exact coincidences) a
random shift is added, which we model by means of a
uniform random variable on the interval [−0.0015, 0.0015]

(i.e., ±1.5 maximal millisecond shift, in keeping with the
time span 𝑤 = 0.003 and the corresponding length of
windows and influence regions that we are considering for
our statistics). More results and diagrams corresponding
to artificially generated data with slightly different settings
can be found in http://www.borgelt.net/docs/napa.pdf. The
general conclusions that could be drawn from them do not
differ from those reported here.

5.1. Significance. To estimate the distribution of the test
statistics we generate surrogate data from our original spike
trains as follows: modifications of the original data that are
intended to keep all its essential features except synchrony
among the neuron we are testing and the others (see, e.g.,
[22] or [23] for a survey and analysis of methods to generate
surrogate data from parallel spike trains). In order to keep
as many properties of the original data as possible we create
only a surrogate train for the neuron we are currently testing,
which replaces the original train. The trains of all other
neurons are left unchanged. With the surrogate train the
test statistic is recomputed. Generating a surrogate train and
recomputing the test statistic are repeated 1000 times, in
order to obtain an estimate of the distribution of the test
statistic. We then determine the fraction of surrogate trains
that produced a test statistic value exceeding the one obtained
with the actual (real) train and thus obtain a 𝑃 value. Note
that, for testing another neuron, the original (real) train of
any neuron tested before is used. That is, no surrogate trains
are evaluated for neurons other than the one to be tested.

5.2. Results. Figures 3–6 feature diagrams with rates of false
negatives for each signature ⟨𝑧, 𝑐⟩, with 𝑧, 𝑐 ∈ {1, . . . , 12} over
the 1000 trials; that is, the rate of trials (over 1000) in which
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Figure 3: Rate of false negatives on nonjittered trials (i.e., with exact coincidences). Test statistics CPC
1
, CIF
1
, CIW

1
, and CPO

1
with respect

to the window setX𝑏 (i.e., binning). Column (a) shows results for the parameter 𝛼 = 1 and column (b) for 𝛼 = 3.
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Figure 4: Rate of false negatives on jittered trials (i.e., with nonexact coincidences). Test statistics CPC
1
, CIF
1
, CIW

1
, and CPO

1
with respect

to the window setX𝑏 (i.e., binning). Column (a) shows results for the parameter 𝛼 = 1 and column (b) for 𝛼 = 3.
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Figure 5: Rate of false negatives on jittered trials (i.e., with nonexact coincidences). Test statistics CPC
1
, CIF
1
, and CIW

1
with respect to the

window setX𝑤S (i.e., sliding window). Column (a) shows results for the parameter 𝛼 = 1 and column (b) for 𝛼 = 3.

the tested neuron that belongs to the group with injected
coincidences is not identified as an assembly neuron—on the
understanding that a group of neurons of size at least 3with at
least 3 spike coincidences in our trials constitutes a potential
neuronal assembly (see, e.g., [17] or [18] for a better insight).
Maybe it is worth stressing that, if we were to test a neuron
that does not belong to an assembly, it would be identified by
our test statistics as an assembly neuron (i.e., a false positive)
in about 1% of our trials (which is probably clear, since this is
our significance level, learned from uncorrelated trials).

In Figure 3 we show results for the window-based statis-
tics CPC

1
, CIF
1
, CIW

1
, andCPO

1
onX𝑏 (i.e., when consider-

ing time binning for the identification of spike coincidences).
The first two test statistics (i.e., CPC

1
and CIF

1
) were already

introduced and evaluated in a companion paper ([20]) on
artificially generated trials based on slightly different—but
essentially comparable—settings. As the diagrams in Figure 3
show, the two new test statistics CIW

1
and CPO

1
introduced

in this paper report considerably lower rates of false negatives
than those already introduced in [20] on nonjittered trials
(the best performance being that of CPO

1
that, as was seen

in the previous section, is more costly than the other three
in terms of computational efficiency). The performance of all
such statistics with respect to 𝛼 = 3 tends to be substantially
better than statistics with 𝛼 = 1 for most signatures: for CPC

1

an increase in the exponent 𝛼 yields an increase in sensitivity
towards smaller patterns (i.e., towards smaller values for
𝑧) while for CIF

1
such an increase yields an improvement
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Figure 6: Rate of false negatives on jittered trials (i.e., with nonexact coincidences). Test statistics CPC
2
, CIF
2
, and CIW

2
. Column (a) shows

results for the parameter 𝛼 = 1 and column (b) for 𝛼 = 3.

in sensitivity towards a smaller number of coincidences
(i.e., towards smaller values for 𝑐). CIW

1
combines both

effects, since it combines pattern cardinality assessment and
coincidence counts (which is precisely what was intended
with the definition of this statistic).The effect of 𝛼 on CPO

1
is

even higher, since it exploits cooccurrences not only of pairs
but of larger groups of neurons.

Figure 4 shows results for the same window-based statis-
tics on jittered trials. As can be expected, the performance
of all such statistics worsens substantially when dealing
with nonexact spike coincidences. This is due to the above
mentioned boundary problem when using the window set
X𝑏 (i.e., binning): two or more spikes can be less than
𝑤 milliseconds apart (in our evaluations 𝑤 = 0.003)

but still lie in different windows and thus be regarded as
nonsynchronous (a detailed analysis and quantification of
the effect of the boundary problem can be found in our
companion paper [24]).

In order to improve performance when dealing with
nonexact spike coincidences and to overcome the boundary
problem in binning we introduced an alternative window set
X𝑤S for our window-based statistics and a time-continuous
alternative to them bymeans of our test statistics CPC

2
, CIF
2
,

and CIW
2
. Diagrams in Figure 5 show the performance of

our window-based statistics CPC
1
, CIF
1
, and CIW

1
on X𝑤S

(CPO
1
becomes very inefficient on X𝑤S—due to the much

larger number of windows and its quadratic complexity in the
number of windows—and thus was not tested). Performance
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of such statistics onX𝑤S is, formost signatures, better than the
corresponding performance on X𝑏 (more so with respect to
𝛼 = 3). As was mentioned, such improvement is mostly due
to the fact that, by consideringX𝑤S in place ofX𝑏, we identify
all injected coincidences.

Diagrams in Figure 6 show the performance of our test
statistics CPC

2
, CIF
2
, and CIW

2
. Overall, the performance of

our window-based statistics on X𝑤S and the corresponding
time-continuous statistics (based on influence regions and
influence maps) are not clearly distinguishable from the
diagrams and, among all test statistics introduced in this
paper, CIW

1
and CIW

2
seem to yield the best results.

We are currently exploring possibilities to transfer the
ideas on which CPO

1
is based to work with X𝑤S without

incurring quadratic computational complexity and also in
the time-continuous approach. Although it is unclear how
the statistic could be expressed in terms of influence regions
(in the time-continuous approach), with such a transfer one
can hope to achieve even better performance, as was seen for
CPO
1
when working withX𝑏.

6. Conclusion

In this paper we have presented several test statistics to iden-
tify assembly neurons from multiple-electrode recordings.
The aim of such statistics is to reduce the set of neurons to
a relevant subset of them and in this way ease the task of
identifying neuronal assemblies in further analyses (a task
which, due to the large amount of neurons that can nowadays
be recorded, is undermined by the computational explosion
that comes from having to consider every possible subset of
them as a potential neuronal assembly).

We have provided two types of statistics as follows: the
window-based statistics (CPC

1
, CIF
1
, CIW

1
, and CPO

1
) and

the time-continuous statistics (CPC
2
, CIF
2
, and CIW

2
). The

former rely on a window-based approach to identify spike
coincidences and the latter on what we called influence
regions (i.e., a time span around each spike within which
synchrony with other spikes is defined—two or more spikes
are synchronous in these settings if their influence regions
overlap). For the window-based statistics we considered two
window sets in our evaluations as follows: a partition of
the recording time of our spike data into equal intervals
(which is called binning)—on which the bin-based model of
synchrony relies in order to identify spike coincidences—and
a collection of sliding windows (one for each spike time), able
to account for all spike coincidences in our spike trains that
fall within the window length, which is more in keeping with
the common, intended characterization of spike synchrony in
the field, which regards two or more spikes as synchronous if
they lie within a certain distance from each other.

Two of thewindow-based statistics (CPC
1
andCIF

1
) were

first presented and evaluated with binning in a companion
paper ([20]) for artificially generated nonjittered trials (i.e.,
with exact spike coincidences injected). In this paper we
have shown that the two novel window-based statistics
here presented (i.e., CIW

1
and CPO

1
) perform substantially

better in such settings, in terms of rates of false negatives.

Performance of the latter is still better on jittered trials, yet,
in these settings, test statistics based on the sliding-window
set and the time-continuous ones yield much better results,
as was shown.
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