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EMT cells increase breast cancer metastasis
via paracrine GLI activation in neighbouring tumour
cells
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David M. Henke7, Chad A. Shaw7, Meng-Fen Wu5, Susan G. Hilsenbeck5,8, Lisa D. White7,9, Michael T. Lewis5,9
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Recent fate-mapping studies concluded that EMT is not required for metastasis of

carcinomas. Here we challenge this conclusion by showing that these studies failed to

account for possible crosstalk between EMT and non-EMT cells that promotes dissemination

of non-EMT cells. In breast cancer models, EMT cells induce increased metastasis of weakly

metastatic, non-EMT tumour cells in a paracrine manner, in part by non-cell autonomous

activation of the GLI transcription factor. Treatment with GANT61, a GLI1/2 inhibitor, but not

with IPI 926, a Smoothened inhibitor, blocks this effect and inhibits growth in PDX models.

In human breast tumours, the EMT-transcription factors strongly correlate with activated

Hedgehog/GLI signalling but not with the Hh ligands. Our findings indicate that EMT

contributes to metastasis via non-cell autonomous effects that activate the Hh pathway.

Although all Hh inhibitors may act against tumours with canonical Hh/GLI signalling, only GLI

inhibitors would act against non-canonical EMT-induced GLI activation.
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I
n recent years, immunohistochemical analyses and multiplex
high-throughput single cell sequencing of human tumour cells
have shown that tumours are composed of diverse cell

subpopulations containing different driver mutations, gene and
protein expression profiles, growth rates and responses to
chemotherapeutics1,2. Such heterogeneity is exacerbated by
cellular plasticity, where some cells may undergo oncogenic
epithelial-to-mesenchymal transition (EMT), resulting in loss of
cell–cell adhesion and polarity, as well as reduced epithelial and
elevated mesenchymal protein expression3,4, increased migration
and invasion, and enhanced dissemination from the primary
tumour3. As metastases in patients appear epithelial3, the reverse
process, mesenchymal-to-epithelial transition, may occur to allow
tumour cell colonization in secondary metastatic sites5, establishing
cellular plasticity as an important aspect of tumour progression.

However, the role of EMT in carcinoma metastasis is
controversial. Recent lineage-tracing studies argue against the
requirement of EMT for metastasis, as reporter-tagged cells that
underwent a previous EMT were not found at the secondary
site6,7. However, these studies did not address the potential
cooperation between EMT and non-EMT cells during the
metastatic process, as EMT cancer cells may enable non-EMT
cells to gain access to the secondary site, leading to
macrometastatic growth1. Thus, metastasis can be influenced by
intratumoural heterogeneity: where a small proportion of primary
tumour cells that have undergone an EMT4,6 may influence
neighbouring, non-EMT tumour cells.

Twist1, Snail1 and Six1 are EMT-inducing transcription factors
(EMT-TFs) that have all been associated with breast cancer
metastasis4,8. All three EMT-TFs regulate critical developmental
processes such as cell survival, migration and invasion, in
part by influencing EMT4,9. In addition, they are
downregulated post embryogenesis, but re-expressed in
various cancers where they cell autonomously induce EMT,
resulting in increased percentages of tumour-initiating cells and
enhanced metastasis10,11. In carcinomas, Twist1 and Snail1
transcriptionally repress E-Cadherin (E-Cad) and upregulate
mesenchymal genes4. Similarly, Six1 overexpression induces
EMT by regulating E-Cad localization and altering other EMT
markers10.

During development and cancer, EMT-TFs act in concert
with several signalling networks including transforming growth
factor-b, Wnt and Hedgehog (Hh)1,4. The Hh signalling
pathway is a prominent regulator of embryonic development,
where Hh ligands function as morphogens to control numerous
developmental processes12. Interestingly, in Drosophila eye
development, hh is a direct target of sine oculis (the homologue
of Six1)13 and Six1 regulates Hh/GLI signalling during
lung development and in fibroblasts14,15. In addition, Twist1
and Hh/GLI signalling are intimately linked during
development16, and recently Twist1 and Snail1 were associated
with the Hh pathway in tumour-initiating cells17,18.

In mammals, canonical activation of Hh/GLI signalling
involves binding of one the Hh ligands, Desert Hh (DHH),
Indian Hh (IHH) or Sonic Hh (SHH) to Patched-1 (PTCH1) or
PTCH2 receptors, relieving the inhibitory activity of PTCH on
Smoothened (SMO). When inhibition is relieved, levels of the
transcriptional activator forms of one or more GLI TFs (GLI1, 2
or 3) increase in the nucleus, resulting in activation of Hh target
genes12. Non-canonical activation of the GLI TFs can occur in a
Hh- or SMO-independent manner via secreted factors such as
transforming growth factor-b19. Importantly, autocrine and
paracrine Hh-mediated cross-talk between tumour cells and the
tumour microenvironment20 results in increased proliferation,
stem cell self-renewal and metastasis in various cancers21. In basal
cell carcinoma (BCC) and medulloblastoma, activated Hh

signalling is often due to mutations in pathway components
such as PTCH and SMO, whereas in other tumour types including
breast, mutations are not observed at high frequency. Instead
there is evidence for Hh ligand-dependent pathway
hyperactivity15,22,23. As numerous studies link Hh signalling to
progression in multiple tumour types, derivatives of cyclopamine
(for example, GDC-0449 and IPI926), a naturally occurring
plant-derived steroidal alkaloid which targets SMO, are in clinical
trials for select patients with BCC and medulloblastoma, and are
proving to be efficacious24,25. However, these inhibitors have not
shown promise in breast cancer26 despite evidence for activation
of this pathway23,27.

Herein, we demonstrate that EMT-TFs Twist1, Snail1 and Six1
influence neighbouring carcinoma cells in a non-cell autonomous
(NCA) manner, by increasing EMT features and aggressive
properties of cells not expressing these TFs. Six1 is a key mediator
of the NCA effects downstream of Twist1 and Snail1, and
can induce metastasis of non-Six1 expressing, non-EMT cells. All
three EMT-TFs function non-cell autonomously by activation of
GLI-mediated transcription in non-EMT cells, but employ
different mechanisms of pathway activation, some of which are
Hh ligand and SMO independent. We find that pharmacological
inhibiton of GLI, but not SMO, in the non-EMT cells efficiently
inhibits the NCA phenotypes imparted by all three EMT-TFs.
Importantly, we demonstrate that in selected patient-derived
breast cancer xenograft (PDX) models, GANT61 (a GLI1/2
inhibitor) inhibits tumour growth, whereas IPI926 (a SMO
inhibitor) does not. Taken together, our data suggest that
upstream SMO inhibitors may not prove efficacious in tumours
where a proportion of cells activate GLI via EMT-TFs and instead
argue that inhibitors directly targeting GLI may be more effective.

Results
EMT-TFs impart metastatic properties on neighbouring cells.
To mimic the primary tumour, where only a small percentage of
cells may express EMT-TFs4, we co-cultured GFPþHMLER-
Control (HMLER-Ctrl) cells with tRFPþHMLER-Snail1 or
Twist1 cells in a 1:1 or 10:1 ratio and performed migration
assays. Co-culture with either HMLER-Snail1 or Twist1 cells
increased HMLER-Ctrl cell migration, even when only one of ten
cells in the mixture expressed the EMT-TF (Fig. 1a–d). Studies
show Twist1 and Snail1 can take around 14 days to cell
autonomously induce EMT11,28. To determine whether EMT can
be induced non-cell autonomously in this system, GFPþHMLER-
Ctrl cells were co-cultured with tRFPþTwist1/Snail1 cells for 14–16
days at a 1:1 and 10:1 ratio, cells were sorted using flow cytometry
and protein was extracted to measure EMT markers. Surprisingly,
no morphologic changes were observed nor was a decrease in E-cad
or cytokeratin 18 (epithelial markers), or increase in vimentin
(mesenchymal marker) observed, when HMLER-Ctrl cells were
co-cultured with EMT-TF-expressing cells (Supplementary
Fig. 1a,b). Thus, Twist1 and Snail1 non-cell autonomously
increase aggressive properties in neighbouring cells without
causing EMT in those cells, suggesting that EMT and metastatic
properties are not always linked downstream of these EMT-TFs.

To test whether the NCA effects of Twist1 and Snail1 were
due to the activity of a secreted factor, conditioned medium
(CM) was isolated from HMLER-Snail1/Twist1 and placed on
HMLER-Ctrl cells. Indeed, HMLER-Ctrl cells had increased
migration (Fig. 1e–h) in the presence of CM from HMLER-
Snail1/Twist1-expressing cells as well as invasion (Supplementary
Fig. 1c–f). The invasion assays were performed for 16–18 h, as no
proliferation differences were observed in HMLER-Ctrl cells
receiving different CM over this time period (Supplementary
Fig. 1g,h).
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Six1 acts downstream of EMT-TFs to mediate NCA phenotypes.
Studies show that EMT-inducing molecules and TFs often affect the
levels of each other in tumour cells4,29. In line with this observation,

we found that Six1 messenger RNA (Supplementary Fig. 2a) and
protein expression (Fig. 2a) is increased in HMLER-Snail1 and
HMLER-Twist1 cells compared to HMLER-Ctrl cells. Therefore, to
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Figure 1 | Snail1 and Twist1 non-cell autonomously increase metastatic properties of control cells. Five hour migration assay performed on (a,c) tRFPþ

HMLER-Snail1/Twist1 cells alone, GFPþ HMLER-Ctrl cells alone, or a mixture of the two cell types at 1:1 or 10:1 ratio. (b,d) Quantification of GFPþ cell

migration in a,c. (e,f) Representative 8–9 h migration assays of HMLER-Ctrl cells cultured in CM from (e) HMLER-Snail1 cells and (f) HMLER-Twist1 cells;

C-cells, M-Media. (g,h) Quantification of cell migration in e,f. Scale bar, 100 mm, s.e.m. shown, nZ 3. One-way ANOVA with Tukey’s post test in all cases.

*Po0.05, **Po0.01 and ***Po0.001.
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examine whether Six1 is required downstream of Twist1 and/or
Snail1 to mediate their NCA effects, we performed Six1 knockdown
(KD) in HMLER-Snail1 and Twist1 cells using small interfering
RNAs (consistently achieving 70–80% Six1 KD on the mRNA and
protein levels (Supplementary Fig. 2a and Fig. 2a)). We then
cultured HMLER-Ctrl cells in CM from HMLER-Snail1/Twist1
cells ±Six1 KD and performed migration and invasion assays. Six1
KD in HMLER-Snail1 and Twist1 cells dramatically inhibited the
NCA stimulation of migration (Fig. 2b–e) and invasion
(Supplementary Fig. 2b–e) in HMLER-Ctrl cells. Notably, Six1
levels in HMLER-Ctrl cells receiving CM (from cells ±Six1KD)
remained low and unchanged when CM was transferred to cells
(Supplementary Fig. 2f), demonstrating that the observed effects
were due to Six1 KD in HMLER-Twist1/Snail1 cells from which the
CM was derived. Thus, Six1 is necessary downstream of Twist1 and
Snail1 to non-cell autonomously increase ‘metastatic’ properties of
non-TF-expressing cells.

Six1 non-cell autonomously induces EMT-like phenotypes.
To test whether Six1 is sufficient to mediate NCA phenotypes
in vitro, we used the MCF7 model where Six1 stable
overexpression (Supplementary Fig. 2g) has been shown to cell
autonomously induce EMT and metastasis8. It should be noted
that Six1 expression in this model does not alter expression
of Twist1 or Snail1, and thus it can be studied in a context
separate from Twist1 and Snail1 (Supplementary Fig. 2h,i).
As MCF7-Six1 cells do not have increased in vitro migration and
invasion when compared to MCF7-Ctrl cells, other ‘EMT
parameters’ known to be affected by Six1 cell autonomously
were examined to determine whether Six1 also has NCA
functions. In contrast to HMLER cells, MCF7-Control (Ctrl)
cells cultured in MCF7-Six1 CM underwent a shift in their EMT
protein expression profile, where cytokeratin-18 (CK18), an
epithelial marker, was decreased, and Fibronectin (FN1), a
mesenchymal marker, was increased (Fig. 2f). Furthermore,
membranous E-Cad was strikingly downregulated in MCF7-Ctrl
cells cultured in Six1 CM (Fig. 2g) compared to when cultured in
Ctrl CM. Finally, we found that MCF7-Six1 cells have increased
anoikis resistance compared with MCF7-Ctrl cells, and that
MCF7-Ctrl cells cultured in Six1 CM gained this resistance
phenotype (Fig. 2h). Interestingly, NCA phenotypes are
transferrable across cell types, as HMLER-Ctrl cells cultured in
CM from MCF7-Six1 cells showed increased migration as
compared with when cultured in CM from MCF7-Ctrl cells
(Supplementary Fig. 2j), suggesting that the CM contains soluble
factors that influence the receiving cells, although the receiving
cells may in part dictate the response. Nevertheless, although
particular molecular events may vary in different backgrounds,
Six1 is both necessary and sufficient to impart aggressive
characteristics on non-EMT-TF-expressing cells.

Hh ligands are differentially regulated by EMT-TFs.
The Hh/GLI signalling pathway is known to function with all three
EMT-TFs during development and cancer17,30, and as previously
discussed, hh is a direct target of sine oculis during development13.
Thus, we tested whether Hh ligands, SHH, DHH or IHH were
upregulated in HMLER and MCF7 cells. HMLER-Ctrl and
HMLER-Twist1/Snail1 ±siSix1 cells did not express differential
mRNA levels of any Hh ligand (Fig. 3a and Supplementary
Fig. 3a,b) and secreted SHH in CM from HMLER-Ctrl and
HMLER-Snail1/Twist1 ±Six1KD cells was below the detectable
threshold (Fig. 3b). In contrast, increased SHH mRNA and
protein, and increased secreted SHH was observed in MCF7-Six1
versus MCF7-Ctrl cells and in MCF7-Six1 CM (Fig. 3c–e). There
were no changes in IHH or DHH levels between MCF7-Ctrl and

Six1 cells (Supplementary Fig. 3c,d). Although no increase in Hh
ligands was observed in HMLER-Twist1/Snail1 cells, the effects of
Six1 on SHH levels are not limited to MCF7 cells. Indeed,
endogenous Six1 regulates SHH expression in A2780 ovarian
cancer cells (Supplementary Fig. 3e). Interestingly, Six1
overexpression in HMLER-Ctrl cells (in the absence of Twist1 or
Snail1) causes SHH induction only in the presence of its critical co-
factor, Eya2 (Supplementary Fig. 3f)31. As the HMLER cells
express lower baseline levels of Eya2 compared with MCF7 cells
(Supplementary Fig. 3g), these data suggest that the ability of Six1
to induce Hh ligands may be dependent on sufficient availability of
an Eya cofactor in the system.

EMT-TFs activate GLI via various mechanisms. As Hh/GLI
signalling can also be activated in a Hh ligand-independent,
non-canonical, manner32 and as activation of the pathway has
been associated with all three EMT-TFs15,17,18, we further
examined whether GLI activity was increased in cells cultured
in Snail1/Twist1 CM, despite the absence of Hh ligands. To this
end, a GLI1-specific lentiviral reporter containing seven GLI1
consensus-binding sites fused to GFP (7-Gli1) or a mutant GLI
(m-Gli1)-GFP reporter was transfected into HMLER-Ctrl cells.
Surprisingly, HMLER-Ctrl cells cultured in Snail1/Twist1 CM
displayed a significant increase in 7-Gli1-GFP, but not m-Gli1-
GFP, reporter activity compared to when cultured in Ctrl CM and
this effect was abrogated in cells cultured in HMLER-Snail1/
Twist1 þ Six1KD CM (Fig. 4a,b and Supplementary Fig. 4a,b).
Furthermore, HMLER-Ctrl cells cultured in HMLER-Snail1/
Twist1 CM had increased expression of numerous Hh pathway
target genes, which was dependent on Six1 expression (Fig. 4c,d
and Supplementary Fig. 4c). Similarly, MCF7-Ctrl cells cultured
in MCF7-Six1 CM exhibited significantly increased 7-Gli1 (but
not m-Gli1) reporter activity, as well as increased expression of
Hh pathway genes, compared to when cultured in Ctrl CM
(Fig. 4e,f and Supplementary Fig. 4d). As expected, recombinant
SHH added to the medium on MCF7-Ctrl cells significantly
activated the pathway, demonstrating specific activation of the
reporter in response to Hh pathway activation (Supplementary
Fig. 4e). Thus, Six1 is sufficient and necessary downstream of
Snail1 and Twist1 to non-cell autonomously activate Hh/GLI
signalling in non-EMT-TF-expressing cells. Furthermore, NCA
GLI activation by EMT regulators can occur via both Hh
ligand-dependent and -independent mechanisms, an effect that is
likely to be due to cellular context and/or the particular
combination of EMT regulators.

The finding that GLI is non-cell autonomously activated by
EMT-TFs via different mechanisms suggests that the type of
inhibitor used to target the Hh pathway will affect response
differentially. Thus, we inhibited the Hh pathway using 5E1, a
function-blocking monoclonal antibody targeting Hh ligands33,
cyclopamine (an upstream Hh pathway inhibitor targeting SMO)
or GANT61 (a downstream Hh pathway inhibitor targeting
GLI1/2 (ref. 34)). As we did not detect Hh ligands in the HMLER
system, only cyclopamine and GANT61 were used to differentiate
between the involvement of SMO versus activation bypassing
SMO. Only GANT61, and not cyclopamine, inhibited 7-GLI
activation when HMLER-Ctrl cells were cultured in Snail1/Twist1
CM (Fig. 4g and Supplementary Fig. 4f). In contrast, all three
inhibitors significantly, and equally, decreased NCA activation of
7-GLI, but not m-GLI, activation in MCF7-Ctrl cells cultured in
MCF7-Six1 CM (Fig. 4h and Supplementary Fig. 4g). Together
these data suggest that Hh signalling via GLI can be non-cell
autonomously activated by Six1, Twist1 and Snail1 in all settings,
but that the mechanism of pathway activation differs in each
context.
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Figure 2 | Six1 is necessary (downstream of Snail1/Twist1) and sufficient to mediate NCA effects. (a) Western blot analyses performed on WCLs

from HMLER-Ctrl, HMLER-Snail1 and HMLER-Twist1 cells transfected with 150 nM of siSix1 or a non-targeting small interfering RNA (siRNA) pool (siNT).

HDAC1, loading control. (b,c) Representative 7–8 h migration assay of HMLER-Ctrl cells in CM from HMLER-Snail1 or Twist1 cells ±siSix1. (d,e)

Quantification of cell migration in b,c. (f) Western blot analyses performed on WCLs from MCF7-Ctrl and MCF7-Six1 cells cultured in indicated CM for

48 h. b-Tub, b-Tubulin, loading control; CK18, cytokeratin 18; FN1, fibronectin. (g) Representative ICC of E-Cad (red) in MCF7-Ctrl and Six1 cells cultured in

indicated CM for 48 h (DAPI, blue). Quantification of % membranous E-Cad, nZ100; scale bar, 20mm. (h) Representative anoikis resistance graph (plotted

as absorbance as a measure of cell number) of MCF7-Ctrl or MCF7-Six1 cells cultured in indicated CM for 24 h. C-cells, M-Media; Scale bar, 100mm, s.e.m.

shown, nZ3, one-way ANOVA with Tukey’s post test in all cases; NS, not significant; *Po0.05, **Po0.01 and ***Po0.001.
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GLI is the key mediator for the NCA function of EMT-TFs.
To determine whether targeting GLI in recipient cells would
abrogate the NCA phenotypes mediated by EMT-TFs, migration
and invasion assays were performed with HMLER cells in the
absence or presence of cyclopamine or GANT61. Cyclopamine
treatment of HMLER-Ctrl cells had no influence on the ability of
HMLER-Snail1/Twist1 CM to increase migration or invasion
(Fig. 5a and Supplementary Fig. 5a). In contrast, GANT61
treatment of HMLER-Ctrl cells cultured in HMLER-Snail1/
Twist1 CM abolished NCA increases in migration and invasion
(Fig. 5b and Supplementary Fig. 5b). Treatment of MCF7-Ctrl
cells with either cyclopamine or 5E1 caused a reversal of altera-
tions in EMT markers that were observed when MCF7-Ctrl cells
were incubated in MCF7-Six1 CM (Fig. 5c). Membranous E-Cad
was also robustly restored with the use of these inhibitors
(Fig. 5d,e and Supplementary Fig. 5c,d), although anoikis
resistance was not (Supplementary Fig. 5e). Importantly, MCF7-
Ctrl cells cultured in Six1 CM and treated with GANT61 showed
a restoration in the CK18 and FN1 protein levels back to control
levels (Fig. 5f), robust rescue of E-Cad on the cell membranes
(Fig. 5g,h) and, interestingly, a rescue in anoikis sensitivity
(Fig. 5i). These data demonstrate that inhibiting Hh signalling
using GANT61 is an effective means to inhibit NCA effects of
EMT-TFs in all contexts.

Inhibition of GLI suppresses NCA-mediated metastasis. To
determine whether Six1, the central EMT-TF involved in the
described NCA phenotypes, also increases metastasis non-cell
autonomously in vivo, we tagged MCF7-Ctrl and MCF7-Six1 cells
with a luciferase and tRFP vector, respectively, (MCF7-Ctrl-luc
and MCF7-Six1-tRFP) and orthotopically either ‘singly’ injected
or co-injected them into immunocompromised mice. ‘Singly
injected’ MCF7-Ctrl cells contained a 1:1 mixture of MCF7-Ctrl-

luc and untagged cells, and ‘singly injected’ MCF7-Six1 cells
contained a 1:1 mixture of MCF7-Six1-tRFP and untagged cells.
This experimental strategy carefully controls for the tagged cell
numbers, when comparing with the 1:1 mixture of MCF7-Ctrl-
luc and MCF7-Six1-tRFP cells, a condition referred to as ‘mixed
tumours’ (Fig. 6a). In mice bearing similar tumour volumes, we
found a significant increase in distant luminescence signal of
MCF7-Ctrl-luc (non-EMT) cells when they were co-injected with
MCF7-Six1 (EMT) cells compared to when ‘singly’ injected
(Fig. 6b,c), indicating that Six1 is able to non-cell autonomously
increase the metastasis of non-Six1 cells in vivo. To determine
whether Hh/GLI signalling and, specifically, activation of GLI was
necessary downstream of Six1 for increased NCA metastasis, we
inhibited GLI activity using GANT61. Mice that had mixed
tumours were randomized once their tumour volumes reached
1 cm3, and half were treated every other day for 18 days with
50 mg kg� 1 of GANT61 and the other half with vehicle control
(Fig. 6a). The increased distant MCF7-Ctrl-luc signal observed in
the vehicle treated mixed tumour groups was dramatically
decreased upon GANT61 treatment (Fig. 6b,d,e). We also
observed a decrease in luciferase signal (from non-EMT cells) in
the primary tumours of mice treated with GANT61 compared
with vehicle (Fig. 6b,f,g). Surprisingly, EMT cells also grew and
metastasized more efficiently in the presence of non-EMT cells
(Supplementary Fig. 6a,b). Interestingly, GANT61 treatment
modestly (but significantly) inhibited the metastatic ability of the
tRFP-labelled EMT cells themselves (Supplementary Fig. 6a,c,d),
but did not significantly affect their growth in the primary
tumour (Supplementary Fig. 6a,e,f), nor did GANT61 treatment
significantly affect overall primary tumour volume when
measured using calipers (Supplementary Fig. 6g). These data
suggest that EMT cells do not depend on GLI to the same degree
as non-EMT cells, but that GLI signalling is important in both
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cell types to mediate metastasis. Most importantly, the data
demonstrate that EMT and non-EMT cells can cooperate to
increase metastasis in heterogeneous tumours, and that inhibition
of Hh signalling using GANT61 can inhibit both the growth and
NCA metastasis of non-EMT cells.

GANT61 decreases tumour growth in PDX models with EMT.
We next asked whether the relationship of EMT-TFs and GLI
was relevant to human breast cancers. We found strong
positive correlations between SIX1, SNAI1 or TWIST1 with GLI1
(a Hh pathway target) in numerous breast cancer data sets.
However, a consistent positive correlation between EMT-TFs and
Hh ligands was not observed in those same data sets,
again suggesting non-canonical mechanisms of activation of the
Hh/GLI pathway by EMT-TFs (Fig. 7a). Furthermore, increased
levels of each of the EMT-TFs, together with high GLI1,

also correlated more significantly with worsened prognosis
(relapse-free survival and distant metastasis-free survival) in
breast cancer patients spanning numerous grades and subtypes,
when compared with the EMT-TFs or GLI1 alone (Fig. 7b–d and
Supplementary Table 1).

Next, we performed RNA sequencing analysis on previously
established breast PDX models35 and interrogated expression
data to determine whether PDX models similarly showed a
correlation between expression of EMT-TFs and GLI activation.
PDX were first ranked by composite expression of
TWIST1, SNAI1 and SIX1, and then evaluated for expression of
each GLI gene and associated Hh network genes. Consistent with
previous results, increased GLI activity was observed in PDX
tumours expressing EMT-TFs and, surprisingly, did not
correlate with Hh ligand levels (Fig. 8a). Interestingly, of the
EMT-TFs, Six1, the central mediator downstream of Twist1 and
Snail1, significantly correlated with percent of PDX-bearing mice
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in which circulating tumour cells were found, suggesting a
potential key role for this EMT-TF in metastatic dissemination
(Fig. 8b).

To test the hypothesis that breast tumours with activated GLI
signalling are more susceptible to GLI inhibitors compared with
upstream inhibitors targeting SMO, we chose two models, MC1
and BCM-2147. MC1 was used previously to support a role for
Hh signalling in tumour-initiating cell regulation and shows

elevated GLI2 expression. BCM-2147 shows high expression of
EMT-TFs, as well as PTCH1 and PTCH2, suggestive of activated
Hh signalling, but does not show high Hh ligand expression. In
tumour-bearing mice treated with either IPI926 or GANT61 for
14 days (versus vehicle), only GANT61 caused significant growth
inhibition (Fig. 8c). These data are consistent with the
observation that EMT-TFs converge on Hh/GLI pathway
activation independent of Hh ligands and suggest that targeting
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Hh signalling through downstream effectors such as GLI may be
more efficacious in breast tumours expressing EMT-TFs.

Discussion
In a heterogeneous primary tumour made up of various
subpopulations of cells, data show that only a small percentage of

epithelial tumour cells undergo an EMT and/or have metastatic
potential at any one time1,4,6. Although undergoing EMT is thought
to allow cells to better metastasize36, recent studies argue that
oncogenic EMT is not a requirement for metastasis6,7. However,
these studies do not address the possible interactions that may occur
between EMT and non-EMT cells in a heterogeneous primary
tumour, resulting in metastasis of either cell type.
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We demonstrated that prominent EMT-TFs, Snail1 and
Twist1, non-cell autonomously increase aggressive properties of
non-TF-expressing cells. Six1 is upregulated and is required
downstream of Snail1 and Twist1 to mediate their NCA
phenotypes, and is itself sufficient to non-cell autonomously
increase aggressive properties of cells lacking Six1. Interestingly,
EMT cells can enhance metastatic properties in cells without
causing them to undergo EMT, as the NCA effects in different
systems did not always alter EMT markers, but in all cases,
enhanced properties associated with EMT and increased
aggressiveness. Hence, fate mapping of EMT cells alone may
not truly reflect their role in metastatic dissemination, as in all
cases examined, the aggressiveness of epithelial cells (non-EMT;
measured by varying parameters) is increased by the presence of
and/or CM from EMT cells.

Importantly, all three EMT-TFs converge onto Hh/GLI
signalling to non-cell autonomously increase aggressive
properties of non-TF-expressing cells. However, their mode of
Hh pathway activation differs, despite the fact that Six1 is a key
driver of NCA activation of GLI in all contexts. Hh signalling
is activated in cancers canonically (via Hh ligands) and
non-canonically via GLI (independent of SMO)32. Our data

show that in some contexts, Six1 non-cell autonomously activates
GLI by upregulating and secreting high levels of SHH. Hence, in
MCF7 cells where Six1 is the main EMT mediator, most of its
NCA effects are abrogated efficiently using both upstream
inhibitors and downstream inhibitors of the pathway.
Interestingly, in HMLER cells, where Twist1 and Snail1 are the
main drivers of EMT (although dependent on Six1), SHH levels
were unaltered and NCA phenotypes were only abrogated with
GANT61, indicating SMO-independent non-canonical activation
of GLI in this context.

Several non-canonical mechanisms of GLI1/2 activation have
been described in the literature including, but not limited to,
mechanisms that promote transcription of GLI1/2, increase
their stability or regulate their cellular compartmentalization32.
In addition, various molecules have been linked to GLI
activation32 in a non-canonical manner, which can be explored
as potential means by which the EMT-TFs non-canonically
activate Hh signalling. To date, we have not identified a known
non-canonical pathway by which EMT-TFs non-cell
autonomously activate Hh signalling, and thus are currently
using unbiased approaches to answer this question. Taken
together, our data suggest that the context of EMT-TF
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expression and perhaps particular combination of EMT-TFs,
dictates how GLI is activated. Nonetheless, EMT-TFs uniformly
converge on GLI activation (Fig. 8d) and thus our data have
implications for targeting heterogeneous tumours in which EMT
occurs in subset of cells.

Importantly, we found that GANT61, which targets GLI1/2
directly, and thus acts downstream of SMO, effectively decreased
the metastasis of MCF7-Ctrl cells induced by MCF7-Six1 cells
in vivo. GANT61 also had a selective effect on the growth of
MCF7-Ctrl cells in the mixed tumours, which could be an
additional means by which decreased metastasis of MCF7-Ctrl
cells is seen in the mixed tumours with GANT61 treatment.
However, the effect of GANT61 on MCF7-Ctrl cells in the
primary mixed tumours is less than that on the MCF7-Ctrl cells
in the metastases of mixed tumours, suggesting that GANT61
may work via both inhibiting growth as well as active metastasis
of these cells. GANT61 also had a modest, but significant, effect
on MCF7-Six1 cell metastasis. As the bulk of an epithelial
carcinoma is expected to be non-EMT cells, drugs such as
GANT61 may be efficacious in limiting both primary tumour
growth and metastasis. However, our data suggest that residual
EMT cells may survive such treatment in the primary tumour and
thus a combination of GANT61 with additional therapies may be
more efficient in targeting both EMT and non-EMT cells in
primary heterogeneous tumours. As Hh signalling is also active in
the tumour microenvironment20, effects of GANT61 are likely to
be due to influences on both tumour and stromal cells.

Each EMT-TF positively correlates with GLI1, across multiple
breast cancer data sets, but not consistently with Hh ligands.
Interestingly, in PDX models, activated Hh/GLI signalling correlates
more robustly with EMT-TF expression than with Hh ligand
expression, suggesting that EMT-TFs in breast cancer can non-
canonically activate Hh/GLI signalling independent of Hh ligand.
These results are in contrast to the current paradigm in breast
cancer where Hh signalling is prominently thought to be activated
in a Hh ligand-dependent manner. Moreover, PDX tumours were
more sensitive to growth inhibition by GANT61 versus IPI926
under this treatment regimen, suggesting that targeting GLI may be
more efficacious than targeting SMO. However, as the drugs are
given systemically, it is possible that they are also affecting tumour
growth via influences on the microenvironment or on other tissues.

Derivatives of cyclopamine that target SMO, such as
vismodegib (GDC-0449), as well as other SMO inhibitors such
as sonidegib (LDE-225), are currently in clinical trials for patients
with BCC and medulloblastoma24,25. Although SMO inhibitors
show promising results in these patients, they have been less
efficacious as single agents in other solid tumours such as breast
cancer, despite evidence for activated Hh signalling12. Our data
provide a possible explanation for why SMO inhibitors have not
been successful in advanced stage breast cancer patients26, as
these patients, particularly if their tumours express EMT-TFs,
may activate Hh signalling in a small number of cells, and/or in a
SMO-independent manner. Instead, downstream GLI-targeting
inhibitors may be more powerful in this context. Studies
also show that SMO antagonist treatment often leads to
drug resistance in patients via mutations that render SMO
incapable of being bound by the drugs, or by Hh pathway
activation via GLI in a SMO-independent manner37,38.
This finding, combined with our data which demonstrate
that GLI signalling is activated downstream of EMT-TFs
both canonically and non-canonically, makes a strong case
for use of downstream antagonists like GANT61. GANT61
antagonists would be expected to more effectively
inhibit Hh signalling in the context of heterogeneous breast
cancers and thus inhibit both primary tumour growth and
metastasis.

Methods
Cell culture and plasmids. HMLER derivative cell lines were a generous gift from
Dr Robert Weinberg (Massachusetts Institute of Technology, 2009). MCF7-Ctrl
and MCF7-Six1 cells were generated as previously described8 and cultured
according to ATCC recommendations. A2780 cells were a kind gift from Dr
Jennifer Richer (University of Colorado Anschutz Medical Campus). Three clones
each of the MCF7-Ctrl and MCF7-Six1 cells were used in some experiments as
indicated in figure legends. Gli1 reporter assays were performed with all three
clones which showed similar GLI activation and as they expressed similar levels
of Six1 and SHH, one of each clone was used in other assays. Cell lines were
routinely checked for mycoplasma and, if found positive, were either treated or
earlier mycoplasma-negative freeze downs were used for experiments. The lines
were profiled via short tandem repeat profiling to confirm their identity
(February 2011, April 2015). Transient KD of Six1 was performed using
ON-TARGETplus SMARTpool small interfering RNAs (L-020093-00-0020,
Dharmacon). Cyclopamine (C-8700, LC Labs), GANT61 (G9048, Sigma) and 5E1
(Developmental Studies Hybridoma Bank, The University of Iowa) were used at 5
or 10mM and 3–5mg ml� 1, respectively, in each experiment. GANT61 used in the
mixed tumour experiment was purchased from MedChem Express (HY-13901)
and resuspended in 4:1 corn oil: 100% Ethanol mixture. For the PDX models,
GANT61 was synthesized by Dr Rune Toftgard (Karolinska Institutet) and IPI926
was a kind gift from Infinity Pharmaceuticals (Cambridge, MA). rhSHH (1845-SH,
R&D systems) was used at 1 mg ml� 1 in experiments. Vehicle treatment in
experiments—combination or single treatment of 100% Ethanol (for cyclopamine),
dimethylsulfoxide (for GANT61) and NS-1 (control supernatant for 5E1)
depending on experiment. Cells were tagged with pLenti NS-tRFP or pLNXC2-
Zsgreen. MCF7-Ctrl-luc cells were generated using SFG-nes-TGL-luciferase
plasmid as described previously8. pcDNA3.1 hygro vectors were used for transient
overexpression of Six1 and Eya2. For conditioned medium (CM) collection, equal
numbers of cells were plated and allowed to grow for 24 h. The next day, the cells
were washed and replaced with fresh medium (serum-free or serum-containing
medium). CM was collected from the cells 48 h later, filtered through 0.45 mm filter
and stored at � 20 �C. Repeated freeze-thaws of CM was avoided.

Gli1-GFP reporter assays. Cells (3–5� 104) plated in 24-well plates in different
CM and/or drug conditions were simultaneously transfected in different wells with
either 7-Gli1-GFP or m-Gli1-GFP39 reporters. Cells in each condition were also
transfected with a constitutively expressing GFP-Ctrl vector on the same vector
background in a separate well. Forty-eight hours post transfection, the number of
GFPþ cells in each condition (indicating activated GLI signalling) was counted
using a fluorescence microscope and normalized to the number of GFPþ cells in
the well containing GFP-Ctrl vector to account for differences in transfection
efficiencies of cells cultured in different CM and/or drugs. Results from three or
more independent experiments using different sets of CM were grouped and
graphed as % of 7-Gli1 or m-Gli1 GFPþ cells. Further details on the reporters will
be described elsewhere.

Quantitative real-time PCR. Total RNA was extracted using the RNAeasy
RNA isolation kit (Qiagen). Complementary DNA synthesis was performed
using iScript (Biorad) from 1 mg of mRNA. Quantitative real-time PCR assays
were performed using ssoFast Evagreen supermix (BioRad), and run and
analysed using the Biorad CFX96. The primer sequences used are listed in
Supplementary Table 2.

Immunoblot analysis. Whole-cell lysates (WCL) and nuclear extracts were
generated as previously described8. In brief, RIPA buffer was used to extract WCLs
and NE-PER Nuclear and Cytoplasmic Extraction Reagents (78833, ThermoFisher)
were used for nuclear extracts. In both cases, equal amounts of lysates (35–50 mg)
were electrophoresed and transferred to polyvinylidene difluoride (PVDF)
membranes. The membranes were blocked in 5% milk in TBST for 1 h and
incubated with primary antibody at 4 �C O/N. The antibodies used and dilutions
are listed in Supplementary Table 3. For co-culture experiments for EMT markers,
HMLER-Ctrl GFPþ cells were cultured with HMLER-Snail1 or Twist1 tRFPþ

cells in 10:1 or 1:1 ratio and individually for 14–16 days. The GFPþ cells
(and tRFPþ cells in the control conditions) were then obtained from each
condition by flow cytometry and WCLs were extracted from them to use in western
blot analysis. Uncropped western blottings are shown in Supplementary Fig. 7.

Immunocytochemistry. MCF7 cells (10 k) were plated in each well of eight-well
chamber slides (154534, Nunc Lab-Tek) with the different CM/drug conditions
and incubated for 48 h. The cells were fixed using 4% paraformaldehyde and
stained with primary antibodies at 4 �C O/N. Slides were mounted using
ProLong Gold Antifade Mountant with 4,6-diamidino-2-phenylindole (P-36931,
ThermoFisher) and images were taken using a fluorescence microscope from
field of vision containing cells at about 60–80% confluency, as it was observed
that E-cadherin expression in MCF7 cells was substantially affected by cell
confluence. Blinded membranous E-Cad quantification was performed by
dividing the number of cells with membranous E-Cad by the total number of
4,6-diamidino-2-phenylindole (DAPI)-stained cells in that field of vision to obtain
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a percentage (n4100). The antibody and dilution used are listed in Supplementary
Table 3

Anoikis resistance assay. Cells were cultured in the different CM for 48 h,
after which they were trypsinized, counted and 50,000 cells were plated on
poly-HEMA (12 mg ml� 1 in 95% Ethanol) coated plates for 24 h in CM.
The next day, cells were retrieved and re-plated in 96-well plates in full media for
5–6 h until they attached. The surviving cells were then analysed using either MTS
(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium and phenazine methosulfate) assay (Promega) or crystal violet staining
to determine their anoikis resistance.

Cell migration/wound-healing assay. Cell migration was measured using a
modified scratch assay with culture inserts that create a uniform 500 mm gap
(80209, Ibidi). Cells (6� 105 cells per ml) were plated in different CM in each
compartment of the insert and incubated O/N. Cells were treated with the drugs
or vehicle at the time of CM addition. Inserts were removed after 16–18 h and
distance migrated by cells in 5–8 h was measured using DP2-BSW software
(v2.2; Olympus).

Cell invasion assay. Cell culture inserts (353097, BD Falcon) were coated with
1:20 diluted Matrigel in serum-free media. Fifty thousand cells were plated on the
matrigel in different CM and/or drug conditions (added when CM was added to
cells) and allowed to invade through the membrane towards medium containing
10% FBS in the bottom chamber. After 16–18 h, cells and Matrigel above the
membrane were wiped with cotton swabs, and cells below the membrane were
fixed in 4% PFA and stained with crystal violet. The numbers of invading cells were
analysed either by measuring their absorbance or by counting the cells using a
bright-field microscope.

Cell proliferation assay. HMLER cells were plated to equal confluence in 96-well
plates in five replicates (in different CM) for 24 h. Day 0 time point was analysed
4–5 h post plating of cells and day 1 time point, at 24 h post plating. The cells
were analysed using either MTS or CellTiter-Glo assays (Promega). The values
obtained for day 1 were normalized to the respective day 0 values (set at 1).
For MTS assay, the cells were incubated with MTS reagents added to each well as
per the manufacturer’s instructions. Plates were incubated at 37 �C for 2–4 h
and absorbance was measured 490 nm. For CellTiter-Glo assays, cells were
incubated with kit reagents at room temperature for 30 min and luminescence was
measured using a luminometer.

Enzyme linked immunosorbent assay. Cells were cultured in serum-free medium
and CM was collected after 48 h. In the case of MCF7 cells, CM was collected
from three clonal isolates of each cell type (MCF7-Ctrl and Six1). Equal volumes
of samples were loaded on the SHH ELISA plate (ab100639, Abcam). The
concentration of SHH in the CM was determined using the generated standard
curve, after normalizing the absorbance of the sample loaded to the concentration
of total protein in the sample, which was previously measured using Lowry assay.

Each in-vitro experiment was independently and successfully repeated more
than three times in the laboratory.

Mouse models. All animal studies were performed according to protocols
reviewed and approved by the Institutional Animal Care and Use Committee at the
University of Colorado AMC and Baylor College of Medicine. Power calculation
analysis based on pilot in vivo experiments were performed before main animal
experiments to determine mouse numbers. The mice were randomized into
treatment groups once the tumours reached a certain size, depending on the study.
The studies were not conducted in a blinded manner.

In mixed tumour experiments, oestrogen pellets were implanted subcutaneously
in mice a day before injection with tumour cells as described previously40.

Luciferase/tRFP experiment. MCF7 cells were injected orthotopically in 100 ml of
a 1:1 mixture of sterile PBS: growth-factor reduced Matrigel (354230, Corning) in
the nipple of the fourth mammary fat pad in 32 NOG/SCID female mice o1 year
of age. The conditions were as follows: 1:1 ratio of 500,000 MCF7-Ctrl-luc:500,000
untagged MCF7-Ctrl cells, 1:1 ratio of 500,000 MCF7-Six1-tRFP:500,000 untagged
MCF7-Six1 cells and 1:1 ratio of 500,000 MCF7-Ctrl-luc:500,000 MCF7-Six1-tRFP
cells. Tumour volume (length� (width2)� 0.4) and metastatic progression were
followed weekly by measuring luminescence and fluorescence signal using IVIS
imaging software. Mice receiving mixed injections were randomly divided into two
groups and treated either with GANT61 or vehicle (4:1, corn oil: 100% ethanol),
every other day for 18 days with 50 mg kg� 1 of GANT61 (or vehicle) sub-
cutaneously in the supra-scapular region, once tumours reached 1 cm3. Metastatic
spread of MCF7-Ctrl-luc cells in the singly injected and mixed tumours was
compared and analysed between mouse groups with similar tumour volumes.
Metastatic spread of MCF7-Six1-tRFP cells was compared and analysed at the same
time point, corresponding to similar tumour volumes across different injection

groups. Luminescence and fluorescent signal from all sites across mice groups was
compared pre- and post treatment, and analysed using Living Image software.
Singly injected and mixed tumour mice were killed when tumour volume reached
2 cm3 and at the end of treatment, respectively.

PDX models. PDX tumour fragments were transplanted into the cleared fat pad
of 3- to 4-week-old female SCID/Beige mice. Mice were treated either with
vehicle, IPI926 (40 mg kg� 1, oral gavage) or GANT61 (50 mg kg� 1, subcutaneous
injection) once a day for 2 weeks, starting from a tumour volume of E200 mm3.
Tumour volume (mm3) was measured twice weekly and calculated as
length� (width2)� 0.5. Circulating tumour cells in the PDX models were collected
using Rarecyte and a combination of manufacturer’s protocols and those used
previously41.

RNA-seq and analysis. Total RNA was extracted from PDX samples and 10 ng
was used to generate and amplify whole transcriptome cDNA (NuGen Ovation v2,
NuGen Technologies). Three grams of cDNA from each sample was fragmented
to 250–400 bases using the Covaris S2 focused ultrasonicator (Covaris). Using the
Illumina TruSeq DNA-Seq library preparation kit (Illumina Technologies), a
double-stranded DNA library was generated with 1 g of the sheared cDNA. The
library was quantified with the Kapa quantitative PCR Library Quantitation Kit
(Kapa). DNA library (11 pM) was loaded onto an Illumina HiSeq 2000 FlowCell
and clusters generated on the Illumina cBot. The libraries were sequenced on the
HiSeq 2000 Paired End 100 bases.

RNA reads acquired out of the murine xenograft models were quantified and
categorized as mammalian or murine in the following manner: sequence counting
then classification. The software Xenome was used to qualify gene grouping. The
tool places the xenograft RNA sequences into two bins based on two reference
genomes, HG19 (human) and MM10 (mouse). Consequently, reads classified as
human were subsequently aligned and quantified. Alignment was conducted using
the STAR aligner to the HG19 reference genome. Using featureCounts, a function
within the Rsubread package, gene expression estimates were generated. Control
samples were generated from the murine fat pad which had circa 90% mouse reads,
whereas other models had about 90% human reads. RNA expression within PDX
lines was represented as studentized fragments per kilobase of transcript per
million mapped read values. Individual gene scores were generated using the
thirty-six available PDX lines. The heat map’s PDX order was fixed after an
unstructured sorting of RNA expression of genes within the EMT network
(TWIST1, SNAI1 and SIX1). Species classification was conducted under Xenome
1.0.1. The data were computed with the help of Rsubread version 1.15.9 and plotted
using the gplots package in R version 3.0.1.

Statistics. Prism software (v5.0; GraphPad) was used for most statistical analyses.
Two-tailed unpaired Student’s T-test was used when a pair of conditions was
compared. One-way analysis of variance (ANOVA) non-parametric followed by
Tukey’s post test was utilized when multiple conditions were being compared
and analysed. Two-way ANOVA followed by Bonferroni post test was used to
compare drug treatment conditions over time and repeated measure Two-way
ANOVA was used in the proliferation assays. Survival curves were estimated by the
Kaplan–Meier method and compared using the log-rank test or the Wilcoxon test,
whichever is appropriate. Specific analyses used for each experiment is described in
the figure legends.

Data availability. The RNA-seq data has been depositied and the accession
number is GSE97726. All other remaining data are available within the Article and
Supplementary Files, or available from the authors upon request
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