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INTRODUCTION
Xerostomia is a common radiation-induced complication 
in post-radiotherapy (RT) nasopharyngeal carcinoma 
(NPC) patients.1 This complication affects mastication 
and swallowing and increases susceptibility to oral infec-
tions and dental problems, which subsequently degrade 
the quality of life in post-RT NPC patients.2,3 In a radical 
course of radiotherapy to NPC patients, portions of major 
salivary glands including the parotid gland and subman-
dibular gland are often irradiated to high dose. It has been 

demonstrated that xerostomia was dependent on the radia-
tion dose delivered to the salivary glands in NPC patients.4 
Its incidence varied greatly from 39.3 to 82.1% depending 
on the RT techniques.5,6 Although the recent introduction 
of intensity modulated radiotherapy (IMRT) can achieve 
better sparing of parotid and submandibular glands,7–10 the 
irradiation of these glands is still inevitable and xerostomia 
has been frequently reported.11 Furthermore, radiotherapy 
of NPC often delivered with concurrent chemotherapy, 
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Objectives: With regard to the intensity modulated radi-
otherapy (IMRT) of nasopharyngeal carcinoma (NPC) 
patients, this longitudinal study evaluated the radiation-
induced changes in the parotid and submandibular 
glands in terms of gland size, echogenicity and haemo-
dynamic parameters.
Methods: 21 NPC patients treated by IMRT underwent 
MRI and ultrasound scans before radiotherapy, and at 
6, 12, 18 and 24 months after treatment. Parotid and 
submandibular gland volumes were measured from 
the MRI images, whereas the parotid echogenicity and 
haemodynamic parameters including the resistive index, 
pulsatility index, peak systolic velocity and end diastolic 
velocity were evaluated by ultrasonography. Trend lines 
were plotted to show the pattern of changes. The corre-
lations of gland doses and the post-RT changes were 
also studied.
Results: The volume of the parotid and submandibular 
glands demonstrated a significant drop from pre-RT 
to 6 months post-RT. The parotid gland changed from 
hyperechoic before RT to either isoechoic or hypoechoic 

after treatment. The resistive index and pulsatility index 
decreased from pre-RT to 6 month post-RT, then started 
to increase at 12 month time interval. Both peak systolic 
velocity and end diastolic velocity increased after 6 
months post-RT then followed a decreasing trend up to 
24 months post-RT. There was mild correlation between 
post-RT gland dose and gland volume, but not with 
haemodynamic changes.
Conclusions: Radiation from IMRT caused shrinkage of 
parotid and submandibular glands in NPC patients. It 
also changed the echogenicity and vascular condition 
of the parotid gland. The most significant changes were 
observed at 6 months after radiotherapy.
Advances in knowledge: It is the first paper that reports 
on the longitudinal changes of salivary gland volume, 
echogenicity and haemodynamic parameters altogether 
in NPC patients after radiotherapy. The results are useful 
for the prediction of glandular changes that is associ-
ated with xerostomia, which help to provide timely 
management of the complication when the patients 
attend follow-up visits.
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bodyweight loss, primary tumour shrinkage and parotid gland 
shrinkage during the relatively long (over 7 weeks) IMRT course 
are common. These changes could cause the medial migration 
of the parotid gland, which subsequently increase the parotid 
dose and thereby the chance of developing xerostomia.12,13 It was 
reported in an animal study that portion of parotid and subman-
dibular gland that received 70 Gy were found to have significant 
fibrosis, acinar atrophy and parenchymal loss.14 However, at 
present, the detail mechanism of radiation-induced xerostomia 
is still largely unknown.

The onset of xerostomia was proposed to be due to the damages to 
the signal transduction system plasma membrane of acinar cells in 
early stage. The subsequent result of xerostomia and its recovery 
was associated with the damages of salivary gland stem cells that 
reduce cell renewal ability in later stage.2,15 (Salivary gland recovery 
is usually referred to the increase of saliva flow after it has reached 
the minimum). Due to the heterogeneous nature of the salivary 
gland structure, the stem cells in parotid glands are mainly located 
at the anterolateral segment. It also reported that the superior 
portions of the parotid gland were the most influential region for 
xerostomia recovery.16 It was expected that by keeping the mean 
dose of less than 25 Gy at these regions of the gland, the function 
of the post-RT parotid gland could be better preserved.17

Post-RT ultrasound examination of salivary glands demonstrated 
changes in echotexture from a homogenous speckle pattern in 
normal condition to a heterogeneous structure, which could be 
hypo- or isoechoic to adjacent muscles with multiple hypere-
choic spots.18,19 It has been demonstrated that induced salivary 
gland injury was associated with ultrasound echogenicity and it 
could be effectively assessed by echo histograms.20 Furthermore, 
the changes in vascular condition including haemodynamic 
parameters such as the resistive index (RI) and flow velocity of 
the post-RT parotid gland using Doppler ultrasonography have 
also been reported in which normal gland demonstrated higher 
RIs than post-RT glands.21 Despite some studies have reported 
that there was recovery of the salivary gland after radiotherapy, 
it was not a complete restoration of the normal saliva produc-
tion and the post-RT impact on the glands was longlasting.22 A 
more comprehensive understanding of the progression of the 
morphology and haemodynamic changes with respect to time is 
important to predict the development of xerostomia and provide 
better management for the patients.

MRI has excellent spatial resolution and is superior to CT in 
delineating soft tissue structures and radiation free. Ultraso-
nography can provide supplementary information apart from 
MRI such as the texture of the gland by measuring the echo-
genicity, and haemodynamic information including the peak 
systolic velocity (PSV) and RI using the Doppler ultrasound.21 
Since these two modalities do not involve radiation, they can 
be performed on more regular basis as applied in this longitu-
dinal study. The objectives of this study are to assess the post-RT 
changes of volume of the parotid and submandibular glands, the 
echogenicity and haemodynamic of parotid gland with respect 
to time and evaluate their correlations with the radiation dose 
received in NPC patients treated with IMRT.

METHODS AND MATERIALS
21 NPC patients (age range: 29–62, median age: 51) treated 
with IMRT between April to Dec 2017 were recruited. The 
patient characteristics are shown in Table  1. Written informed 
consent was obtained from the patients to join the study before 
the start of the treatment. Ethics approval was obtained from 
the Research Ethics Committee of the Hong Kong Polytechnic 
University and from Institutional Research Board of the Univer-
sity of Hong Kong. Each patient underwent planning CT of the 
head and neck region covering the whole skull down to the level 
of supra sternal notch. The CT data were transferred to radio-
therapy treatment planning system (Eclipse TM, Varian Medical 
Systems, Palo Alto, CA) where the IMRT plans were generated. 
The routine IMRT plan consisted of nine equally spaced beams 
covering the base of skull down to the lower neck using 6 MV 
photon. The planning target volumes (PTVs) of the nasopharynx 
and neck lymphatics were prescribed with 70 and 66 Gy respec-
tively. Since the parotid and submandibular glands are the major 
salivary glands that produce over 80% of saliva in human,23 only 
these two glands were included in this study. Dose parameters 
of parotid and submandibular glands including maximum dose 
(Dmax), minimum dose (Dmin) and mean dose (Dmean) were 
obtained from their respective dose–volume histograms (DVH) 
generated from the treatment planning system.

The assessment of the volume changes of the parotid and 
submandibular glands were performed using MRI. Each patient 
underwent MRI scans before the start of radiotherapy (pre-RT) 
and at 6, 12, 18 and 24 months post-RT. During the scan, the 
patient lied supine on the examination couch with the head 
straight. For the scanning of parotid gland, multicoil head coil 
was used. The head was adjusted so that the interpupillary line 
was parallel to the couch. For the submandibular gland, the ante-
rior neck coil was used with the patient positioned so that the 
longitudinal alignment light lied in the midline and the hori-
zontal alignment passed through the angle of jaw. The scanning 

Table 1. Patient characteristics (n = 21)

Number of patients (%)
 � Gender

 � Male 13 (61.9%)

 � Female 8 (38.1%)

 � Tumour Stage (AJCC)

 � I 2 (9.5%)

 � II 4 (19.0%)

 � III 7 (33.3%)

 � IV 6 (28.6%)

 � Unknown 2 (9.5%)

 � Chemotherapy

 � Yes 16 (76.2%)

 � No 3 (14.3%)

 � Unknown 2 (9.5%)

AJCC: American Joint Committee on Cancer
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volume covered from the base of skull to the hyoid bone. The 
scanning sequences included: T1 axial and sagittal, and T2 axial 
and sagittal scans with slice thickness of 3 mm and no inter slice 
gap. Images generated from the scanner were transferred to the 
workstation equipped with MIM Maestro (MIM Software Inc, 
Cleveland, OH) where the images were displayed and the delin-
eation of the parotid and submandibular glands were conducted. 
The volume of each gland was calculated by the system.

For each patient, ultrasound scan of the parotid gland was 
performed at similar time intervals as the MRI (i.e. pre-RT, 6, 
12, 18 and 24 months post-RT). Apart from assessing the tissue 
echogenicity of the parotid gland, the haemodynamic parameters 
including vascular resistance [RI and pulsatility index (PI)] and 
blood flow velocity parameters [peak systolic velocity (PSV) and 
end diastolic velocity (EDV)] were measured using the power 
Doppler and spectral Doppler ultrasound. RI and PI indicated 
the pressure exerted on the blood vessels while PSV and EDV 
indicated blood flow velocity during the systole and diastole 
phases of the cardiac cycle respectively. Ultrasound examination 
was conducted using a 12 to 5 MHz linear transducer (Philips 
HDI 5000, Bothell, WA). Prior to the start of ultrasound exam-
ination, the patient lied supine on the examination couch for at 
least 5 min to ensure accurate measurement of resting echoge-
nicity and blood flow. Greyscale ultrasonography was conducted 
for accessing echogenicity of parotid glands and the comparison 
of echogenicity was made with respect to the adjacent masseter 
muscle as hyper-, iso- or hypoechoic. The use of masseter muscle 
as the reference has been reported by previous studies21,24 with 
the rationale that the muscle was situated at the low dose region 
(<20 Gy), and therefore was not expected to have morphological 
changes due to radiation. In addition, this could allow conve-
nient and efficient echogenicity assessment within the same 
image. High sensitivity was utilised in the power Doppler ultra-
sound settings with a low wall filter to allow detection of low 
blood flow. Pulsed repetition frequency (PRF) was 700 Hz with 
medium persistence used. For spectral Doppler ultrasound, the 
sample volume was standardised for 1 mm with a low wall filter. 
The PRF was adjusted until the spectral waveforms were demon-
strated without aliasing. Angle correction was 60° or below. The 
haemodynamic measurements were evaluated at random loca-
tions within three vessels that consistently demonstrated three 
consecutive Doppler spectral waveforms and mean values of RI, 
PI, PSV and EDV were calculated. Trend lines were plotted to 
assess the percentage post-RT changes of parotid and subman-
dibular gland volume, and parotid haemodynamic parame-
ters. The difference of percentage changes of gland volume and 
haemodynamic parameters over time were assessed by repeated 
measures ANOVA. Also, the correlation between these values 
and dose parameters were analysed using the Pearson correlation 
test. The level of significance of the difference in echogenicity 
was calculated by McNemar test. Statistical Product and Service 
Solutions (SPSS) (v. 22) was employed for statistical analyses.

RESULTS
All patients completed the IMRT treatment uneventfully. Similar 
doses were received by the parotid gland and submandibular 
gland, with the maximum dose over 70 Gy and mean dose 

around 37 Gy (Table  2). The percentage volume of the parotid 
gland demonstrated a significant drop from pre-RT to 6 months 
post-RT (p = 0.037) and became fairly stable in the subsequent 
time intervals (p > 0.05 between two consecutive intervals) 
(Figure 1). The overall mean volume reduction was 2.9 ± 4.0 cm3, 
which was 25.8% of the pre-RT parotid gland volume. The 
submandibular gland followed similar trend as the parotid gland. 
Its volume showed a significant drop at 6 months after radio-
therapy (p = 0.031) and demonstrated no significant differences 
in the following time intervals (p > 0.05) (Figure 2). The overall 
mean volume reduction was 1.7 ± 1.0 cm3, which was 21.8% of 
the pre-RT submandibular gland volume. Moreover, there were 
mild correlations observed between post-RT gland volume 
changes with their mean doses received. (Pearson correlation 
test, p = 0.044 and p = 0.050 respectively).

All parotid glands were hyperechoic in comparison with adja-
cent muscle before IMRT treatment. The echogenicity changed 
to either hypoechoic (33.3%–60.0%) or isoechoic (40%–66.7%) 
after 6 months post-RT (Table  3). Significant differences (p < 
0.05) were found between pre-RT and all post-RT time inter-
vals while no significant difference was found between different 
post-RT time intervals. For the haemodynamic study of the 
parotid gland, RI and PI decreased from pre-RT to 6 month 
post-RT, then started to increase in 12 month time interval and 
continued to 24 month post-RT, where the reading was slightly 
higher than that of pre-RT (Figures 3 and 4). Both PSV and EDV 
increased after 6 months post-RT, then followed a decreasing 
trend up to 24 month post-RT (Figures  5 and 6). Similar to 
the percentage gland volume change, there was no significant 
correlation between post-RT parotid haemodynamic changes 
and doses received by the gland (p > 0.05).

DISCUSSION
Our study demonstrated that radiation therapy to NPC patients 
led to shrinkage of the parotid and submandibular glands, which 
was more prominent during the first 6 months after treatment. 
The percentage volume loss in parotid gland than the subman-
dibular gland (25.8% vs 21.8%) in this study was in line with the 
result reported by Wang et al.25 They reported that parotid glands 
received similar mean dose as submandibular glands but experi-
enced greater volume loss. It has been reported that shrinkage of 

Table 2. Parotid and submandibular dose parameters (n = 42)

Mean ± SD
 � Parotid gland  

Dmax 70.9 ± 1.3 Gy

Dmin 12.7 ± 2.1 Gy

Dmean 38.0 ± 4.5 Gy

 � Submandibular gland  

Dmax 71.0 ± 1.6 Gy

Dmin 13.3 ± 3.1 Gy

Dmean 36.9 ± 3.5 Gy

Dmax: Maximum dose; Dmin: Minimum dose; Dmea: Mean dose; SD: 
Standard deviation
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salivary gland during IMRT was associated with the reduction of 
salivary flow rate and subsequently the severity of xerostomia.26 
After the 6 month interval, both gland volumes remained fairly 
constant with no significant increase or decrease during the 
study period. When correlating the current results with that of 
another study by our team,27 it was found that there was rela-
tionship between the radiological (MRI) findings and the clinical 
outcomes including saliva flow rate and severity of xerostomia 
in post-RT patients. The saliva flow rates also demonstrated 

significant percentage reduction at 6 months post-RT when the 
dryness of mouth was most severe. In line with MRI findings, 
these clinical parameters became fairly stable in subsequent time 
intervals after 6 months. In addition, since our study showed 
that there was correlation between glands size changes and 
gland doses, higher radiation dose to the salivary glands would 
cause greater volume reduction. This echoed our previous study 
reporting that gland doses could be used to predict gland volume 
change.22 Although this present study did not assess the gland 

Figure 1. Trend line showing the percentage change of mean parotid gland volume after radiotherapy (n = 42).

Figure 2. Trend line showing percentage change of mean submandibular gland volume after radiotherapy (n = 42).
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size during radiotherapy, such shrinkage was started around 
the middle and late stage of the treatment course according to 
previous studies.28,29 Fung et al30 reported that parotid glands 
shrank at a mean rate of 1.35% per day and demonstrated an 
average medial migration of 0.34 cm after a course IMRT in NPC 
patients. Since changes in location and size during radiotherapy 
course would lead to increase dose to the salivary glands, adap-
tive radiotherapy with re-planning around mid- and/or late 
course of treatment were suggested.28,29,31,32

Salivary glands have been demonstrated to show recovery after 
the completion of radiotherapy.33,34 Van Luijk et al suggested 
that the stem or progenitor cells in the human parotid gland, 
which provided the regenerative capacity of the gland tissue 
in the irradiated region, were responsible for the recovery 
of parotid gland.15 A study by Sim et al11 reported that both 
parotid and submandibular glands demonstrated volume 
recovery after 2 years post-RT, whereas our study demonstrated 
that the gland volumes tended to remain stable at 24 months. 
When comparing to our previous study on NPC patients treated 
by conventional radiotherapy (ConRT),22 our current study on 
IMRT patients experienced less parotid gland volume reduc-
tion (18.8% in IMRT versus 35% in ConRT). This echoed the 

fact that IMRT has the advantage of better sparing the parotid 
gland and less post-RT shrinkage compared to conventional 
RT.6

In this study, all parotid glands were hyperechoic before IMRT 
but changed to iso- or hypoechoic after treatment, with the 
isoechoic status constituting higher percentages in all the three 
post-RT time intervals. Normal parotid glands were hyperechoic 
because before irradiation, the densely packed serous secretory 
acini and translucent secretory granules could act as reflective 
interface, and together with the fatty infiltration constituted the 
relatively hyperechoic echo-pattern.14,35 This result was in line 
with a cross-sectional study by Ying et al.21 The reduced echoge-
nicity in post-RT parotid glands could be due to the diffuse infil-
tration of lymphocytes, vacuolated acinar cell cytoplasm and loss 
of secretory granules leading to poorer cell compactness.14 Such 
changes involving the reduction of acinar cells in the parotid 
gland could be associated with the reduction of saliva production 
leading to xerostomia. In our study, none of the parotid gland 
returned to the hyerechoic status within the 24 months period 
after RT indicating that such changes were not reversible in such 
time frame. Furthermore, our study showed that the change of 
echogenicity occurred at the 6 month post-RT time interval and 

Table 3. Echogenicity study of pre- and post-RT parotid glands

Number of parotid glands (%)
 �  Pre-RT 6 months post-RT 12 months post-RT 18 months post-RT 24 months post-RT

Hyperechoic 42 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Isoechoic 0 (0%) 26 (61.9%) 28 (66.7%) 23 (55.0%) 17 (40%)

Hypoechoic 0 (0%) 16 (38.1%) 14 (33.3%) 19 (45.0%) 25 (60%)

RT: Radiotherapy

Figure 3. Trend line showing percentage change of mean RI after radiotherapy (n = 42). RI, resistive index.
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continued throughout the study period, which echoed the results 
reported by Imanimoghaddam et al.19

Our current study is the first longitudinal study that has moni-
tored the haemodynamic changes of parotid gland in post-RT 
NPC patients. For RI and PI, the indexes dropped during the first 
6 months of post-RT period and gradually recovered afterwards. 
The vascular resistance changes between pre-RT and 6 months 
post-RT could be caused by the lowered compression pressure 
due to the reduced number of secretory acini and granules,22 

which was also the reason for the reduction of gland volume 
at 6 months post-RT. As the reduction became stabilised after 
6 months, the vascular resistance then gradually built up and 
therefore followed an increasing trend. The pattern of PSV and 
EDV changes was roughly the opposite of the vascular resis-
tance (PI and RI). They both demonstrated increase in the first 
6 months after treatment followed by a decreasing trend. It was 
logical to see the increase in vascular velocity increase as the 
resistance decreased. In addition, the initial increasing trend 
might also be due to the inflammatory changes and recovery 

Figure 4. Trend line showing percentage change of mean PI after radiotherapy (n = 42). PI, pulsatility index.

Figure 5. Trend line showing percentage change of mean PSV after radiotherapy (n = 42). PSV, peak systolic velocity.
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action from radiation-induced microvascular damage during the 
first 6 months.36 While for the monitoring period after 6 months, 
the post-RT fibrosis of blood vessels might lead to the recovery 
of vascular resistance indexes; and the less organised vascular 
architecture by acinar atrophy and parenchymal loss contributed 
to the reduced blood velocity.14,23,37 Based on these results, the 
6 month post-RT intervals appeared to be the turning point of the 
volume and haemodynamic parameters changes in the parotid 
gland. Therefore, patient follow-up during the first 6 months 
after RT is important to monitor the condition of xerostomia 
so as to provide prompt patient care. The current study demon-
strated that changes in haemodynamic parameters were not 
dependent on the radiation dose received by the parotid gland, 
which was in line with our previous cross-sectional study.22 It 
can therefore be speculated that with mean dose of over 35 Gy to 
the salivary gland (as recorded in this study), similar pattern of 
vascular changes would be expected in the post-RT NPC patients 
regardless of the exact absolute dose.

Furthermore, it is worth mentioning that recently development 
of radiomics has been used to predict radiation-induced xero-
stimia. Examples of these include parotid gland fat-related MRI 

biomarkers,38 dosiomic and demographic features,39 F-FDG 
positron emission tomography image biomarkers40 and CTand 
MR radiomics.41 Such technology will also facilitate the prompt 
management of xerostomia in patients after radiotherapy.

CONCLUSIONS
With regard to IMRT of NPC patients, radiation caused shrinkage 
of the parotid and submandibular glands. The most significant 
volume reduction took place at 6 month post-RT. All parotid 
glands were hyperechoic before radiotherapy but changed to 
either iso- or hypoechoic after the completion of treatment. In 
terms of haemodynamic status, parotid glands demonstrated 
increased in vascular resistance (PI and RI) in the first 6 months 
and started to decrease afterward, whereas the vascular velocity 
(PSV and EDV) showed opposite trends relative to the vascular 
resistance. There were mild correlations between the mean gland 
dose and the changes in gland size, but not with the haemody-
namic parameters.
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Figure 6. Trend line showing percentage change of mean EDV after radiotherapy (n = 42). EDV, end diastolic velocity.
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