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Abstract Renal function is the most important predictor

of clinical outcome in heart failure (HF). It is therefore

essential to have accurate and reliable measurement of

renal function and early specific markers of renal impair-

ment in patients with HF. Several renal functional entities

exist, including glomerular filtration (GFR), glomerular

permeability, tubulointerstitial damage, and endocrine

function. Different markers have been studied that can be

used to determine changes and the effect of treatment in

these entities. In the present review, we summarize current

and novel markers that give an assessment of renal function

and prognosis in the setting of acute and chronic HF.
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Introduction

In patients with heart failure (HF), impaired renal function is

often present and one of the strongest predictors of clinical

outcome [1–4]. Both worsening renal function (WRF) and

acute kidney injury (AKI) are prevalent in patients with acute

and chronic HF and are associated with an increased mortality

and morbidity [1, 5, 6]. In addition, renal dysfunction might not

only be a marker of a poor clinical condition, but might also

contribute to the development and progression of heart failure

[7]. Renal function and changes in renal function therefore

provide important clinical information in patients with HF.

Usually, ‘‘renal function’’ is defined as the filtration ability

of the kidney, which can be expressed as the glomerular fil-

tration rate (GFR). Creatinine and empirical formulas that are

mainly based on creatinine are used to estimate GFR in

patients with HF [8]. However, GFR does not cover the entire

function of the kidney, which also comprises of glomerular

permeability, tubular function, and several specific functions

such as vitamin D metabolism and erythropoietin produc-

tion. Therefore, several markers other than creatinine can be

used to estimate various functions of the kidney.

In the present review, we summarize current and novel

promising markers/ways to assess renal function and chan-

ges in renal function in patients with HF and their prognostic

potential in HF. We will focus on glomerular function,

glomerular permeability, and tubulointerstitial damage.

Table 1 gives an overview of the clinical characteristics of

the markers that will be discussed in the present review.

Glomerular filtration rate

The golden standard of measuring GFR is by specific

markers such as iothalamate or inulin clearance. These
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measurements are, however, patient-unfriendly, time con-

suming and expensive and can, therefore, not be used in

daily clinical practice. In study cohorts, these techniques

have been used to validate easier estimations of GFR,

mostly in patients with chronic HF [8, 9]. Instead, different

markers that give an estimate of GFR are used as surrogate

markers for GFR.

Serum creatinine

Creatinine is a break down product of creatine phosphate,

which is normally formed at a constant rate in the skeletal

muscles. Upon presentation in the plasma, it is freely fil-

tered through the glomerulus and appears in the urine.

Creatinine is, however, also actively secreted in the tubules

and accordingly its clearance overestimates true GFR to a

varying extent [10].

Increased serum creatinine is a common finding in

patients with acute and chronic HF and is a sign of renal

impairment. In large cohort studies and substudies of ran-

domized clinical trials, an increased serum creatinine level

was strongly associated with impaired clinical outcome

[11, 12]. However, serum creatinine levels are prone to bias

due to several shortcomings. First, the production of cre-

atine phosphate is not constant. Due to changes in muscle

Table 1 Properties of different markers

Detection ‘‘Validation’’ Relation with prognosis Pro’s Cons

Glomerular filtration rate

Creatinine Seruma CHF

AHF

Strong evidence Easy

Cheap

Interpretable

Exponential relationship with GFR

Dependent on muscle mass

(s)MDRD Serum CHF

Not in AHF

Strong evidence Valid

Accurate

Formula (calculation)

Less reliable in extremes of GFR

BUN Serum CHF

AHF

Emerging evidence Easy

Cheap

Interpretation difficult

Cystatin C Seruma CHF

AHF

Evidence in AHF Unbiased

Very reliable

Interpretation difficult

Costs

Glomerular permeability

Albuminuria Urine CHF

Not in AHF

Strong evidence CHF Easy obtainable

Cheap

Additive to GFR

Low specificity

Tubulointerstitial damage

NAG Urine CHF

Not in AHF

Emerging evidence CHF Easy obtainable

Additive to GFR and

UAE

Strong marker of AKI

Low specificity

Costs

KIM-1 Urine CHF

Not in AHF

Emerging evidence CHF Easy obtainable

Additive to GFR and

UAE

Strong marker of AKI

Costs

NGAL Urine/

Serum

CHF

AHF

Emerging evidence CHF

and AHF

Easy obtainable

Additive to GFR and

UAE

Strong marker of AKI

Low specificity especially in serum

and in CHF

IL-18 Urine/

Serum

CHF

Not in AHF

Emerging evidence CHF Easy obtainable

Strong marker of AKI

Also strongly increased

in inflammation

FABP-1 Urine/

Serum

Not in CHF

Not in AHF

None Strong marker of AKI Elevated in sepsis

Also found in liver

AHF acute heart failure, AKI acute kidney injury, BUN blood urea nitrogen, CHF chronic heart failure, FABP fatty acid binding protein,

GFR glomerular filtration rate, IL-18 Interleukin 18, KIM-1 kidney injury molecule 1, MDRD modification of diet in renal disease (formula),

NAG N-acetyl-beta-D-glucosaminidase, NGAL neutrophil gelatinase-associated lipocalin, UAE urinary albumin excretion
a Can be measured in urine, but then does not resemble GFR
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mass, when wasting of muscles occurs with progression of

cardiac disease, changes in serum creatinine levels may

develop, which are not due to changes in GFR. The other

way round, a decrease in GFR may go unnoticed when it is

accompanied by muscle wasting, which is common in

severely and chronically ill patients, including HF patients

[8]. Second, serum creatinine shows an exponential rela-

tionship with invasively determined GFR. This exponential

relationship makes interpretation of changes in serum

creatinine difficult (Fig. 1) [13]. Finally, active secretion of

creatinine significantly hampers the interpretation of serum

creatinine, especially when renal function is compromised,

or in obese subjects, when the relative effect of active

secretion is most pronounced [14]. Importantly, serum

creatinine may be a good representative of the number of

functionally active nephron units. Serum creatinine may,

therefore, be a reasonable estimate of renal function at one

point in time and a strong risk marker, but with significant

shortcomings for accurate assessment of GFR. Finally,

creatinine clearance may be used to estimate GFR. How-

ever, the overestimation due to tubular secretion of creat-

inine, and urine collection errors, render it unreliable,

although novel methods to correct for this may lead to

reappraisal of 24-h urine collection [15].

Estimated GFR, creatinine-based formulas

To overcome the problems that may arise with the use of

serum creatinine or creatinine clearance, as an estimate of

GFR, large (sub) studies have generated empirical formulas

that give a more reliable estimation of GFR based on serum

creatinine [13]. In addition to serum creatinine, they typi-

cally include age and gender, and sometimes weight, race,

blood urea nitrogen, and albumin. The most common for-

mulas are the Cockcroft-Gault equation, which is an esti-

mate of creatinine clearance, and the currently widely used

(simplified) Modification of Diet in Renal Disease

(sMDRD/MDRD) formulas [13]. These formulas have

been validated in renal disease, and give a reasonably

accurate estimation of GFR, especially in patients with

chronic kidney disease and renal function impairment.

More recently, these formulas have been validated in

patients with chronic HF [8]. Smilde et al. showed that in

patients with relatively preserved renal function, the

6-variable MDRD formula showed the most accurate

estimation of GFR, with similar prognostic information

compared to real GFR [8]. However, all formulas, includ-

ing Cockcroft-Gault and (s)MDRD overestimate real GFR

in the lower levels of true GFR and underestimated real

Fig. 1 Relationship between serum creatinine and estimated GFR:

effect of change in serum creatinine. Different changes in estimated

GFR with similar changes in serum creatinine. A pronounced

decrease in GFR from normal—the flat part of the curve—gives just

a subtle increase in serum creatinine that often stays within the

normal day-to-day variability of the assay and, therefore, may go

unnoticed. The other way round, a trivial further decrease in already

compromised GFR leads to a steep rise of creatinine, based on the

steepness of the curve here, that can lead to undue concern. For

example, a decrease in serum creatinine from point A to B results in

a decrease in eGFR of 15 ml/min/1.73 m2. However, a decrease in

serum creatinine from point B to C results in a much more

pronounced decrease in eGFR of 75 ml/min/1.73 m2. Depicted is the

GFR estimated by the simplified MDRD for a 70-year-old white

male
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GFR in the higher levels of true GFR. Accordingly, in

clinical practice, when GFR decreases over a longer period

of time, the decrease will be underestimated by these

equations. Nevertheless, in numerous studies, both acute

and CHF showed that GFR as estimated by these formulas

(mostly sMDRD) is an important prognostic factor [2, 8,

16, 17]. Recently, to account for the poor performance of

the MDRD equation in the (near) normal and higher ranges

of GFR, a new equation, the CKD-EPI equation was

developed. It is now considered the preferred estimate of

GFR in renal disease. This formula is similar to the MDRD

but has creatinine-dependent gender differences and gen-

erates higher eGFR at lower creatinine levels. It has a

better performance in subjects with normal or near-normal

renal function, but this equation has not yet been validated

in HF [18]. Given the fact that invasive determination of

GFR is expensive and time consuming, to date, the MDRD

formula is currently considered the golden standard of

estimation of GFR in clinical practice.

Blood urea nitrogen (BUN)

BUN, a waste product of protein catabolism, has been

extensively studied in dialysis patients and is an important

target for removal by (hemo) dialysis, as well as a marker

for the effectiveness of dialysis. Although most clinicians

will use BUN with or without serum creatinine in daily

practice, only in recent years, the relationship of BUN with

outcome in cohorts of patients with HF has been estab-

lished (Table 2). In large cohorts of patients with acute and

chronic HF, an elevated BUN has been shown to be a

strong predictor of morbidity and mortality [19–26]. BUN

was an even better predictor of outcome compared to GFR

in the OPTIME-CHF population [27]. It has been argued

that BUN is much more than a reflection of GFR [28]. It is

also largely dependent on protein intake, catabolism, and

tubular reabsorption. The latter is coupled to sodium

reabsorption and may, therefore, reflect the extent of for-

ward failure. Together, BUN or urea may be a reflection of

both GFR and of the severity of HF, whereas there is also

clear cut impact of nutritional status and catabolic state.

This may be the reason why it possesses strong predictive

abilities, but in terms of estimation of renal function, and

the effect of possible treatment on renal function, BUN

may be a more varying and, therefore, unreliable marker

compared to creatinine and creatinine-based formulas.

Cystatin C

Of all markers that give an estimate of GFR, cystatin C is

the newest, although first reports on cystatin C were

already published 30 years ago. Cystatin C is freely filtered

through the glomerulus and completely reabsorbed and

degraded in the tubulus. Its level in the circulation is

therefore an ideal marker of GFR [29]. Cystatin C has been

shown to be superior to serum creatinine as an estimate of

GFR in several different patient populations, in particular,

in the near-normal, normal and higher range, where cre-

atinine-derived measures perform poorly [30]. It is a strong

predictor of outcome in coronary artery disease, diabetes,

but also the general (elderly) population [31–33]. Data on

cystatin C in chronic and acute HF are scarce, but some

studies have shown the prognostic power of cystatin C in

CHF [33, 34]. In acute HF, cystatin C showed independent

prognostic information, even in patients with normal serum

creatinine [35].

However, in HF, no data exist on the reliability of

cystatin C to accurately estimate GFR. In renal disease,

cystatin C has been shown to provide a reliable and less

biased estimate of GFR compared to serum creatinine [36–

38]. Cystatin C is not influenced by body mass, muscle

turnover, and cachexia, which are important confounders

of serum creatinine [39]. There have been concerns that

cystatin C may be dependent on inflammatory status or

smoking, but others have reported no bias by these factors

[32, 40, 41]. Cystatin C levels may be used alone or in a

formula similar to creatinine-based formulas, but in each

circumstance give accurate estimation of GFR, although

Table 2 Relationship between blood urea nitrogen and outcome in heart failure studies

Study Year N Setting BUN (mg/dL) Relative risk for mortality

Lee [25] 2003 4031 ADHF 29 ± 19 1.49 (1.39–1.60) per 10 units increase

Aronson [19] 2004 541 ADHF 34 ± 22 2.3 (1.3–4.1) for quartiles

Heywood [24] 2005 680 CHF 29 ± 20 BUN 30–50: 1.9, BUN [50: 2.2

Shenkman [26] 2007 257 ADHF 33 ± 22 3.6 (1.8–7.3) per log unit increase

Filippatos [21] 2007 302 ADHF 31 ± 17 1.03 (1.00–1.05) per unit increase

Cauthen [20] 2008 444 CHF 14 (6–22) 1.04 (1.03–1.06) per unit increase

Klein [27] 2008 949 CHF 25 (14–41) 1.11 (1.07–1.15) per 5 units increase

Lin [22] 2009 243 CHF 27 ± 17 1.24 (1.02–1.51) for BUN-to-creatinine ratio

Gotsman [23] 2010 362 ADHF 23 (17–29) 1.80 (1.30–2.49), per tertile BUN/creatinine

ADHF Acute decompensated heart failure, BUN Blood urea nitrogen, CHF Chronic heart failure
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not always superior to creatinine [36, 38]. Whether cystatin

C may give more reliable estimations of changes in GFR

compared to serum creatinine is unknown. From a physi-

ologic perspective, given the totally free filtration through

the glomerulus and total degradation in the tubulus, it is

likely that it may be a more accurate marker of changes in

renal function compared to creatinine [39].

Although cystatin C seems to be superior to creatinine in

estimating GFR and may be at least identical to creatinine in

establishing prognosis, it is far underused in clinical prac-

tice. There are two important reasons and disadvantages of

cystatin C to explain this. First, serum creatinine has been

around for such a long time that clinicians are familiar with

its normal values and in most instances can adequately

estimate GFR for a particular patient with a certain serum

creatinine. For cystatin C, however, there is so little expe-

rience that only few will know what GFR accompanies each

cystatin C level. Secondly, as cystatin C is not routinely

measured, cystatin C measurement is relatively expensive,

especially if it should replace creatinine as a (daily)

assessment of renal function [42]. On the other hand, sev-

eral other markers that have comparable or more expensive

costs to determine have made it into clinical practice in

cardiology, including Troponins and N-terminal brain

natriuretic peptide. It will therefore take a change of mind

from clinicians and researches to eventually replace serum

creatinine with cystatin C in clinical practice, once future

studies will provide more solid information on its routine

use as point estimate and measure of changes in GFR.

Glomerular permeability

The previously mentioned markers give an estimate of

GFR, the ability of the kidney to clear a certain amount of

blood from the waste substances of metabolism. However,

besides a reduction in filtration capabilities or even in the

presence of preserved GFR, glomerular leakage may

develop when glomerular capillary damage occurs. In these

circumstances, larger than normal molecules enter the

ultrafiltrate of which albumin is the most important one.

When the leakage of albumin exceeds the tubular capacity

of reabsorption, it appears in the urine in abnormal amounts.

Albuminuria

In patients with diabetes, hypertension, and chronic kidney

disease, micro (30–300 mg/gram creatinine) and macro-

albuminuria ([300 mg/gram creatinine) are commonly

observed [43–45]. Importantly, albuminuria has been

advocated as an important therapeutic target in patients with

chronic kidney disease. Even independent of blood pressure,

albuminuria is considered to be an important target for

therapy, although strong evidence to support this is lacking.

Even so, in CKD patients with diabetes, the degree of

reduction in albuminuria was strongly correlated with car-

diovascular outcome and, more importantly, incident HF

[46]. The pathophysiology of albuminuria in general is

considered to be related to endothelial dysfunction,

increased intraglomerular pressure, and atherosclerosis [47].

Importantly, its pathophysiology, therefore, differs consid-

erably from that of decreased GFR [48]. On the other hand,

there are suggestions that albuminuria in HF may be asso-

ciated with impaired renal perfusion and increased venous

congestion, in analogy to decreased GFR [49–53]. These

two entities define the clinical syndrome of HF, and there-

fore, it is surprising that only recently data on the prevalence

and prognostic information on albuminuria and proteinuria

in HF has been published. Van der Wal et al. were the first to

show that albuminuria was present in 32% of patients with

HF, compared with 10% of an age and gender-matched

healthy population [54]. In large sub studies of the CHARM

and GISSI-HF trial, micro and macro-albuminuria were not

only prevalent, but also associated with a strongly increased

mortality rate [55, 56]. This was even apparent in patients

without decreased GFR, which may suggest that either

albuminuria may be a very early sign of renal damage/

insufficiency as it has been reported in the general popula-

tion, or that different mechanisms may contribute to reduced

GFR and increased albumin excretion. For example, in

general population studies, albuminuria was strongly related

with the presence of diabetes and hypertension and might,

therefore, be a reflection of comorbid organ dysfunction in

HF [57]. These substudies assessed albuminuria in morning

spot urine. In a substudy of the Val-HEFT, dipstick-positive

proteinuria (rather than albuminuria) was infrequent, but

still associated with impaired clinical outcome [58]. How-

ever, proteinuria as assessed by dipstick is a less precise,

qualitative, rather than quantitative measurement and is

therefore less sensitive and inaccurate estimate of high

normal, micro or macroalbuminuria.

Importantly, both CHARM and GISSI-HF studies failed

to show a significant reduction in albuminuria with either

angiotensin receptor blockade or statin treatment. It is

therefore unlikely that albuminuria may be useful as a

primary target for therapy in patients with HF. However,

albuminuria may serve as marker of prognosis in patients

with HF and as a predictor of HF in patients without car-

diac dysfunction, even when GFR is normal.

Tubulointerstitial damage

Nephrologists increasingly use markers that represent

tubulointerstitial injury to provide a more appropriate

estimation of ‘‘renal function’’. Although most markers

Heart Fail Rev (2012) 17:241–250 245
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have not made it into clinical practice yet, first results in

HF patients look promising

N-acetyl-beta-D-glucosaminidase (NAG)

NAG is a lysosomal enzyme that is formed in the proximal

tubule and shed into the urine in response to tubular injury.

It has been extensively studied in experimental and clinical

settings and is a sensitive marker of proximal tubular

damage in renal disease, but also after cardiopulmonary

bypass grafting and diabetic nephropathy [59–61]. NAG is a

prominent predictor of the occurrence of AKI or WRF [60,

62]. In CHF, urinary NAG levels are strongly elevated

compared to age and gender-matched controls [63]. Inter-

estingly, lower renal blood flow was associated with ele-

vated NAG levels, indicating that tubulointerstitial damage

may develop as a result of decreased renal perfusion,

potentially by a decreased cardiac output [63]. Furthermore,

higher NAG levels were associated with poorer clinical

outcome in this group of patients with HF, independent of

GFR. On the other hand, higher levels of NAG are also

found in various other conditions, such as urinary tract

infections, which may limit specificity [64]. Therefore,

future research is needed in both acute and chronic HF to

further establish the place of NAG as a renal tubular marker.

Kidney injury molecule 1 (KIM-1)

KIM-1 is a transmembrane protein that cannot be found in

urine in normal situations. However, after hypoxic tubular

injury, proximal tubule epithelial cells express KIM-1 at

extremely high levels, which can reach up to 1000-fold

[65]. In experimental and clinical renal disease, KIM-1

urine levels reflect the extent of tubulointerstitial levels

[66]. KIM-1 expression in biopsies of renal tissues in

response to tubulointerstitial damage is primarily located at

the proximal tubular epithelial cells and is predominantly

present in areas of early fibrosis [67]. In children under-

going cardiopulmonary bypass grafting, KIM-1 was supe-

rior to NAG in predicting the occurrence of AKI after

surgery [68]. The increase in both markers occurred almost

24 h before a rise in serum creatinine was apparent. KIM-1

(and NAG) may, therefore, possess properties related to the

extent of (chronic) tubulointerstitial damage, but may also

accurately and early predict those patients that are at

increased risk of developing a deterioration in renal

function. Urinary KIM-1 levels decrease in response to

anti-hypertensive treatment with a combination of either

thiazides, a low salt diet or angiotensin receptor blockade,

and the reduction in KIM-1 was correlated with a reduction

in proteinuria [69]. Of note, in animal experiments, the

changes in urinary levels of KIM-1 during renoprotective

intervention reflected the changes in tubulointerstitial

KIM-1 expression, suggesting that changes in urinary

KIM-1 levels will have the potential to monitor the course

and response to the intervention of tubulointerstitial dam-

age [70]. As discussed earlier, albuminuria may also exist

in chronic HF. Higher protein loading of the tubule may

have a direct damaging effect on the tubular epithelium

[69]. This can, therefore, be a different pathophysiologic

pathway by which tubular damage and thereby higher

urinary KIM-1 expression may develop. Clinical data on

KIM-1 expression in chronic HF is limited. We recently

found that urinary KIM-1 levels were strongly increased in

patients with stable chronic HF and only mildly impaired

GFR [63]. In fact, even in patients with normal GFR, uri-

nary KIM-1 levels were strongly increased in comparison

with matched control [63]. Importantly, urinary KIM-1

levels at a single point in time predicted outcome in these

patients, independent of GFR. These results further

acknowledge the prevalence ánd prognostic importance of

tubulointerstitial damage in chronic HF and the ability of

KIM-1 to identify high risk individuals. To date, no study

evaluated KIM-1 expression in the setting of acute

(decompensated) HF or evaluated the ability of KIM-1 to

predict worsening of renal function in HF. As KIM-1 is

predominantly expressed in response to ischemic tubular

damage, especially the setting of acute HF, KIM-1 may be

of clinical importance in this setting, although studies are

still lacking. Although urinary KIM-1 is highly sensitive to

(proximal) tubulointerstitial damage, it lacks specificity in

the presence of other (chronic) comorbid organ dysfunc-

tion. For instance, KIM-1 levels are also increased in

patients with hypertension and diabetic nephropathy [67].

As these patients may have a high risk for the development

of HF, the baseline expression of KIM-1 in urine may be

biased in such conditions.

Neutrophil gelatinase-associated lipocalin (NGAL)

NGAL is a small (21kD) protein that is normally detectable

in serum as it is secreted in low amounts in lung, kidney,

trachea, stomach, and colon [71]. Because of its small

molecular weight, it is freely filtered through the glomer-

ulus and completely reabsorbed in the tubules [71]. NGAL

can be measured in plasma or urine. In normal situations,

urine and plasma levels are low. Plasma NGAL levels are

less specific for (acute) renal disease, as higher levels are

also found in inflammation, sepsis, or cancer [71]. Urine

levels are much less affected by these situations, since the

NGAL that appears in the urine is secreted only from the

tubules (plasma NGAL is filtered and totally reabsorbed)

[71, 72]. In AKI, both plasma and urine NGAL rise

strongly, and therefore, the relative contribution of non-

renal origins of NGAL is considered negligible. In

response to tubulointerstitial damage, however, both serum
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and urinary concentrations may rise op to a 1000-fold and

high concentrations of NGAL are expressed in urine, which

mostly comes from production in the distal nephron (loop

of Henley and collecting ducts) [71–73]. Urinary NGAL

may, therefore, reflect occurrence of ischemic tubular

injury in more distal parts of the nephron. However, high

levels of NGAL in urine (and serum) have also been

observed during proximal tubular injury, indicating that the

site-specific increase in NGAL may be more complex [74].

NGAL measurements may be clinically useful as higher

levels of NGAL are prominent predictors of the occurrence

of AKI or WRF. In a landmark paper, Mishra et al. showed

that higher NGAL serum and urine levels were able to

predict the occurrence of AKI with remarkable specificity

and sensitivity [73]. Importantly, similar to KIM-1 and

NAG, the rise in NGAL levels preceded the rise in serum

creatinine by over 24 h. Interestingly, administration of

NGAL in experimental setting of acute ischemic renal

injury attenuated tubular injury, suggesting a possible

therapeutic role for NGAL by protecting against tubulo-

interstitial injury by inducing re-epithelialization [75].

Recent reports have studied the relationship between

NGAL and WRF on outcome in acute HF. Higher plasma

NGAL levels were found to predict the occurrence of WRF

in patients admitted with acute HF [76]. A different study

showed that higher plasma NGAL levels were related to a

poorer clinical outcome [77]. In chronic HF, urinary NGAL

levels are strongly increased in comparison with matched

controls [78]. However, NGAL levels did not predict out-

come in this group of CHF patients, in contrast to both

NAG and KIM-1 [63]. Considering the lack of specificity

of NGAL in the setting of chronic instead of acute renal

failure, the acute rather than the chronic HF patient pop-

ulation may be a more suitable setting for the clinical

implementation of NGAL.

Interleukin 18 (IL-18)

IL-18 is a proinflammatory cytokine that is quickly and

highly upregulated in response to AKI in various situations

[79]. It is one of the many proinflammatory cytokines, but

IL-18 is particularly interesting given it possible role in

mediation of ischemic renal failure [80]. IL-18 is detect-

able in urine after AKI and a sensitive predictor of AKI in

the setting of cardiopulmonary bypass grafting [80]. In a

comparative analysis, IL-18 levels preceded the rise in

creatinine, but the rise in IL-18 was slower compared to the

rise in NGAL [80]. Importantly, as a proinflammatory

cytokine, IL-18 levels are also strongly increased in

inflammatory conditions, such as arthritis and sepsis [81].

This limits the specificity of IL-18 in the setting of mixed

AKI and pronounced inflammation. Some studies have

investigated the role of IL-18 as a proinflammatory

cytokine in ischemic heart disease. In a small study, plasma

IL-18 levels were increased in patients with HF, and those

who survived had lower baseline plasma IL-18 levels [82].

Interestingly, this study found increased activity of IL-18 in

human myocardium of failing hearts, which may suggest

that IL-18 has pathophysiologic role in the setting of HF.

IL-18 also predicts outcome in ischemic heart disease and,

as such, was a predictor of the incidence of HF [83]. No

studies have investigated the ability of IL-18 to predict

AKI/WRF in the setting of HF.

Fatty acid-binding protein (FABP)

FABPs are proteins that bind selectively to free fatty acids.

There are numerous different FABPs that have tissue-

specific expression, which include the liver, heart, and

brain [84]. Of these, liver FABP, (L-FABP or FABP-1) and

heart FABP (H-FABP or FABP-3) have been associated

with impaired renal function [85]. Both proteins are

thought to play a role in the energy metabolism of the large

amounts of energy consuming renal tubules. FABP-1

is exclusively found in the proximal tubules, whereas

FABP-3 is localized in the distal tubules [86]. In response

to ischemic injury, FABP-1 and FABP-3 are shed into the

urine and detectable as sensitive and specific biomarkers of

AKI. FABP-1 may even outperform NGAL and KIM-1 in

AKI [87]. In an animal model, FABP-1 was superior to

NAG in predicting AKI [39]. Further observations suggest

that urinary FABP-1 levels are increased in response to

hypoxia induced by impaired peritubular capillary blood

flow in the kidney, a situation which is likely to exist in a

low perfusion state such as HF [86]. FABP-3 levels may

predict outcome in HF, but the ability to predict AKI has

not yet been studied [88].

Conclusions

The interaction between heart failure and renal impairment

is not static, but comprises of dynamic changes in volume

status, inflammatory response, neurohormonal activation

and changes in renal function, by natural course, or in

relation to therapy. These changes may be quick and sub-

stantial, but may also be slow and subtle. Finding the right

marker to predict renal function in all of these situations

may be impossible, but new markers are emerging that

seem to perform better than serum creatinine alone. Some

of these markers may give a good representation of GFR,

such as cystatin C, BUN, while others give information on

glomerular permeability (albuminuria) or tubulointerstitial

damage (NAG, KIM-1, NGAL, and FABP). Importantly,

the latter group (including IL-18) represents markers that

may also predict acute changes in renal function, even
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before changes in creatinine occur. These markers are

therefore suitable candidates as markers of treatment effect

and as possible targets for therapy. New randomized clin-

ical trials should, therefore, include measurement of these

markers and possibly target these markers to preserve or

even improve renal function in patients with HF.
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