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Transforming growth factor-b (TGF-b)-activated kinase 1 (TAK1) is a member of the MAPK
kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range
of physiological and pathological processes. TAK1 functions through assembling with its
binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by
a variety of stimuli such as tumor necrosis factor a (TNFa), interleukin-1b (IL-1b), and toll-
like receptor ligands, and they play essential roles in the activation of NF-kB and MAPKs.
Numerous studies have demonstrated that post-translational modifications play important
roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex
according to the indicated cellular environment. This review focuses on the recent
advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs
complex by post-translational modifications.
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INTRODUCTION

The transcription factor nuclear factor kappa B (NF-kB) plays central roles in a variety of cellular
events, such as immune and inflammatory responses, cell proliferation, autophagy, tissue
remodeling, and metabolic regulation (1–4). In resting cells, NF-kB is sequestered in the
cytoplasm where it is associated with inhibitory proteins known as IkBs (5–7). In response to
various stimuli, including proinflammatory cytokines tumor necrosis factor a (TNFa) and
interleukin-1b (IL-1b), lipopolysaccharides (LPS), and the viral or bacterial infections, the IkB
proteins are rapidly phosphorylated by upstream IkB kinases (IKKs) (8, 9). These kinases,
consisting of catalytic subunits IKKa, IKKb, and NF-kB essential modulator (NEMO),
phosphorylate serine 32 (Ser32) and Ser36 of IkBa, which leads to the polyubiquitination of
IkBa by SCF-bTrCP E3 ligase (SKP1-CUL1-F-box ligase containing the F-box protein bTrCP) and
subsequent degradation through 26S proteasome (10–12). NF-kB is then liberated and translocated
to the nucleus, thereby initiating the transcription of specific target genes (6, 12–14).

Transforming growth factor-b-activated kinase 1 (TAK1), a serine/theronine kinase, was first
identified as a member of the MAPK kinase kinase (MAPKKK) family and was originally found to be
a mediator of signal transduction in response to TGF-b or bone morphogenetic protein 4 (BMP-4)
(15, 16). Over the years, it has been proved that TAK1 is activated by dozens of stimuli and then
phosphorylates a series of target proteins, which elicits different signal transduction and cellular
responses across different stresses or cell types (17). Genetic experiments have shown that the
org January 2021 | Volume 11 | Article 6089761
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Xu and Lei Immune Regulation of TAK1-TABs complex
Drosophila dTAK1 functions downstream of the Imd protein and
upstream of IKK complex in the Imd pathway, and activates JNK
and NF-kB after immune stimulation (18, 19). It has been well
characterized that TAK1 is essential for TNF receptor (TNFR)-,
IL-1 receptor I (IL-1RI)-, and Toll like receptors (TLRs)-mediated
activation of NF-kB andMAPKs (8, 12, 20, 21). In addition, TAK1
plays critical roles in adaptive immunity by mediating T cell and B
cell receptor signaling (22–25). In all of these pathways, TAK1 is
considered as a key regulator of activation of NF-kB and MAPKs,
and it plays vital roles in transmitting the upstream signal from the
indicated receptor complex to the downstream signalosomes (23,
26–28).

Conventional ablation of TAK1 results in embryonic lethality
because of bone marrow and liver failure in mice (29–31). TAK1-
deficiency in mouse embryonic fibroblasts (MEFs) severely
impairs TNFR1-, IL-1R-, and TLRs-mediated activation of NF-
kB and MAPKs (20). However, TLR4-mediated activation of NF-
kB, p38, and JNK, and the production of proinflammatory
cytokines are increased in TAK1-deficient neutrophils,
suggesting a cell type-specific role for TAK1 in TLR signaling (32).

TAK1 activation requires TAK1-binding protein 1 (TAB1),
TAB2, and TAB3. TAB1 is an adaptor protein constitutively
associated with N-terminal kinase domain of TAK1 even in the
unstimulated cells, while TAB2 and TAB3 bind to the C-
terminus of TAK1 through TAK1-binding domain after
stimulation (33–36). Although the excessive production of
TAB1 increases the kinase activity of TAK1 and acts as an
activator of NF-kB signaling in vitro, TAB1-dificiency has
minor effects on TNFa- and IL-1b-triggered activation of NF-
kB and the induction of downstream inflammatory cytokines
(20, 33, 37, 38). Interestingly, TAB1-deficiency dramatically
impairs phosphorylation of TAK1 at theronine 187 (Thr187)
after TNFa and IL-1b stimulations (39). In contrast, several
studies proved that TAB2 and its homolog TAB3 play redundant
roles in TAK1 activation (40, 41). Unlike TAB1, TAB2 and TAB3
do not activate TAK1 in vitro. Double deficiency of TAB2 and
TAB3 has minor effects on TAK1 activation and production of
downstream inflammatory cytokines at the early phase after IL-
1b stimulation. But in late phase, IL-1b-triggered TAK1
activation and transcription of downstream genes were
markedly declined in TAB2- and TAB3-double deficient cells,
suggesting that TAB2 and TAB3 are not required in the early
TAK1 activation but are essential for sustained TAK1 activation
(20, 37, 40, 42).

The TAK1-TABs complex phosphorylates IKKb at Ser177
and Ser181, which is required for the activation of NF-kB
signaling (43–46). In addition, TAK1-TABs complex is also
critical for the activation of MAPKs (20, 47). Several reports
have demonstrated that the TAK1-TABs complex plays
important roles in innate immune and inflammatory
responses. It is also emerging that this complex controls a
large amount of physiological and pathological processes (21,
48–51). Although the TAK1-TABs complex has been widely
studied, the roles of the individual binding proteins and the
molecular mechanisms responsible for their activation in
different cell types remains to be addressed. In this review, we
Frontiers in Immunology | www.frontiersin.org 2
will summarize the latest advances in the understanding of
TAK1-TABs-mediated signaling transduction and the regulation
of their activities by post-translational modifications (PTMs).
THE TAK1-TABS-MEDIATED
SIGNALING PATHWAY

TAK1 is activated by proinflammatory cytokines, such as TNFa
and IL-1b, and mediates activation of nuclear factor kB (NF-kB),
c-Jun N-terminal kinase (JNK), and p38 (19, 23, 52). IL-1b is an
effective inflammatory cytokine that activates NF-kB and other
signaling pathways, which are essential for an effective immune
response against microbial infections (53, 54). IL-1b exerts its
biological function through the binding to interleukin-1 receptor
type 1 (IL-1R1), which contains intracellular Toll and IL1
receptor (TIR) domains (Figure 1). After binding to IL-1b, IL-
1R1 forms hetero-oligomers with IL-1R accessory protein (IL-
1RAcP) and recruits the adaptor protein myeloid differentiation
primary response protein 88 (MyD88). MyD88 in turn recruits
IL-1 receptor-associated kinase 4 (IRAK4) and IRAK1. IRAK4
phosphorylates IRAK1 and releases IRAK1 into the cytoplasm to
form signalosome with E3 ligase TRAF6 and induce
oligomerization of TRAF6, which in turn triggers its activation
(55–61). Activated TRAF6 then functions with E2 enzymes
Ubc13 and Uev1A to catalyze the synthesis of unanchored Lys-
63 (K63)-linked polyubiquitin chains, which preferentially bind
to highly conserved zinc finger (ZnF) domain of TAB2 and
TAB3, leading to the oligomerization and autophosphorylation
of TAK1 at Thr184 and Thr187 (28, 46, 62–66). TAK1 then
phosphorylates IKKs and MAPKs, leading to the activation of
NF-kB and AP-1. Interestingly, TRAF6 is also ubiquitinated in
the presence of Ubc5 but not Ubc13-Uev1A, which specifically
activates IKKs by directly binding to NEMO, thereby facilitating
IKKs activation by TAK1 (62, 66, 67). TNF signals though two
receptors, TNFR1 and TNFR2 (Figure 1). The binding of TNF to
TNFR triggers recruitment of downstream adaptor TNFR-
associated protein with a death domain (TRADD) (68, 69).
TRADD further recruits TRAF2, TRAF5, cellular inhibitor of
apoptosis protein 1 (cIAP1), cIAP2, and receptor-interacting
protein 1 (RIP1) to form a receptor complex, where TRAF2 and
TRAF5 catalyze K63-linked polyubiquitination of RIP1 (52, 70,
71). The K63 ubiquitin chains recruit TAB2 and TAB3 and form
a signal complex with TAK1, which in turn activates TAK1 and
leads to the phosphorylation and activation of IKKs (28, 62, 64,
66). IKKs further activates transcription factor NF-kB and elicits
the transcription of downstream genes.

Toll-like receptors (TLRs) are the most well-studied pattern
recognition receptors (PRRs) and responsible for recognizing the
microbial components and intermediates produced during
replication, leading to the activation of TAK1 and initiating
immune and inflammatory responses (60, 61). Studies of mice
deficient in each TLR have shown that TLRs are distinct in their
ligand recognition and usage of intracellular adaptor proteins.
TLRs have an ectodomain with leucine-rice repeat (LRR) that
January 2021 | Volume 11 | Article 608976
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mediates recognition of pattern-associated recognition patterns
(PAMPs), a transmembrane domain and a cytoplasmic tail with
a Toll/interleukin-1 (IL-1) receptor (TIR) domain that initiates
signal transduction (Figure 1). Individual TLRs differentially
recruit adaptors containing the TIR domain, such as MyD88,
TRIF (TIR domain-containing adaptor-inducing interferon-b),
TIRAP (TIR domain-containing adaptor protein), and TRAM
(TRIF related adaptor molecule) (61). Except TLR3 signals
through TRIF, most TLRs utilize MyD88 for signaling and
ultimate activation of NF-kB and MAPKs (61, 72). After TLRs
engagement, MyD88 is recruited to TIR domain of TLRs and
forms a complex with IRAK1 and IRAK4, where IRAK1 is
autophosphorylated or phosphorylated by other kinases (60,
61, 72). Then IRAK1 is released from MyD88 and interacts
with E3 ligases TRAF3 and TRAF6. TRAF6 functions with E2
enzymes, Ubc13 and Uev1A, promotes K63-l inked
polyubiquitination of target proteins, including TRAF6 itself
and NEMO (6, 46, 64, 72). Ubiquitinated TRAF6 subsequently
recruits TAK1 and TABs, which then activates the IKK complex
and MAPKs pathways, respectively (72). Thus the TAK1-TABs
complex is critical for TLRs-mediated signaling.
Frontiers in Immunology | www.frontiersin.org 3
IMMUNE REGULATION OF
TAK1-TABS-MEDIATED SIGNALING BY
POST-TRANSLATIONAL MODIFICATIONS

Because TAK1-TABs complex exerts essential roles in diverse
signaling pathways in response to a wide range of immune
stimulation, the regulation of TAK1-TABs-mediated signal
cascades have been extensively investigated. TAK1-TABs
complex is heavily and dynamically modulated by different
post-translational modifications, including phosphorylation,
ubiquitination, methylation, acylation, O-GlcNAcylation, and
sumoylation, which play important roles in regulating the
activity, stability, as well as assembly of TAK1-TABs complex,
fine-turning the inflammatory responses. We next summarize
the roles and mechanisms of the different PTMs of TAK1-TABs.
Phosphorylation-Mediated Regulation
of TAK1-TABs Signalosome
Phosphorylation and dephosphorylation of critical serine or
threonine residues in the activation loop of TAK1 are critical for
FIGURE 1 | The NF-kB signaling pathway. Stimulation of TNFR1, IL-1R, and TLRs with their ligands promotes recruitments of the indicated adaptor proteins and E3
ligases, which catalyzes the synthesis of K63-linked polyubiquitin chains that preferentially bind to TAB2 and TAB3 subunits, resulting in the assembly and activation
of TAK1-TABs complex. TAK1-TABs then phosphorylates IKKs, which activates transcription factor NF-kB and elicits the transcription of downstream genes.
January 2021 | Volume 11 | Article 608976
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its kinase activity (Figure 2). Four conserved serine and threonine
residues, Thr178, Thr184, Thr187, and Ser192, within the kinase
activation loop of TAK1 have been reported to be essential for
TAK1-mediated activation of NF-kB and AP-1 (23, 38, 63, 73–75).
Upon stimulation with inflammatory cytokines, TAK1 undergoes
autophosphorylation at Thr187 and Ser192, and then associates
with TAB2 and TAB3 (75, 76). Interestingly, deficiency of TAB1
almost completely inhibits TAK1 kinase activity, but TAB1-
deficiency has minor effects on phosphorylation of TAK1 at
Thr187 and activation of NF-kB stimulated with TNF and IL-1,
suggesting that the phosphorylation on Thr187 is dispensable for
TAB1 and sufficient for TAK1-mediated activation of NF-kB and
MAPKs (23, 37, 39, 77, 78). Prickett et al. have shown that the
protein phosphatase subunit known as type 2A phosphatase-
interacting protein (TIP) has TAB-qualified properties, so it is
also named TAB4. TAB4 directly binds to and enhances the
autophosphorylation of TAK1 at Thr178, Thr184, Thr187, and
Ser192, which further specifically promotes the phosphorylation of
IKKb and the activation of NF-kB (79). The Thr187 of TAK1 is
also phosphorylated by other kinases, such as tumor progression
locus 2 (TPL2). TPL2 associates with and phosphorylates TAK1 at
Thr187 after IL-17 stimulation, thereby promoting auto-immune
neuroinflammation (80). The phosphorylation of TAK1 at Thr187
is critical for TAK1-mediated signal transduction, and a series of
phosphatases have been reported to regulate TAK1 activity at
Frontiers in Immunology | www.frontiersin.org 4
different stages following stimulation (75). Dual-specificity
phosphatase 14 (DUSP14) associates with and dephosphorylates
TAK1 at Thr187, which inhibits TNFa- or IL-1b-induced NF-kB
activation. In contrast, DUSP14 enzymatic-inactive mutant
DUSP14 (C111S) lost its ability to dephosphorylate TAK1 or
inhibit NF-kB activation after simulation (81, 82). Recently, Ye
et al. found that another DUSP member, DUSP26, directly binds
to TAK1 and mediates dephosphorylation of TAK1, resulting in
the alleviation of hepatic steatosis and metabolic disturbance (83).
In addition, protein phosphatase 2C (PP2C) and PP6 also
dephosphorylate TAK1 at Thr187, but they seem to function on
different forms of TAK1. PP2C inhibits TAK1 activity in
unstimulated cells, while releasing from TAK1 complex and
participating in TAK1 activation after cytokines stimulation. In
contrast, PP6 only dephosphorylates TAK1 in an IL-1b-dependent
manner, but it has minor effects on TAK1 activity in the resting
cells. Moreover, PP2A and PP2C also mediate dephosphorylation
of TAK1 at Thr187 after TGF-a and IL-1b stimulation,
respectively (84, 85). Yasuhiro et al. found that the
phosphorylation at Ser412 is also important for TAK1 activation
(86). cAMP-dependent protein kinase A (PKA) mediates the
phosphorylation of TAK1 at Ser412, and enhanced activation of
NF-kB and MAPKs, which is essential for cAMP/PKA-induced
osteoclastic differentiation and cytokine production in precursor
cells (76). Dr. Xia’s group showed that the phosphorylation of
FIGURE 2 | Regulation of TAK1-TABs complex by phosphorylation. TAK1-TABs complex is heavily and dynamically modified with phosphorylation (P) and
dephosphorylation by the indicated kinases or phosphatases, which regulates their activity and subcellular localizations.
January 2021 | Volume 11 | Article 608976
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TAK1 at Ser412 is also mediated by cAMP-dependent protein
kinase catalytic subunit a (PKACa) and X-linked protein kinase
(PRKX) in TLR- and IL-1R-triggered signaling independent of
PKA activation agents (76). It remains to be investigated whether
PKACa and PRKX collaborate in promoting the phosphorylation
of TAK1 at Ser412. In contrast, PP1 together with its regulatory
subunit DNA damage-inducible protein 34 (GADD34)
synergistically dephosphorylate TAK1 at Ser412. PP1 and
GADD34 associate with TAK1 in unstimulated cells, while
disassociating immediately from TAK1 after ligand stimulation,
and then quickly interacting with TAK1 again. The cycling of
association and disassociation of TAK1 with PP1 thus dynamically
controls the activation of IL-1R/TLR signaling and protects the
host from excessive inflammatory immune responses (87).

In addition to the modifications of TAK1, TAK1-binding
proteins TAB1, TAB2, and TAB3 are also phosphorylated in
response to the different stimulation. It has been reported that
the four serine residues of TAB1, including Ser452, Ser453, Ser456,
and Ser457, can be phosphorylated by TAK1 as well as by p38
MAPK in response to IL-1a, anisemycin, and sorbitol.
Interestingly, the phosphorylation of TAB1 at these four serine
residues inhibits TAB1-dependent phosphorylation of p38 MAPK,
but it does not affect the activation of TAK1, suggesting these
phosphorylation may have unknown roles in stimulus-specific
activation of TAK1-TAB1-mediated signaling (88). Through
mass spectrometry and phosphosite-specific antibodies, TAB1 is
also shown to be phosphorylated on S423, T431, and S438 by
ERK1, p38 MAPK, or JNK, which in turn dephosphorylates and
inactivates TAK1 (39, 42). Unlike TAB1, IL-1b-induced
phosphorylation of TAB2 at Ser372 and Ser524 are dispensable
for p38 MAPK or JNK. In contrast, Ser60 and Thr404 of TAB3 are
phosphorylated directly by p38 MAPK, where Ser506 is
phosphorylated by mitogen activating protein kinase (MAPK2)
and MAPK3, protein kinases which are activated by p38 MAPK
(39). Moreover, serine/threonine phosphatases PP2C-, PP6-, or
calcineurin-mediated dephosphorylation of TABs may cause their
inactivation (84, 85, 89). In addition to their function at TAK1,
DUSP14 also directly interacts with and dephosphorylates TAB1 at
Ser438, leading to the inactivation of TAK1-TAB1 complex in T
cells, which negatively regulates TCR signaling and immune
responses (81). IL-1a and IL-1b induce phosphorylation of
TAB2 at Ser372 and Ser524 or TAB3 at Ser60, Thr404, and
Ser506, but the physiological roles of phosphorylation at these
sites have yet to be determined (39). Although the phosphorylation
and dephosphorylation of TAK1-TABs complex have been
extensively studied, the exact dynamic regulation in specific cells
and tissues across different stresses are still largely unknown, and
potential new kinases and phosphatases function at TAK1-TABs
complex need to be identified in future studies.

Ubiquitination-Mediated Regulation
of TAK1-TABs Signalosome
Ubiquitin is a 76 amino acids protein containing 7 lysine (K)
residues, K6, K11, K27, K29, K33, K48, and K63, any of which can
participate in the formation of specific polyubiquitin chains, leading
to different destiny of the target proteins (90, 91). It is well
Frontiers in Immunology | www.frontiersin.org 5
established that ubiquitination plays crucial roles in the regulation
of TAK1-TABs complex activation (Figure 3). Several lysine
residues of TAK1, such as Lys34, Lys158, Lys209, and Lys562,
have been identified as potential sites for polyubiquitination.
Among them, ubiquitination of TAK1 at K158 is required for
TAK1-mediated signaling pathways (52, 92, 93). In response to IL-
1b, IRAK1 is phosphorylated and released to the cytoplasm with
TRAF6, and TRAF6 then collaborates with Ubc13-Uve1A to
catalyze the synthesis of K63-linked polyubiquitin chains at
Lys158 of TAK1 (52, 94). Our group has found that tripartite
motif (TRIM)-containing proteins 8 (TRIM8) serves as a critical
regulator of TNFa- and IL-1b-triggered NF-kB activation by
mediating K63-linked polyubiquitination of TAK1 at Lys158 (67).
Whether TRAF6 and TRIM8 collaborate or are redundant is
unclear. In addition, Helicobacter pylori (H. pylori) cytotoxin-
associated gene A (CagA) potentiates TRAF6-mediated
polyubiquitination of TAK1 at K158, which is essential for anti-
H. pylori immune response (95). Chen et al. have further shown that
K63-linked polyubiquitination of TAK1 at Lys562 is a prerequisite
for the phosphorylation of TAK1 and specifically contributes to the
activation of MAPKs, but had minor effect on the formation of
TAK1-TABs complex (47). However, the studies of polyubiquitination
of TAK1 at Lys34 and Lys209 are still controversial. It has been
reported that TRAF6-mediated K63-linked polyubiquitination of
TAK1 at Lys34 is important for TAK1 activation in TGF-b signaling
pathway (65, 96). When the Lys34 of TAK1 is replaced with arginine
(R), the activation of NF-kB and p38 will be impaired after stimulated
with LPS, TNFa, IL-1b, or TGF-b, which proves that
polyubiquitination of TAK1 at Lys34 is important for the activation
of p38 and NF-kB (96, 97). In addition, TRAF6 also mediates the
polyubiquitination of TAK1 at Lys209 and promotes the formation of
TRAF6-TAK1-MEKK3 signal complex, thereby promoting the
continuous activation of NF-kB (65). However, Fan et al. showed
that Lys34 and 209 are dispensable for IL-1b-triggered activation of
TAK1. Reconstitution of TAK1-deficient MEFs with K209R or K34R
mutant of TAK1 could restore the activation of NF-kB andMAPKs to
the same level as wild-type TAK1 does after IL-1b stimulation, which
suggest that TAK1 activation does not necessarily require
polyubiquitination at Lys34 and Lys209 (92, 98). It is possible that
Lys34 and Lys209 are differentially required for TAK1 activation in
different signaling or different cell types or tissues. Therefore, further
research is needed to investigate the physiological functions of K63-
linked polyubiquitination of TAK1 at Lys34 and Lys209. In addition,
TAK1 is also regulated by other types of polyubiquitination. Recently,
our group found that TRAF6 mediates K27-linked polyubiquitination
of TAK1, which is a prerequisite for the recruitments of TAB2 and
TAB3 to TAK1 to form the TAK1-TABs complex (94).

Polyubiquitination also functions to inhibit TAK1-mediated
NF-kB activation by diverse mechanisms. Recently, it has been
reported that ITCH (AIP4) inhibits doxycycline (Dox)-induced
NF-kB activation by catalyzing K48-linked polyubiquitination of
TAK1 at Lys72 residue and promoting TAK1 degradation.
Lacking of ITCH results in continuous activation of TAK1 and
increased cytokine production in bone marrow-derived
macrophages (BMDMs), leading to non-small-cell lung cancer
(99, 100).
January 2021 | Volume 11 | Article 608976
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Emerging evidence indicates that TAB1, TAB2, and TAB3 are
modified by a series of E3 ubiquitin ligases, determining their
functionality. MEKK1 (also known as MAP3K1) is the only
MAP3K that contains PHD motif, which is predicted to function
as E3 ligase. During the ES-cell differentiation and tumorigenesis,
MEKK1 promotes the ubiquitination of TAB1, which is critical
for the activation of MAPKs (101, 102). On the contrary, E3
ubiquitin ligase ITCH directly binds to TAB1 and mediates K48-
linked polyubiquitination and degradation of TAB1, which
inhibits p38 signaling and skin inflammation in mice (103).
RNF114 catalyzes K48-linked polyubiquitination and
degradation of TAB1 during maternal to zygotic transition
(MZT), which links maternal clearance to early embryo
development (104). TAB2 and TAB3 are ubiquitinated by
TRAF6 after TNFa and IL-1b stimulation, which facilitates
assembly of TAK1-TABs complex (28, 40). TRIM30a is
induced by TLR ligands in a NF-kB-dependent manner and
targets TAB2 and TAB3 for ubiquitination and degradation,
which inhibits TLRs-mediated inflammatory responses (105).
Recently, another TRIM family member, TRIM29, has been
reported to catalyze the ubiquitination and degradation of
Frontiers in Immunology | www.frontiersin.org 6
TAB2, which impairs IFN-g production and disordered NK
cell functions (106). RBCC (RING-finger, two B-boxes, and a-
helical coiled-coil domain) protein interacting with protein
kinase C1 (RBCK1) is associated with and ubiquitinates TAB2
and TAB3, which leads to their degradation in a proteasome-
dependent manner. Deficiency of RBCK1 potentiates TNFa- and
IL-1b-triggered activation of NF-kB (54). In addition, other E3
ligases, including RNF4 and TRIM38, are reported to promote
degradation of TAB2 and TAB3 dispensable for their ubiquitin
ligase activities (107–109).

Considering the important roles of ubiquitination in TAK1-
TABs-mediated signaling, the reverse deconjugation process of
ubiquitination would be as equally important (Figure 3).
Deubiquitination is mediated by a group of proteins called
deubiquitinating enzymes (DUBs), which consists of four families.
Among them, the ubiquitin-specific proteases (USPs) are widely
studied and contribute to the regulation of inflammatory responses
(110). Recently, our group found that USP19 is associated with
TAK1 in a TNFa- or IL-1b-dependent manner and specifically
deconjugates K63- and K27-linked polyubiquitin chains from
TAK1, leading to the impairment of TAK1 activity and the
FIGURE 3 | Regulation of TAK1-TABs complex by ubiquitination. TAK1-TABs complex are dynamically modified with K27-, K48-, and K63-linked polyubiquitination by
the indicated E3 ubiquitin ligases or deubiquitinating enzymes, which play important roles in regulating the stability, assembly, and activation of TAK1-TABs complex.
January 2021 | Volume 11 | Article 608976
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disruption of TAK1-TAB2/3 complex. USP19-deficient mice
produced higher levels of proinflammatory cytokines and were
more susceptible to TNFa- and IL-1b-induced death (94). Unlike
USP19, USP18 is an interferon inducible gene (ISG), which is
upregulated by TLR ligands in immune cells. USP18 is associated
with and removes K63-linked ubiquitinmoieties fromTAK1-TAB1
complex, thereby negatively regulating TAK1-TABs activity during
Th17 differentiation (111, 112). USP18 is expressed at higher levels
in Th0, Th1, and Th17 cells than in inducible regulatory T cells, Th2
cell, bone marrow-derived macrophages (BMDMs), and bone
marrow-derived dendritic cells (BMDCs). In contrast, USP19 is
abundantly expressed in inducible regulatory T cells, Th2, BMDMs,
andBMDCsbutnot inTh0,Th1, andTh17 cells. These observations
suggest that USP18 and USP19 deubiquitinate TAK1 in a cell
type-specific dependent manner (94, 111). In addition, another
ubiquitin-specific protease, USP4, also serves as a critical inhibitor
of TNFa-triggered NF-kB activation by removing the K63-linked
polyubiquitin moieties from TAK1 (113). Recently, Wang et al.
found that p38‐interacting protein (p38IP) inhibits TCR- and LPS-
triggered cytokines production.Mechanistically, p38IP dynamically
interacts with TAK1 and promotes USP4-dependent
deubiquitination of TAK1. Moreover, p38IP also inhibits the
unanchored K63-linked ubiquitin chains binding to TAK1 (114).
TAK1 activity can also be terminated by deubiquitinase
cylindromatosis (Cyld) and E3 ubiquitin ligase Itch complex. In
response toTNFa and IL-1b, Cyld expression is upregulated to form
a complex with Itch through WW-PPXY motif. Cyld specifically
removes K63-linked polyubiquitin moieties from TAK1 and
consequent to the inhibition of TAK1 activity. In addition, its
partner Itch mediates K48-linked ubiquitination of TAK1, which
is then degraded in a proteasome-dependent manner (99, 115).
Consistently, Cyld- and Itch-double deficiency leads to chronic and
sustained production of inflammatory cytokines by tumor-
associated macrophages and aggressive growth of lung carcinoma
(99, 100, 115–117). Intermittent hypoxia/reoxygenation (IHR) has
been reported to contribute to the activation of NF-kB as well as the
induction of inflammatory cytokines. Zhang et al. found that USP8
suppresses the IHR-induced activation of NF-kB and pro-
inflammatory cytokines production by removing K63-linked
polyubiquitination moieties from TAK1 (118).

In addition to TAK1, TABs are also regulated by
deubiquitinating enzymes. Recently, Zhou et al. found that
USP15 specifically removes K48-linked polyubiquitin moieties
from TAB2 and prevents its lysosome-associated degradation in
both DUB activity dependent and independent manner, thus
stabilizing TAB2 after TNFa and IL-1b stimulation. On the
other hand, USP15 inhibited autophagy cargo receptor 1
(NBR1)-mediated selective autophagic degradation of TAB3.
Collectively, USP15 positively regulates TNFa- and IL-1b-
triggered NF-kB activation by distinct mechanisms, which
reflects the potential nonredundant roles of TAB2 and TAB3
(119). In contrast, USP14 interacts with and removes
polyubiquitin moieties from TAB2 and inhibits TAB2 activity.
USP14-deficient THP-1 cells showed enhanced activation of NF-
kB and production of inflammatory cytokines after LPS
stimulation, which suggests that USP14 negatively regulates
Frontiers in Immunology | www.frontiersin.org 7
TLR4-mediated inflammatory responses by deubiquitinating
TAB2 (120).

While the ubiquitination and deubiquitination of TAK1-
TABs have been extensively studied, and a large number of E3
ubiquitin ligases and deubiquitinating enzymes have been
identified, the exact dynamic regulation of ubiquitination and
deubiquitination in specific cells in response to different stimuli
are still unclear. Therefore, further investigations on these
questions and other outstanding questions need to be clarified
in future studies.

Unconventional PTMs-Mediated
Regulation of TAK1-TAB Signalosome
In addition to the more extensively characterized phosphorylation
and ubiquitination, TAK1-TABs are also modified by other post-
translational modifications, including methylation, O-
GlcNAcylation, and sumoylation (Figure 4).

Protein methylation is a post-translational modification that
transfers a methyl group from the donor S-adenosyl-L-methionine
to cytosine in CpG dinucleotides (121–123). Initially, protein
methylation was first identified as a modification that regulates
chromatin remodeling and gene transcription (121). Up to now,
methylation of Lysine or Argine residues on non-histone proteins
is an emerging field, displaying important roles in the regulation of
signaling for diverse array of pathways (121). NleE, a bacterial type
III secreted effector, harbored unprecedented S-adenosyl-
L-methionine-dependent methyltransferase activity. After
Escherichia coli infection, NleE is released into the cytoplasm and
specifically methylates TAB2 at Cys673 and TAB3 at Cys692 in
their NZF domain, which diminishes their ubiquitin binding
capacity and consequent to the inhibition of inflammatory
cytokines expression (121, 124, 125). Similar results are also
observed for NleE homolog OspZ from Shigella flexneri, which
reduces IL-8 transcription by methylating TAB2 and TAB3 (121,
126). In addition to methylation, protein acetylation is also one of
the common post-translational modifications in eukaryotes.
Bacterial effectors from Yersinia can act as acetyltransferases to
mediate acetylation at the phosphorylation sites of MKK6, IKKa,
and IKKb, thereby inhibiting their phosphorylation and activation.
YopJ is one of six effector proteins (Yops) injected into the host cell
cytoplasm through type III secretion system during Yersinia pestis
infection, and inhibits mammalian NF-kB and MAPKs signaling
pathways (127, 128). Recent studies indicate that YopJ acts as a
serine/threonine acetyltransferase that targets dTAK1. Acetylation
of key serine/threonine residues in the activation loop of
Drosophila TAK1 prevents its phosphorylation and subsequent
inhibition of kinase activation. Furthermore, YopJ also inhibits
TAK1 activity in mammalian cells. YopJ prevents phosphorylation
of TAK1 by acetylating TAK1 at Thr184 and Thr187, inhibiting
autophosphorylation of this kinase. These data demonstrate that
YopJ inhibits innate immune responses by acylating TAK1 (129).
However, work on methylation or acylation influencing NF-kB
signaling pathway is relatively limited, and further exploration is
need to identify new methyltransferases or acetyltransferases
involved in TAK1-TABs-mediated signaling, especially in
mammal cells.
January 2021 | Volume 11 | Article 608976

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu and Lei Immune Regulation of TAK1-TABs complex
Like other post-translational modifications, sumoylation is a
dynamic process that is mediated by E1, E2, and E3 enzymes, and
has a pivotal role in a range of cellular functions (130). SUMO is
an ubiquitin-like protein that binds to many target proteins in a
covalently binding manner. Wang et al. have shown that TAB2
could be modified by SUMO at evolutionarily conserved Lys 329.
In addition, PIAS3 is identified as a SUMO E3 ligase that interacts
with and promotes sumoylation of TAB2. Interestingly, PIAS3
inhibits TAB2 activity in a dose-dependent manner, while
blocking of sumoylation caused by Lys 329 mutation enhanced
TAB2 activity (131). Although this study provides evidence
supporting a role of sumoylation in the regulation of TAK1-
TABs-mediated signaling, the examination of sumoylation in vivo
and related mechanisms needs to been further investigated. In
addition, it will be interesting to identify other new E3 ligases or
desumoylating enzymes that are responsible for modulating
sumoylation states of TAK1-TABs complex.

O-Linked b-N-acetylglucosamine (O-GlcNAc) is a
ubiquitous dynamic post-translational modification known to
target more than 3,000 eukaryotic proteins (132). O-
GlcNAcylation is thought to regulate proteins in a manner
similar to protein phosphorylation, and this modification
regulates many cellular functions, such as cellular stress
responses. TAB1 is modified at Ser395 by O-GlcNAcylation,
which is important for autophosphorylation of TAK1 at Thr187
and activation of NF-kB signaling (132, 133). This is one of the
first cases of a single O-GlcNAcylation site on a signaling protein
that regulates key innate immune signaling pathways. After that,
Tao et al. found that TAB3 is also modified by O-GlcNAcylation
at the Ser408 position, which is necessary for TAK1 activation.
Excessive O-GlcNAcylation modification of TAB3 will over-
induce the activation of TAK1, which is related to tumor
progression (134). Collectively, the regulation of O-GlcNAcylation
of TAK1-TABs complex is important for immune and inflammatory
responses and tumorigenesis.
CONCLUSIONS AND PERSPECTIVES

A series of knockout experiments proved that the TAK1-TABs
complex is essential for IL-1R-, TNFR-, and TLRs-mediated
signaling pathways that lead to activation of MAPKs and NF-
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kB (135). TAK1-TABs complex-mediated signaling is also
correlated with a variety of diseases. TAK1-deficiency causes
abnormal cell differentiation, increased cell death, and decreased
inflammatory responses (49). In addition, TAK1-TABs is also
associated with contact hypersensitivity (136) and neuronal
death during cerebral ischemia (29). TAK1-TABs over-
activation is related to the pathogenesis of autoimmune
diseases and the development of cancer (49).

Although our understanding of the PTMs of TAK1-TABs has
made significant progress, except for ubiquitination and
phosphorylation, little is known about the functional role of other
PTMs. And whether there are other forms of PTMs that have
functional roles in regulating the TAK1-TABs complex and how
thesePTMsare related toeachother is still unknown. In the future,we
hope that more research will use high-resolution mass spectrometry
measurement and advanced analysis technology platforms to
perform more specific and sensitive detection of new protein
changes of TAK1-TABs complex, and explore more detailed
molecular mechanisms behind these modifications. These efforts
will expand our understanding of inflammation and related cellular
andmolecularmechanisms, and provide newmethods and strategies
for effective control and treatment of inflammatory diseases.
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