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Abstract In this paper, we develop a surrogate modelling approach for capturing the output
field (e.g. the pressure head) from groundwater flowmodels involving a stochastic input field
(e.g. the hydraulic conductivity). We use a Karhunen–Loève expansion for a log-normally
distributed input field and applymanifold learning (local tangent space alignment) to perform
Gaussian process Bayesian inference using Hamiltonian Monte Carlo in an abstract feature
space, yielding outputs for arbitrary unseen inputs. We also develop a framework for forward
uncertainty quantification in such problems, including analytical approximations of the mean
of the marginalized distribution (with respect to the inputs). To sample from the distribution,
we present Monte Carlo approach. Two examples are presented to demonstrate the accuracy
of our approach: a Darcy flow model with contaminant transport in 2-d and a Richards
equation model in 3-d.

Keywords Groundwater flow models · Uncertainty quantification · Surrogate model ·
Karhunen–Loève expansion · Manifold learning

1 Introduction

Groundwater contamination, caused by landfills, wastewater seepage, hazardous chemical
spillage, dumping of toxic substances or discharge from industrial processes (Karatzas 2017),
is a major concern for both public and environmental health. Understanding the mechanisms
and predicting the transport of contaminants through soils is therefore an important topic in
groundwater flow modelling.

The control of groundwater quality relies on knowledge of the transport of chemicals
to the groundwater through soil. The efficacy of remedial treatment and management of
contaminated land depends on the accuracy of models used for the simulation of flow and
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solute transport. Modelling and simulation of hydraulic phenomena in soil are, however,
hampered by the complex and heterogeneous nature of soils, as well as the broad range of
influential factors involved. A number of simplified models have been developed to describe
the small-scale physical, chemical (Boi et al. 2009; Foo and Hameed 2009; Vomvoris and
Gelhar 1990), and biological mechanisms (Schfer et al. 1998; Barry et al. 2002) that affect
unsaturated flow and contaminant transport.

A current challenge in modelling solute transport in soils lies in characterizing and quanti-
fying the uncertainties engendered by the natural heterogeneity of the soil. Such uncertainty
can be vital for decision-making. Despite strong evidence from field-scale observations and
experimental studies in relation to the effects of soil heterogeneity on the transport of con-
taminants (Al-Tabbaa et al. 2000; Kristensen et al. 2010), relatively few numerical models
incorporate the effects of this uncertainty (Feyen et al. 1998; Aly and Peralta 1999; Sreekanth
and Datta 2011a, 2014; Herckenrath et al. 2011).

Monte Carlo (MC) sampling is the default method for investigating uncertainties in a
system (e.g. propagating uncertainty in the inputs), including in the context of groundwater
flow modelling (Fu and Gomez-Hernandez 2009; Paleologos et al. 2006; Kourakos and
Harter 2014; Maxwell et al. 2007; Herckenrath et al. 2011). MC estimates are extracted from
multiple runs of the model using different realizations of the inputs, sampled from some
distribution. While convergence is guaranteed as the number of runs increases, the slow rate
of convergence demands (typically) a few thousand runs in order to extract reliable estimates
of the statistics. If the model is computationally expensive, such a brute-force approach can
be extremely time-consuming or perhaps even infeasible (Maxwell et al. 2007). Analytical
stochastic methods have also been employed (Gelhar and Axness 1983; Gelhar 1986). Such
methods can be useful for conceptual understanding of the transport process but are not
applicable to practical scenarios.

Such limitations and shortcomings could be resolved in theory by using surrogate models
(also known as metamodels, emulators or simply surrogates) in place of the complex numeri-
cal codes; that is, computationally efficient approximations of the codes based on data-driven
or reduced-order model (ROM) approaches. Surrogate models have been used in a limited
number of groundwater flow modelling problems (Aly and Peralta 1999; Bhattacharjya and
Datta 2005; Kourakos andMantoglou 2009; Sreekanth andDatta 2011b; Ataie-Ashtiani et al.
2014) (we refer to Razavi et al. 2012; Ketabchi and Ataie-Ashtiani 2015 for reviews of the
topic) and are typically based on artificial neural networks (ANNs) for approximating a small
number of outputs within an optimization task. For example, Bhattacharjya and Datta used
an ANN to approximate the salt concentration in pumped water at 8 pumping wells for 3
different times, in order to maximize the total withdrawal of water from a coastal aquifer
while limiting the salt concentration (Bhattacharjya and Datta 2005). Similarly, Kourakos
and Mantoglou used an ANN model to optimize 34 well pumping rates in a coastal aquifer
(Kourakos and Mantoglou 2009).

Another popular surrogate modelling approach is the stochastic collocation method
(Babuška et al. 2007) in which the approximate response is constrained to a subspace, typ-
ically spanned by a generalized Polynomial Chaos basis (Xiu and Karniadakis 2002). The
coefficients in this basis are approximated via a collocation scheme. While these schemes
yield good convergence rates, they scale poorly with the number of collocation points (Rajabi
et al. 2015). Although sparse grid methods based on the Smolyak algorithm (Smolyak 1963)
help to alleviate the increased computational burden, the resulting schemes are still severely
limited by the input space dimensionality and tend to perform poorly with limited observa-
tions (Xiu and Hesthaven 2005; Xiu 2007; Nobile et al. 2008; Ma and Zabaras 2009).
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When data are scarce, we may turn to statistical Bayesian approaches such as Gaussian
process (GP) regression. GPs are stochastic processes used for inferring nonlinear and latent
functions. They are defined as a families of normally distributed random variables, indexed
in this case by the input variable(s). GPs were first used for surrogate models in the seminal
papers of Currin et al. (1988) and Sacks et al. (1989). The first applications of GP surro-
gate models to uncertainty quantification can be found in O’Hagan and Kingman (1978).
Kernel methods such as GP models are well-established tools for analysing the relationships
between input data and corresponding outputs of complex functions. Kernels encapsulate the
properties of functions in a computationally efficient manner and provide flexibility in terms
of model complexity (the functions used to approximate the target function) though variation
of the functional form and parameters of the kernel.

GPs excel when data are scarce since they make a priori assumptions with regard to the
relationship between data points. Comparatively, ANNsmake fewer a priori assumptions and
as a result require much larger data sets; they are, therefore, infrequently used for uncertainty
quantification tasks. In the context of groundwater flow, very few applications of GPs can be
found (Bau and Mayer 2006; Hemker et al. 2008; Borgonovo et al. 2012), the most likely
explanations for which are the difficulty in implementing multioutput GP models and the
lack of available information on, and software for GP modelling in comparison with ANNs.
Existing applications again deal with low-dimensional outputs; e.g. in Bau andMayer (2006),
the authors use a GP model to learn 4 well extraction rates for a pump-and-treat optimization
problem.

Our aim in this paper is to develop a surrogate model for the values of a field variable in a
groundwater flow model, e.g. the pressure, pressure head or flow velocity, at a high number
of points in the spatial domain, in order to propagate uncertainty in a stochastic field input,
e.g. the hydraulic conductivity. In such cases, simplified covariance structures (Conti and
O’Hagan 2010) for the output space (response surface) or dimensionality reduction for the
input and/or output space can be used. In Higdon et al. (2008) Higdon et al. use principal
component analysis (PCA) to perform linear, non-probabilistic dimensionality reduction
on the response in order to render a GP model tractable (independent learning of a small
number of PCA coefficients). Such linear approaches (PCA,multidimensional scaling, factor
analysis) are applicable only when data lie in or near a linear subspace of the output space.

For more complex response surfaces, manifold learning (nonlinear dimensionality reduc-
tion) can be employed, using, for example, kernel principal component analysis (kPCA),
diffusion maps (Xing et al. 2016 or isomaps Xing et al. 2015). In contrast, kPCA was used
to perform nonlinear, non-probabilistic dimensionality reduction of the input space in Ma
and Zabaras (2011). This can useful when the input space is generated from observations
(experimental data), but when the form is specified we can use linear dimension reduction
methods such as the Karhunen–Loève (KL) expansion (Wong 1971).

In this paperwe usemanifold learning in the form of local tangent space alignment (LTSA)
(Zhang and Zha 2004) to performBayesian inference (GP regression/emulation withMarkov
ChainMonte Carlo) in an abstract feature space and use an inverse (pre-image) map to obtain
the output field at a finite number of points for an arbitrary input. In contrast to diffusionmaps,
isomaps and kPCA, LTSA is a local method in that it approximates points on the manifold on
localized regions (patches), rather than directly seeking a global basis for the feature space.
This can potentially provide more accurate results, although this is of course dependent upon
the sampling methodology for the points and the quality of the reconstruction mapping.

The aforementioned approach is combined with a Karhunen–Loève expansion for a log-
normally distributed input field and a framework for UQ is developed. We derive analytical
forms for the output distribution by pushing the feature space Gaussian distribution through a

123



42 C. Gadd et al.

locally linear reconstructionmap.Additionally,we derive analytical estimates of themoments
of the predictive distribution via approximate marginalization of the stochastic input. To
sample from the hyperparameter and signal precision posteriors, we employ a Hamiltonian
Monte Carlo scheme and use MC sampling to approximately marginalize the stochastic
input distribution. The accuracy of the approach is demonstrated via two examples: a linear,
steady-state Darcy’s Law with a contaminant mass balance in a 2-d domain (aquifer) and a
time-dependent Richards equation evaluated at a fixed time in a 3-d domain. In both cases
we consider a stochastic hydraulic conductivity input.

The rest of the paper is organized as follows. In Sect. 2 we provide a detailed problem
statement and outline the proposed solution. In Sect. 3 we outline LTSA, and in Sect. 4 we
outline GP regression. In Sect. 5 we provide full details of the coupling of the methods and
we demonstrate how the approach can be used to perform UQ tasks. In Sect. 6 we present
the examples and discuss the results.

2 Problem Statement

Consider a well-defined steady-state partial differential equation (PDE) with a scalar,
isotropic random field input (e.g. a permeability or hydraulic conductivity), and a response
(output) consisting of a scalar field, e.g. pressure head, concentration or flow velocity. We
may generalize our approach to multiple or vector fields but in order to simplify the pre-
sentation we focus on a single scalar field. We can also apply the method we develop to
dynamic problems by focusing on the spatial field at a given fixed time (the second example
we present). For an arbitrary input field realization, solutions to the PDE are found using a
numerical code (simulator, or solver) on a spatial mesh with ky fixed degrees of freedom,
e.g. grid points in a finite difference grid, control volume centres in a finite volume mesh or
spatial nodes in a finite element mesh combined with a nodal basis.

We denote the input field by K (x), where x ∈ R ⊂ R
d , d ∈ {1, 2, 3} denotes a spatial

location and the notation makes explicit the spatial dependence. The model output (a scalar
field) is denoted by u(x; K ), i.e. it is a function of x that is parameterized by K (x). The random
input K (x) is defined on the whole ofR and therefore requires a discrete (finite-dimensional)
approximation in order to obtain a numerical solution. Let xk ∈ Rd , k = 1, . . . , ky be a
set of nodes or grid points and suppose that the simulator yields discrete approximations

{uk = u(xk; K )}kyk=1 of the output field u(x; K ) in each run. Our goal is to approximate these
simulator outputs for an arbitrary K .

2.1 Input Model: Karhunen–Loève Expansion

Let (�,F,P) be a probability space, with sample space �, event space F and probability
measure P. We can explicitly signify the randomness of the input by writing K (x, ω), where
ω ∈ �. For simplicity, and where it will not cause confusion, we suppress the dependence
on ω (the same applies to other random processes). We assume that K (x) is log-normal (to
avoid unphysical, i.e. negative, realizations), so is of the formK (x, ω) = exp(Z(x, ω)),where
Z(x, ω) is a normally distributed field (aGP1 indexed by x). For each x ∈ R, Z(x, ·) : � → R

is a randomvariable defined on the (common) probability space (�,F,P). For a fixedω ∈ �,

1 Technically the process is a random field if the index (here x) lies in RL where L > 1 but the convention in
the great majority of the literature is to use the term Gaussian process even in such cases.
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Z(·, ω) : R → R is a deterministic function of x called a realization or sample path of the
process. The mean and covariance functions of Z(x, ω) are defined as:

mZ (x) = E[Z(x, ω)] =
∫

�

Z(x, ω)dP(ω),

cZ (x, x′) = E
[
(Z(x, ω) − mZ (x))(Z(x′, ω) − mZ (x′))

]
,

(1)

respectively, in which E[·] is the expectation operator. Given the covariance and mean func-
tions for Z(x, ω), the most widely used finite-dimensional approximation is based on a
Karhunen–Loève (KL) expansion (Wong 1971). Assume that Z(x, ω) is mean-square con-
tinuous (limδx→0 E[(Z(x + δx, ω) − Z(x, ω))2] = 0) and that Z(x, ω) ∈ L2(R × �)

(
∫
R E[|Z(x, ω)|2] < ∞), and is thus a second-order process. The KL theorem states that we

may expresses Z(x, ω) as a linear combination of deterministic L2(R)-orthonormal functions
w j (x), with random L2(�)-orthonormal coefficients ξ j (ω):

Z(x, ω) = mZ (x) +
∞∑
j=1

√
λ jξ j (ω)w j (x), (2)

where λ1 ≥ λ2 ≥ · · · > 0 and {w j (x)}∞j=1 are, respectively, the eigenvalues and eigenfunc-
tions of an integral operator with kernel cZ (x, x′):∫

R
cZ (x, x′)w j (x′)dx′ = λ jw j (x). (3)

The random coefficients are given by:

ξ j (ω) = 1√
λ j

∫
R

(Z(x′, ω) − mZ (x′))w j (x′)dx′, (4)

and are independent, standard normal (ξ j ∼ N (0, 1)), with Var(
√

λ jξ j (ω)) = λ j , where
Var(·) denotes the variance operator. Here and throughout, N (·, ·) denotes a normal distri-
bution, in which the first argument is the mean (mean vector) and the second is the variance
(covariance matrix).

The sum (2) can be truncated by virtue of the decay in the eigenvalues for increasing
j . Discretizing the eigenvalue problem (3) using finite differencing at the nodes xk ∈ R,
k = 1, . . . , ky , assuming that they are uniformly distributed, leads to an eigenvalue problem

for the covariance matrix C = [
cZ (xk, x j )

]ky
k, j=1:

CZw j = λ jw j , (5)

where the kth component w j,k of w j ∈ R
ky , j = 1, . . . , ky , is equivalent to the eval-

uation of eigenfunction w j at the node xk , k = 1, . . . , ky . Defining the random vector
Z := (Z(x1), . . . , Z(xky ))

T : � → R
ky , we can write:

Z = mZ +
ky∑
j=1

√
λ jξ j (ω)w j , (6)

wheremZ = (mZ (x1), . . . ,mZ (xky ))
T and ξ j ∼ N (0, 1) are independent random variables

(note that we have kept the notation ξ j and λ j used in the continuous case in order to avoid
notational clutter). This provides discrete realizations of Z(x, ω), and the expansion in (6)
can be truncated by virtue of the decay in λ j for some kξ < ky , chosen so that the generalized
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variance satisfies
∑kξ

j=1

√
λ j/

∑ky
j=1

√
λ j > ϑ for some specified tolerance 0 < ϑ < 1. We

can then obtain discrete realizations K = (K1, . . . , Kky )
T of K (x, ω) via:

Kk = K (xk, ω) = exp

⎛
⎝mZ (xk) +

kξ∑
j=1

√
λ jξ j (ω)w j,k

⎞
⎠ . (7)

The discrete inputK can then replaced by the randomvector defined by ξ = (ξ1, . . . , ξkξ )
T ∼

N (0, I), the coefficients of which are independent standard normal. We may then write

u(xk; ξ) for the KL approximation to u(xk; K ), at the nodes {xk}kyk=1.
We note that different methods, including different quadrature rules or the use of projec-

tion schemes and Nystrom methods (Wan and Karniadakis 2006) can be used to solve the
eigenvalue problem (3), all of which lead to a generalized eigenvalue problem in place of
(5) (Betz et al. 2014). For example, if the finite element method is used, we may express

the eigenfunctions as w j (x) = ∑
k l j,kψk in terms of the finite element basis {ψk}kyk=1 and

perform a Galerkin projection of (3) onto span(ψ1, . . . , ψky ) to yield a generalized eigen-

value problem for {λ j }kyj=1 and the undetermined coefficients {l j,k}kyj,k=1 (Ghanem and Spanos
2003).

2.2 Statement of the Surrogate Model Problem

The simulator can now be considered as a mapping η : X → Y (assumed to be continuous
and injective), where ξ ∈ X ⊂ R

kξ is the permissible input space and y ∈ Y ⊂ R
ky is the

permissible output space or response surface consisting of the discrete field:

y = η(ξ) := (u(x1; ξ), . . . , u(xky ; ξ))T . (8)

Our aim is to develop a surrogate to make fast, online predictions of η(ξ), using training data
from a limited number of solver runs at the design points ξn , n = 1, . . . , N . The training data

can be expressed compactly as a matrix Y = [
y1, . . . , yN

]T ∈ R
N×ky and we can define

			 = [
ξ1, . . . , ξ N

]T ∈ R
N×kξ . The data set is thus D′ = {			,Y}.

The high dimensionalities of the (original) input and output spaces pose great challenges
for surrogatemodel development. The input space dimensionality can be reduced as described
above. The intrinsic dimensionality of the output space is significantly lower than ky by
virtue of correlations between outputs for different inputs, as well as physical constraints
imposed by the simulator. This suggests that we treat Y as a manifold and use manifold
learning/dimensionality reduction to perform Bayesian inference on a low-dimensional (fea-
ture) space F that is locally homeomorphic to Y . Below we introduce the manifold learning
method employed, before recasting the emulation problem as one of inference in the feature
space, together with a pre-image (inverse) mapping to obtain solutions in Y for arbitrary
inputs ξ .

3 Dimensionality Reduction and Manifold Learning: Feature Space
Representations

Roughly speaking, a kz-dimensional manifold Y is a set for which all points can be param-
eterized by kz independent variables. A parameterization is called a coordinate system (or a
chart) and it is not necessarily the case that a single coordinate system can describe the entire
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manifold. To characterize the manifold in such cases, we can introduce overlapping patches,
each with its own system of (non-unique) coordinates.

Formally speaking, a smooth kz-manifold is defined as a topological space Y that is
equipped with a maximal open cover {Uα}α∈� consisting of coordinate neighbourhoods (or
patches) Uα , together with a collection of homeomorphisms (coordinate charts) φα : Uα →
φα(Uα) ⊂ R

kz onto open subsets φα(Uα) ⊂ R
kz such that φα(Uα ∩Uβ) and φβ(Uα ∩Uβ) are

open in R
kz ; we say that φα and φβ are compatible. Moreover, the transition maps defining

a change of coordinates φβ ◦ φ−1
α are diffeomorphisms for all α, β ∈ �.

Let A = {(Uα, φα)}α∈� be an atlas on Y ({Uα}α∈� is a cover and the {φα}α∈� are
pairwise compatible). Two smooth curves γ0, γ1 : R → Y are called y-equivalent at a point
y ∈ Y if for every α ∈ � with y ∈ Uα , we have γ0(0) = γ1(0) = y and furthermore
(d/dt)|t=0φα(γ0(t)) = (d/dt)|t=0φα(γ1(t)). With this equivalence relation, the equivalence
class of a smooth curve γ with γ (0) = v is denoted [γ ]p and the tangent space TyY of Y at
y is the set of equivalence classes {[γ ]p : γ (0) = y}. The tangent space is a kz-dimensional
vector space, which is seen more clearly by identifying TyY with the set of all derivations at
y [linear maps from C∞(Y) to R satisfying the derivation (Liebnitz) property].

We assume that the output space Y ⊃ Y is a manifold of dimension kz � ky embedded in
R
ky . Representations of points in Y and corresponding representations in the feature or latent

space F ⊂ R
kz can be related by some smooth and unknown function f : F → Y .Manifold

learning is concerned with the reconstruction of f and its inverse given data points on the
manifold, whereas dimensionality reduction is concerned with the representation of given
points in Y by corresponding points in the feature space F . Here we are interested primarily
in dimensionality reduction and use Local Tangent Space Alignment (LTSA) (Zhang and Zha
2004). The tangent space at a point y provides a low-dimensional linear approximation of
points in a neighbourhood of y. We can approximate each point y in a data set using a basis
for TyY and use these approximations to find low-dimensional representations in a global
coordinate system, by aligning the tangent spaces using local affine transformations (Zhang
and Zha 2004). We note that this assumes the existence of a single chart (homeomorphism)
f−1.

Consider a noise-free model in which the data Y are generated by the smooth function f
defined above:

y = f(z) = (
f1(z), . . . , fky (z)

)T
, (9)

where z = (z1, . . . , zkz )
T ∈ F is a latent/feature vector (i.e. the low-dimensional represen-

tation of the point y). Under the assumption that f is smooth, it can be approximated using
a first-order Taylor expansion in a neighbourhood �(z) of a point z: f (̂z) = f(z) + Jf (z) ·
(̂z − z) + O(‖̂z − z‖2), ∀̂z ∈ �(z), where Jf (z) ∈ R

ky×kz is the Jacobi matrix of f at z,
the i, j th entry of which is ∂ fi/∂z j . Here and throughout, || · || denotes a standard Euclidean
norm.

A basis for the tangent space TyY of Y (a kz-dimensional linear subspace of Rky ) at
y = f(z) is given by the span of the column vectors of Jf . The vector ẑ − z then gives
the coordinate of f (̂z) in the affine subspace f(z) + TyY . Jf cannot be computed explicitly
without knowledge of f . Suppose we can express TyY in terms of a matrix Qz, the columns
of which form an orthonormal basis for TyY:

J f (z) · (̂z − z) = Qzπππ
∗
z , (10)
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where πππ∗
z = QT

z Jf (z) · (̂z − z) ≡ Pz (̂z − z) is still unknown. Combining Eq. (10) with the
Taylor expansion, we can, however, find an approximation ofπππ∗

z consisting of an orthogonal
projection of f (̂z) − f(z) onto TyY:

πππz ≡ QT
z (f (̂z) − f(z)) = πππ∗

z + O (‖̂z − z‖2) , (11)

provided that the basis Qz is known for each z. Truncating this expansion, the global coor-
dinate z then satisfies: ∫ ∫

�(z)
‖Pz (̂z − z) − πππz‖d̂z ≈ 0. (12)

If the Jacobian is of full column rank, we can find a local affine transformation:

ẑ − z ≈ P−1
z πππz ≡ Lzπππz. (13)

The transformation Lz aligns the local coordinate with the global coordinate ẑ − z for f (̂z).
We then find the global coordinate ẑ and affine transformationLz byminimizing

∫ ∫
�(z) ‖̂z−

z − Lzπππz‖d̂z.
We note that the orthogonal basis Qz for each tangent space is still unknown. Consider

a data set yn , n = 1, . . . , N , sampled with noise εn , n = 1, . . . , N , from the underlying
nonlinear manifold:

yn = f(zn) + εn . (14)

For any yn , let Yn = [yn1 . . . ynP ] be the matrix containing the P nearest neighbours,
including yn , where distances are measured using the standard Euclidean metric. The best
kz-dimensional local affine subspace approximation for the points in Yn is given by:

argmin
y,���,Q

P∑
k=1

‖ynk − (y + Qπππk) ‖22 = argmin
y,���,Q

‖Yn − (yeT + Q���)‖22, (15)

where the orthonormal matrix Q has kz columns, ��� = [πππ1 . . .πππ P ] and e is a vector of all
ones. The optimal y is given by the mean of {ynk }k , denoted ȳn , and the optimalQ is given by
Qn , the columns of which are the kz left singular vectors of Yn

(
I − eeT /P

)
corresponding

to the kz largest singular values. Lastly,��� is given by���n :

���n = QT
n Yn

(
I − 1

P
eeT

)
=

[
πππ

(i)
1 , . . . ,πππ

(i)
K

]
, (16)

where πππ
(i)
k = QT

n

(
ynk − ȳn

)
. Consequently:

ynk = ȳn + Qnπππ
(l)
k + ϕ

(l)
k , (17)

whereϕ
(l)
k = (

I − QnQT
n

) (
ynk − ȳn

)
is the reconstruction error. Havingminimized the local

reconstruction error, we would like to find the global coordinates Z = [z1 . . . zN ] ∈ R
kz×N ,

corresponding to data points Y, given the local coordinates πππ
(l)
k . The global coordinates znk

of the corresponding points ynk are chosen to respect the local geometry as determined by

the πππ
(l)
k :

znk = z̄n + Lnπππ
(l)
k + ε

(l)
k , k = 1, . . . , P, l = 1, . . . , N ,

Zn = 1

P
ZneeT + Ln���n + En,

(18)
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where z̄n is the mean of {znk }k , Zn = [zn1 . . . znP ] and En = [ε(l)
1 . . . ε

(l)
P ], given by En =

Zn(I − eeT /P) − Ln���n . We find the latent points and local affine transformations Ln that
minimize the local reconstruction error ‖En‖F , in which || · ||F denotes a Frobenius norm.
The optimal Ln are given by Ln = Zn(I−eeT /P)���+

n , and consequently the errors are given
byEn = Zn(I−eeT /P)(I−���+

n ���n), where���+
n is the Moor–Penrose pseudo-inverse of���n .

We define a 0-1 selection matrix Sn ∈ R
N×P such that ZSn = Zn . The global coordinates

can then be selected according to a minimization of the overall reconstruction error:

argmin
Z:ZTZ=I

∑
n

‖En‖2F = argmin
Z:ZTZ=I

‖ZSW‖2F , (19)

where S = [S1 . . . SN ], and W = diag (W1, . . . ,WN ), in which Wn = (I − eeT /P)(I −
���+

n ���n). The constraint ZTZ = I ensures that the solutions are unique. The vector e is an
eigenvector of B ≡ SWWTST ∈ R

N×N corresponding to a zero eigenvalue. Arranging
the eigenvalues in increasing order, the optimal Z is given by Z′ = [ζζζ 2 . . . ζζζ kz+1]T , where
ζζζ 2, . . . , ζζζ kz+1 ∈ R

N are the eigenvectors of B corresponding to the (kz + 1)st smallest
eigenvalues excluding the first (zero) eigenvalue. This defines a map f− : y �→ z, z = f−(y)
that approximates f−1 : Y → F for the given data points:

zn = f−1(yn) ≈ f−(yn) = z′
n,:. (20)

where z′
n,: is the nth column of Z′.

Fixing the number of neighbours assumes that themanifold has a certain smoothness,while
using the same number of neighbours for every tangent space assumes a global smoothness.
These assumptions may result in inaccurate predictions, in which case we can use adaptive
algorithms (Zou and Zhu 2011; Zhang et al. 2012; Wei et al. 2008). Similar adaptations can
be made for other issues, such as robustness in the presence of noise (Zhan and Yin 2011).

We remark that LTSA is a nonparametric technique, in that an explicit form of f is not
available. This means that the out-of-sample problem does not have a parametric (explicit)
solution. In other words, application of LTSA (the map f−) to a point that was not in the
data set can only be achieved by rerunning the entire algorithm with an updated data set that
appends the new point. Nonparametric solutions to the out-of-sample problem have been
developed, and one that is applicable to LTSA can be found in Li et al. (2005).

If we map points y ∈ Y to F using f− and perform inference in F , an approximation
of f is required in order to make predictions in the physical space Y . This is referred to as
the pre-image problem in manifold learning methods: given a point in the low-dimensional
space, find a mapping to the original space (manifold). We outline an approximation of the
pre-image map in the next section.

3.1 Pre-image Problem: Reconstruction of Points in the Manifold Y

Given a point z ∈ F in latent space, we require the corresponding point in the original
physical space y ∈ Y . Let zk be the neighbour nearest to z. According to Eq. 18:

πππ(k)∗ = L−1
k (z − z̄k) − L−1

k ε(k)∗ . (21)

By Eq. 17 we can also define:

y = ȳk + Qkπππ
(k)∗ + ϕ(k)∗ . (22)
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Consequently, we have the following approximate pre-image mapping f̂ : F → Y (approx-
imation of f):

y = f(z) ≈ f̂(z) = ȳk + Qk

(
L−1
k (z − z̄k) − L−1

k ε(k)∗
)

+ ϕ(k)∗
= ȳk + QkL

−1
k (z − z̄k) + E,

(23)

where k = argminn ‖z − zn‖ and E = −QkL
−1
k ε

(k)∗ + ϕ
(k)∗ incorporates the error terms.

4 Gaussian Process Emulation in Feature Space

In Sect. 2.2, the surrogate model problem was defined as one of approximating the simulator
mapping η : X → Y given the data set D′ = {			,Y} derived from runs of the simulator at
selected design points {ξn}Nn=1. We can instead consider the simulator as a mapping ηF ≡
f−1 ◦ η : X → F from the input space to the feature space, i.e. ηF (·) = f−1(η(·)).
Application of LTSA to points on the manifold approximates this mapping with f− ≈ f−1.
The original data set D′ = {			,Y} is replaced by the equivalent data set D = {			,Z} or
D = {

(ξn, zn)
}N
n=1, where zn = f−(yn) ≈ f−1(yn) = f−1(η(ξn)) = ηF (ξn), and our

aim is now to approximate the mapping ηF (·). Returning a general point z = ηF (ξ) to the
corresponding point y in the space Y is discussed in the next section.

In this work, a GP model is used to infer the mapping ηF : ξ �→ z by treating it as a
realization of a (Gaussian) stochastic process indexed by the inputs ξ . Specifically, we learn
each component of z separately (assuming independence) using a scalar GP model. Here
and throughout, GP(·, ·) denotes a GP, in which the first argument is the mean function and
the second is the covariance (kernel) function.

Let zn,i , i = 1, . . . , kz , denote the i th component of zn , n = 1, . . . , N . The proba-
bilistic model is zn,i = hi (ξn) + ηn,i , in which the signal noise distribution is p(ηn,i ) =
N (0, β−1

i ) ∀n, where βi is the precision. We assume independent GP priors hi (ξ) ∼
GP(0, ch(ξ , ξ ′; θ i )), where ch(ξ , ξ ′; θ i ) is the kernel function (of the same form across
i) in which θ i is a vector of hyperparameters pertaining to component i . The latent functions
hi (ξ), i = 1, . . . , kz , can be thought of as independent draws from the GP. Using the notation
hn,i = hi (ξn) we can define a matrix H ∈ R

N×kz with columns h:,i = (h1,i , . . . , hN ,i )
T

(z:,i similarly defines the vector of the i th features across all samples). By the independence
assumption:

p(H|�,�) =
kz∏
i=1

p(h:,i |�, θ i ), (24)

where� = [θ1 . . . θkz ]. By the properties of GPs, we have p(h:,i |�, θ i ) = N (0,Ci ), where
Ci ∈ RN×N is a kernel matrix, the n,mth entry of which is ch(ξn, ξm; θ i ). Thus:

p(Z|�,�,βββ) =
∫ kz∏

i=1

N∏
n=1

p(zn,i |hn,i , βi )p(h:,i |�, θ i )dH

=
kz∏
i=1

N (0,Ci + β−1
i I),

(25)

where p(z:,i |h:,i , βi ) = N (h:,i , β−1
i I) by virtue of the noise model, andβββ = (β1, . . . , βkz )

T .
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We place gamma priors on all hyperparameters θ i and signal noise precisions βi . The
parameterization of these priors is determined through an initial maximum likelihood run.
We choose these parameters such that themean is equal to themaximum likelihood value, and
so that we obtain an appropriate variance. Let z ∈ F be the feature vector corresponding to
the test (new) input ξ . The predictive distribution for the i th component zi of z (i = 1, . . . , kz)
is given by:

p (zi |ξ ,D, θ i , βi ) = N (
μi (ξ), σ 2

i (ξ)
)
,

μi (ξ) = ch(ξ ,			; θ i )
T

(
Ci + β−1

i I
)−1

z:,i ,

σ 2
i (ξ) = ch (ξ , ξ ; θ i ) − ch(ξ ,			; θ i )

T
(
Ci + β−1

i I
)−1

ch(ξ ,			; θ i ),

(26)

where ch(ξ ,			; θ i ) = (ch(ξ1, ξ ; θ i ), . . . , ch(ξ N , ξ ; θ i ))
T ∈ R

N is the cross-covariance
between z and zn , n = 1, . . . , N . Thus, the latent variable GP prediction is distributed as:

p(z|ξ ,D,�,βββ) = N (μμμz(ξ),�z(ξ)),

μμμz(ξ) = (μ1(ξ), . . . , μkz (ξ))T ,

�z(ξ) = diag(σ 2
1 (ξ), . . . , σ 2

kz (ξ)),

(27)

where the components of μμμz(ξ) ∈ F are given by the second of Eqs. (26) and �z(ξ) ∈
R
kz×kz is a diagonal covariance matrix, in which the i th diagonal element corresponds to the

predictive variance given by the third of Eqs. (26), while the off-diagonal elements are zero
due to the assumption of independent GPs across i .

4.1 Sampling Hyperparameter Posterior with Hybrid Monte Carlo

We explore the hyperparameter posterior distributions using a hybrid Monte Carlo (HMC)
scheme. HMC is aMetropolis method that uses gradient information. It exploits Hamiltonian
dynamics to explore state spaces based on the likelihood probability, and consequently limits
the random walk behaviour. The Hamiltonian is defined as an energy function in terms of a
position vector q(t) and a momentum vector p(t) at time t (unrelated to the time component
in the solver): H (q(t),p(t)) = EU (q(t)) + EK (p(t)), where EU (q) is the potential energy
and EK (p) is the kinetic energy, the sum of which is constant. The evolution of this system
is then defined by the partial derivatives of the Hamiltonian:

dp
dt

= −∂H

∂q
,

dq
dt

= +∂H

∂p
. (28)

We define the potential energy as the negative log likelihood with an additive constant C ,
chosen for convenience: EU (q(t)) = − log (likelihood (q(t))) − log (prior (q (t))). Further-
more, following convention we define the kinetic energy as:

EK (p(t)) = 1

2
p(t)M−1

K p(t), (29)

whereMK is a symmetric, positive definite mass matrix, chosen to be a scalar multiple of the
identitymatrix.With this choice, the potential energy is the negative log probability density of
a multivariate Gaussian distribution with covarianceMK and matches the classical definition
of potential energy.
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5 Predictions

The physical models we consider have an unknown, stochastic input (e.g. the hydraulic con-
ductivity). This represents a lack of knowledge of the input, which induces a random variable
response (e.g. the pressure head). Quantifying the distribution over the response is referred
to as a pushforward or forward problem. The pushforward measure is the distribution over
the response, or quantity of interest derived from the response.2 Based on the methods of the
preceding sections, we now present an emulation framework for interrogating the pushfor-
ward measure (the response distribution). We begin by describing in the next section how a
single realization of the random variable response may be obtained given a single realization
of the stochastic input. In Sect. 5.2, we then discuss how to quantify the pushforwardmeasure
(extract relevant statistics of the response).

5.1 Outputs Conditioned on Inputs

Due to the nature of the emulator, the prediction of a point z ∈ F is normally distributed.
This distribution captures uncertainty in the predictions as a consequence of limited and
noise corrupted data. A common challenge when using reduced dimensional representations
is analytically propagating this distribution through a nonlinear, pre-image map [in this case
f̂ : F � z �→ y ∈ Y defined by Eq. (23)] for a test input ξ .

Analytically propagating a distribution through a nonlinear mapping is often not feasible.
Instead we could repeatedly sample from the feature space response distribution (over z ∈ F)
and apply the pre-image map to find the distribution over the corresponding y ∈ Y . Exam-
ples that use this latter approach include kernel principal component analysis and Gaussian
process latent variable models (in the latter case, approximations can be obtained using the
projected process approximation). Since the manifold consists of aligned (tangent) hyper-
planes, however, we are able to derive locally linear pre-image maps that can be used for
mapping distributions defined on local tangent spaces. The latent variable GP prediction z
is distributed according to Eq. (27). Restricting to a single tangent space, it is a straightfor-
ward task to push this distribution though Eq. (23) to obtain a normal distribution for the
corresponding y ∈ Y:

p(y|ξ ,D,�,βββ) = N (
μμμy(ξ),�y(ξ)

)
,

μμμy(ξ) = ȳk + QkL
−1
k (μμμz(ξ) − z̄k) ,

�y(ξ) = QkL
−1
k �z(ξ)

(
QkL

−1
k

)T
,

(30)

where k = argminn ‖μμμz(ξ) − zn‖, μμμy(ξ) ∈ R
ky , and �y(ξ) ∈ R

ky×ky . This result is
particularly useful for scenarios in which knowledge of the correlations between response
features is required. Without this result we would require a large number of samples to
estimate the covariance (tens of thousands). If, however, we are only interested in samples
of the distribution (27), i.e. making predictions at specified inputs, then it is more memory
efficient to sample from the predictive distribution (27) and use the pre-image map (23).
When the support of this distribution is large, the accuracy of the local approximation breaks
down and we must first sample the latent features before applying the pre-image map.

2 Let PX be a measure on (X ,FX ). The pushforward measure of PX under ηηη : (X ,FX ,PX ) →
(Y,FY ,PY ) is defined as PY (F) = PX ◦ ηηη−1(F) for F ∈ FY . We characterize the measures by their
probability density functions (pdfs) with respect to Lebesgue measure. In this work a Gaussian distribution is
placed on the inputs.
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5.2 Marginalizing the Stochastic Input

Having obtained a distribution over the response for a stochastic input realization, we now
consider the problem of obtaining a distribution over the response marginalized over the
stochastic input. We assume that the input is normally distributed:

p(ξ) = N (
μμμξ , �ξ

)
, (31)

for some mean vector μμμξ (equal to 0 in this case) and covariance matrix �ξ (equal to I in
this case). We wish to evaluate:

p (y|D,�,βββ) = f̂ (p(z|D,�,βββ)) = f̂
(∫

p(z|ξ ′,D,�,βββ)p(ξ ′)dξ ′
)

, (32)

where f̂ is the (measurable) pre-image map and p (z|ξ ,D,�,βββ) is defined in Eq. (27). Since
the input ξ appears nonlinearly in the inverse of the z predictive distribution covariance
σ 2(ξ), we are unable to find a closed form solution to the integral in (32), i.e. the marginal
distribution over z. The moments of this marginal distribution can, on the other hand, be
found analytically, although we will not know the family of distributions to which these
moments belong.

Let us focus on the i th feature of z. We wish to find the first two moments, i.e. the
mean and variance, of the marginal distribution p (zi |D, θ i , βi ). We can then push these
moments through the pre-image map to obtain analytical solutions. This can be repeated for
each i by virtue of the independence assumption. To begin, p (zi |D, θ i , βi ) is approximated
as a Gaussian with mean m and variance v (Girard and Murray-Smith 2003), which, from
“Appendix A”, are given by:

m = Eξ

[
ch(ξ ,			; θ i )

]T (
Ci + β−1

i I
)−1

z:,i (33)

and:

v =Eξ

[
ch(ξ , ξ ; θ i )

] − m2

−
[(

Ci + β−1
i I

)−1 −
((

Ci + β−1
i I

)
z:,i

)2]
Eξ

[
ch(ξ ,			; θ i )

T ch(ξ ,			; θ i )
]
.

(34)

where Eξ [·] and Varξ (·) are the expectation and variance with respect to ξ , respectively.
Calculation of thesemoments involves expectations of the kernelwith respect to the stochastic
input distribution on the unknown and unobserved test inputs:

Eξ

[
ch(ξ , ξ ; θ i )

] =
∫

ch(ξ
′, ξ ′; θ i )p(ξ

′)dξ ′,

Eξ

[
ch(ξ ,			; θ i )

] =
∫

ch(ξ ′,			; θ i )p(ξ
′)dξ ′,

Eξ

[
ch(ξ ,			; θ i )

T ch(ξ ,			; θ i )
]

=
∫

ch(ξ ′,			; θ i )
T ch(ξ ′,			; θ i )p(ξ

′)dξ ′.

(35)

The analytic tractability of these integrals is dependent upon the choice of kernel and stochas-
tic input distribution. One example of a kernel is the commonly used squared exponential, for
which the integrals are derived in “Appendix B”. Once calculated, the mean can be pushed
through the local pre-image mapping (23). Since we expect that the variance, on the other
hand, will span more than one tangent space, predictions of the variance using this method
may be inaccurate.
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Since we cannot sample from the approximate marginal of the analytical approach, further
analysis requires MC to fully characterize the distribution (32). Again it is sufficient to
demonstrate the procedure for a single latent (feature space) dimension i . Using MC we
obtain a marginalized predictive distribution expressed as the sum of normally distributed
random variables, which itself is non-Gaussian:

p(z·,i |D, θ i , βi ) =
∫

p(z·,i |ξ ′,D, θ i , βi )p(ξ
′)dξ ′

� 1

Q

Q∑
q=1

p(z·,i |ξ (q),D, θ i , βi )

= 1

Q

Q∑
q=1

N (μ(ξ (q)), σ 2(ξ (q))),

(36)

where ξ (q) ∼ N (μμμξ , �ξ ), θ i and βi are samples from the hyperparameter and signal noise
posteriors (for the i th feature), and the approximation converges as Q → ∞. Each sampled
latent variable can then be pushed through the pre-image map. Latent variables found in this
way are draws from the marginalized distribution p

(
z·,i |D, θ i , βi

)
and we obtain multiple

marginalized distributions [one for each (θ i , βi )] fromwhich we can estimate the statistics of
the response. Algorithm 1 describes the procedure. Note that we use a ∗ superscript in order
to avoid confusion between MC samples and training points. Each Y∗

i in Algorithm 1 can
be interrogated to find any property of the pushforward measure (mean, standard deviation
and higher-order moments). We can use kernel density estimation (KDE, also known as
Parzen–Rosenblatt window) (Simonoff 1996) to approximate the pdf given a finite number
of samples, or find the moments of the density. We use Gaussian kernel function with a
suitably small bandwidth.

Algorithm 1 Sample from the push forward measure
1: S ← Number of hyperparameter posterior samples
2: Q ← Number of draws from the input distribution p(ξ)

3: {ξ∗
q }Qq=1 ← Dense set of Q draws from p(ξ)

4: for s ← 1 to S do
5: �s , βββs ← Sample from hyperparameter and signal precision posteriors
6: for q ← 1 to Q do
7: z∗s,q ← Sample from Eq. (27) using �s , βββs , ξ∗

q
8: y∗

s,q ← Application of pre-image map (23) to z∗s,q
9: end for
10: Y∗

s ← [y∗
s,1 . . . y∗

s,Q ]T .
11: end for
12: Interrogate

{
Y∗
s
}S
s=1 to extract statistics or distributions

6 Results and Discussion

We now assess the performance of the proposed method on two example partial differential
equation problems: aDarcyflowproblemwith a contaminantmass balance,modelling steady-
state groundwater flow in a 2-d porous medium; and Richards equation, modelling single-
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phase flow through a 3-d porous medium. As explained in Sect. 5, the analysis includes: (i)
predictions that are conditioned on an input; and (ii) predictions that are marginalized over
the stochastic input.

When making conditioned predictions, we use the conditional predictive distribution (30)
for y, or the distribution (27) for z in conjunction with the pre-image map (23). As explained
in 4.1, we place a prior over the hyperparameters � and signal variances βββ and use a HMC
scheme to sample from the posterior distributions over these parameters. Each sample can
be used to obtain a different normal predictive distribution, conditioned on an input. We
are therefore able to see how the predictive mean and variance change with respect to the
uncertainty in theGPparameters. In the results,we plot the expectation and standard deviation
of first two predictive distribution moments.

For the forward UQ problem we marginalize the conditional predictive distributions over
a stochastic input (Eq. 32) to obtain the pushforward measure (non analytically). We are able
to analytically find the mean using (A2) and (A3) together with the pre-image map, or, using
Algorithm 1, sample from the marginalized distribution via MC (Eq. 36).

The accuracies of both the point predictions and the predictions of the pushforward mea-
sure are assessed by comparison with the true values obtained with the simulator (on the test
inputs {ξ∗

q}Qq=1). We run the solver for each test input to generate the true response, denoted

ỹ∗
q . For the UQ comparison we again approximate the pdf using KDE (or simply extract the

moments) based on {ỹ∗
q}Qq=1. The latter approximation is guaranteed to converge to the truth

as the number of test inputs increases.

6.1 Darcy Flow: Non-point Source Pollution

The first example is a linear model of steady-state groundwater flow in 2-d. The approachwas
developed by Kourakos et al. (2012) and implemented in the mSim package.3 The model
comprises Darcy’s law and a contaminant mass balance in a 2-d polygonal domain� of total
area 18.652 km2 containing wells and a stream, and subdivided into polygonal regions of
different land use (Fig. 5). Full details of the model and the numerical method can be found
in Kourakos et al. (2012). Below we provide a brief description. The model equations are
given by:

∇ · (K∇h) = Q

R
∂C

∂t
= ∇ · (D∇C) − ∇ · (vC) = G

(37)

where K (x) is the hydraulic conductivity, h(x) is the pressure head,C(x, t) is the contaminant
concentration, R is the retardation factor, D is the dispersion tensor, v is the fluid velocity,
and Q and G represent sources/sinks. The contaminant transport equation is replaced by a
1-d approximation and is solved through an ensemble of one-dimensional streamline-based
solutions (Kourakos et al. 2012).

The contaminant balance and flow (Darcy) equations are decoupled. The latter is solved
using the finite element method based on triangular elements and first-order (linear) shape
functions. The boundary conditions are given by: (i) a constant head equal to 30 m on the
left boundary; (ii) a general head boundary equal to 40 m with conductance equal 160 m3

day−1 on the right boundary; and (iii) no flow on the top and bottom boundaries. Each land

3 See http://subsurface.gr/joomla/msim_doc/twoD_examples_help.html for full details of the implementa-
tion, including the domain, mesh generation and boundary conditions. Last accessed 29 August 2017.

123

http://subsurface.gr/joomla/msim_doc/twoD_examples_help.html


54 C. Gadd et al.

use polygon is assigned its own recharge rate. Stream rates are assigned directly to nodes.
(Any node closer than 10 m to the stream is considered to be part of the stream.)

We assume that K (x) is log-normally distributed and treat it as an input. The output
field upon which we focus is the pressure head, that is, u(x; K ) = h(x) in the notation of
Sect. 2. We use the input model described in Sect. 2, defining a discretized random field

corresponding to realizations of K (x) = exp(Z(x)) at the nodes {xk}kyk=1 ⊂ R on the finite
element mesh. The covariance function for the random field Z(x) is given by:

cZ (x, x′) = σ 2
Z exp

{
− (x1 − x ′

1)
2

l21
− (x2 − x ′

2)
2

l22

}
, x = (x1, x2)

T ∈ R, (38)

where l1 and l2 are correlation lengths. This separable form was suggested in Zhang and Lu
(2004) and is used extensively in the literature to model hydraulic permeability fields (often
by setting the correlation lengths equal). The generalized variance (value of kξ ) was chosen

to satisfy
∑kξ

j=1

√
λ j/

∑ky
j=1

√
λ j > 0.98.

Both the training and test input samples were drawn independently: ξn ∼ N (0, I), n =
1, . . . , N to yield {yn}Nn=1 for training; and ξq ∼ N (0, I), q = 1, . . . , Q to yield {̃y∗

q}Qq=1 for
testing and the forward problem (UQ).We set Q = 5000 and N ∈ {25, 50, 75, 100}. Running
the solver with an input generated using the KL truncation necessarily leads to a response
surface with intrinsic dimension at most kξ , which was therefore the value chosen for the
approximating manifold dimension kz . In all of the results presented below, ky = 1933 nodes
(elements) were used in the simulation. The number of neighbours P in the LTSA algorithm
was chosen according to the error between the solver response and the predictive mean at
the test points. We define a scaled measure of error on each test point as follows:

eq = ||̃y∗
q − y∗

q ||/||̃y∗
q ||, q = 1, . . . , Q, (39)

where ỹ∗
q is the response predicted by the solver, and y

∗
q is the point recovered by application

of the pre-image map (23) on the GP predictive mean (26). The scaling ensures that the errors
are comparable and can be interpreted as percentage errors.

We present results for three stochastic input models:

M1 We set mZ = ln(40) and σ 2
Z = 0.2, yielding4 a mean for k(x) of 44.2 m day−1, which

is close to the default value in themSim package, and a standard deviation of 13.63 m
day−1. The correlation lengths were chosen as l1 = 2000 m and l2 = 1000 m, which
correspond to dimensionless values of 1/3 and 2/7, respectively. These choices require
kξ = 5 input dimensions to capture 98% of the generalized variance.

M2 We set mZ = ln(36.18) and σ 2
Z = 0.4, again yielding a mean 44.2 m day−1 and a

standard deviation of 18.80 m day−1. We set l1 = 2000 m and l2 = 1000 m. kξ = 5
captures 98% of the generalized variance.

M3 We set mZ = ln(40), and σ 2
Z = 0.4 and reduce the correlation lengths to l1 = 1000 m

and l2 = 500 m (dimensionless values of 1/6 and 1/7, respectively). We now require
kξ = 15 to capture 98% of the generalized variance.

For model M1, the distributions of {eq}Qn=1 for different training set sizes N are shown
as boxplots for increasing values of P in Fig. 1. The performance of the emulator is good
even for N = 25 training points (maximum eq of approximately e−3), although there is a
clear decrease in the error when N is increased to 100. The relationship between the errors

4 If Z(x) has amean and variance ofμ and ν, then themean and variance of the log-normal process exp(Z(x))
are μ′ = exp(μ + ν/2) and ν′ = exp(2μ + ν)(exp(ν) − 1), respectively.
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Fig. 1 Log normalized error ln(eq ) in the normalized pressure head prediction for an emulator trained on
N = 25, 50, 75 and 100 points yn and tested with Q = 5000 test points ỹ∗

q for different nearest neighbour
numbers P (modelM1). Predictions were obtained by averaging over hyperparameter and precision posterior
samples. a 25 training points. b 50 training points. c 75 training points. d 100 training points

and P is more complicated. The errors are high for P < 8 (not shown in the boxplots)
at all values of N and decrease as P increases. This is due to the linear approximation of
points in local tangent spaces via PCA in the LTSA algorithm. As more points are added,
the approximation improves. As P is increased beyond a certain value, however, the errors
increase (this is most clearly visible for N = 100). The reason for this behaviour is that for
large enough neighbourhood sizes the linear approximation breaks down. Thus, there is an
optimal choice of P for each value of N and the higher the value of N the more sensitive
are the errors to the value of P . In the subsequent results we use P = 15 unless otherwise
specified.

In Fig. 2 we plot the normalized pressure head prediction (for each coordinate of the
predicted pressure head we subtract the mean and divide by the standard deviation) corre-
sponding to the highest eq for both N = 25 and N = 50 (using P = 15). The normalization
highlights the differences between the true values and the predictions (the errors)more clearly.
The predicted means of the means (middle row) are the mean predictions averaged over all
hyperparameter and precision samples. Also shown (bottom row) are the standard deviations
of the predictions averaged over all hyperparameter and precision samples. We observe that
the prediction at N = 75 is highly accurate, while the prediction at N = 25 is still reasonably
accurate even in this worst case (an outlier in Fig. 1). For both values of N , the true values lie
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Fig. 2 The test predictive mean and standard deviation of the normalized pressure head for the point with
highest error from an emulator using P = 15, corresponding to the relevant boxplot in Fig. 1, for both 25 and
75 training points (model M1). a True value, N = 25. b True value, N = 75. c Mean of the mean, N = 25.
d Mean of the mean, N = 75. e Mean of the standard deviation, N = 25. f Mean of the standard deviation,
N = 75

within the credible regions. In Fig. 3 we show the corresponding predictions for cases where
the errors are close to the medians. Both predictions are highly accurate and again the true
values lie inside the credible regions.
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Fig. 3 The test predictive mean and standard deviation of the normalized pressure head for a test point with
an error near the median of the P = 15 boxplot in Fig. 1 from emulators using P = 15, for both 25 and 75
training points (model M1). a True value, N = 25. b True value, N = 75. c Mean of the mean, N = 25. d
Mean of the mean, N = 75. e Mean of the standard deviation, N = 25. f Mean of the standard deviation,
N = 75

We now focus on the forward problem, in which we estimate the marginalized predictive
distribution (32) using Algorithm 1. KDE is used to obtain estimates of the pdf of a feature for
different predictive posterior, hyperparameter and precision samples, as previously described.
The feature we choose is the pressure head at the spatial location x = (2511, 486) ∈ R. We
plot a heat map of the pdfs in Fig. 4 for different N .
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Fig. 4 The pdfs of the pressure head response at the spatial coordinate x = x631 = (2511, 486) ∈ R on the
finite difference grid, obtained using kernel density estimation on Q = 5000 points (Model M1). The black
line gives the MC prediction using the simulator. The contours show how the emulator predictions vary with
hyperparameter, precision and predictive distribution samples. a 25 training points, 15 k-NN. b 50 training
points, 15 k-NN. c 75 training points, 15 k-NN. d 100 training points, 15 k-NN

The distributions are accurately estimated for all values of N . While the predictions
improve as the number of training samples N increases, the true value does not always lie
within the contours. This is because: (i) as stated earlier, an increased GP predictive variance
acts to smooth the density, rather than increase the width of the contours; (ii) by choosing a
priori the number of neighbours we also a priori assume a global smoothness of the emulator;
and (iii) we have a pre-image map f̂ : F → Y for which the error is unknown (as with all
methods), but not estimated (as with probabilistic methods).

We can find the means and standard deviations across the samples obtained for different
predictive posterior, hyperparameter and precision samples using Algorithm 1. We obtain
distributions over the moments of the marginalized predictive distribution (32). In Fig. 5
we plot the mean and standard deviation of the marginalized predictive mean and standard
deviation for N = 25, with comparisons to the true values obtained by finding the mean and
standard deviation across the test responses {̃y∗

q}Qq=1. Even for this low number of training
points the results are highly accurate.
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Fig. 5 Moments of the mean and standard deviation of the pressure head in Model M1. The emulator
variation is a consequence of the hyperparameter, precision and predictive distribution samples. We have a
single, parameterized realization of the manifold. a Monte Carlo mean. b Monte Carlo standard deviation. c
Mean of the mean for 25 training points. d Mean of the standard deviation for 25 training points. e Standard
deviation of the mean for 25 training points. f Standard deviation of the standard deviation for 25 training
points

We now consider Model M2, in which we increase the variance of the stochastic input,
while keeping the mean fixed. For this example we again set l1 = 2000 m and l2 = 1000
m, requiring kξ = 5. The distributions of {eq}Qq=1 for different training set sizes N and

123



60 C. Gadd et al.

-8

-7

-6

-5

-4

-3

-2

-1
lo

g(
e q) /

 lo
g 

er
ro

r

P / neighbour number

8 9 10 11 12 13 14 15 16 17 18 19

-8

-7

-6

-5

-4

-3

-2

-1

lo
g(

e q) /
 lo

g 
er

ro
r

P / neighbour number

8 10 11 12 13 14 15 16 17 18 19 20 30 40 50 60

(a) (b)

Fig. 6 Log normalized error ln(eq ) in the normalized pressure head prediction for an emulator trained on
N = 25 and 75 points yn and tested with Q = 5000 test points ỹ∗

q for different nearest neighbour numbers P
(modelM2). Predictions were obtained by averaging over hyperparameter and precision posterior samples. a
25 training points. b 75 training points

increasing P are shown in Fig. 6. We observe trends similar to those observed using Model
M1, although the increased variance leads to larger errors at fixed N and P (higher maxima
and minima). With the exception of an isolated outlier (shown later), the predictions are
nevertheless accurate for N = 75.

The worst case (highest eq ) for P = 15 is shown in Fig. 7 for N = 25 and 75 points
(see Fig. 6). As before the top row is the test (solver prediction), while the middle and
bottom rows are the mean prediction and standard deviation of the prediction averaged over
all hyperparameter and precision samples. The true values lie within the credible regions,
although for this model a higher number of training points are required to ensure that even
the worst-case predictions are accurate. Figure 8 demonstrates the quality of the predicted
responses when the errors are at the median in the P = 15 boxplots in Fig. 6. Here, even
N = 25 provides accurate results.

Figure 9 shows heat maps of the pdfs of the pressure head at the spatial location x =
(2511, 486) for different N (generated using KDE) in the case of ModelM2. Using N = 75
we achieve very good agreement with the MC prediction based on the simulator results (test
points), although again the true value does not lie within the contours. For N = 25, we plot
the mean and standard deviation of the marginalized predictive mean and standard deviation
in Fig. 10, with a comparison to the true values obtained from {̃y∗

q}Qq=1. The predictions are
highly accurate. In fact, even for N = 25 (not shown to conserve space) the mean was very
accurate and the standard deviation exhibited only slight differences from the true value.

For Model M3 (decreased correlation lengths, high standard deviation and kξ = 15), the

distributions of {eq}Qq=1 for increasing N and P in are shown in Fig. 11. In this case it is
clear that a much higher value of P (P > 60, giving a similar neighbourhood radius in-line
with the increased sample density) is required to obtain a reasonable accuracy. For N = 500
and P = 80, there are a small (9 out of 5000) number of outliers with low accuracy, while
the errors for the remaining points satisfy ln(eq) < −3.25. The worst cases (highest eq ) for
P = 70, N = 300 and P = 80, N = 500 are shown in Fig. 12, and in Fig.13 we show
predicted responses with errors at the medians for the same values of P and N . There are
noticeable differences in the worst cases, although the qualitative agreement is very good at
both values of N . For the median error cases both emulators perform extremely well.
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Fig. 7 The test predictive mean and standard deviation of the normalized pressure head in the case of the
highest errors eq in Fig. 6 for P = 15 and N = 25 and 75 training points (ModelM2). a True value, N = 25.
b True value, N = 75. c Mean of the mean, N = 25. d Mean of the mean, N = 75. e Mean of the standard
deviation, N = 25. f Mean of the standard deviation, N = 75

In Fig. 14 we show the heat maps of the pdfs of the pressure head at x = (2511, 486)
for different N . For both values of N there is very good agreement with the simulator result
and the true value this time lies within the contours. For N = 500, we show the mean and
standard deviation of the marginalized predictive mean and standard deviation in Fig. 15,
with a comparison to the true values obtained from {̃y∗

q}Qq=1. The predictions are again highly
accurate (which was also the case for N = 300).
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Fig. 8 The test predictive mean and standard deviation of the normalized pressure head in the case of errors
eq near the median in Fig. 6 for P = 15 and N = 25 and 75 training points (Model M2). a True value,
N = 25. b True value, N = 75. c Mean of the mean, N = 25. d Mean of the mean, N = 75. e Mean of the
standard deviation, N = 25. f Mean of the standard deviation, N = 75

6.2 Richards Equation: Unsaturated Flow in Porous Media

Consider a single-phase flow through a 3-d porous regionR ⊂ R
3 containing unsaturated soil

with a random permeability field. The vertical flow problem can be solved using Richards
equation (Darcy’s law combined with a mass balance). There are three standard forms of
Richards equation: the pressure head based (h-based) form; the water content-based (θ -
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Fig. 9 The pdfs of the pressure head response at the spatial coordinate x = x631 = (2511, 486) on the
finite difference grid, obtained using kernel density estimation on Q = 5000 points (Model M2). The black
line gives the MC prediction using the simulator. The contours show how the emulator predictions vary with
hyperparameter, precision and predictive distribution samples. a 25 training points, 15 k-NN. b 75 training
points, 15 k-NN

based) form; and the mixed-based form. For flow in saturated or layered soils, the h-based
form is particularly appropriate (Huang et al. 1996; Shahraiyni and Ataie-Ashtiani 2011).

The h-based form with an implicit or explicit finite difference (FD) scheme has been
shown to provide good accuracy, although this approach may result in high mass balance
errors (Zarba et al. 1990; Huang et al. 1996). The mixed-based form, on the other hand,
exhibits low mass balance errors with highly accurate predictions using a fully implicit FD
scheme (Ray and Mohanty 1992; Zarba et al. 1990; Celia et al. 1987). The latest work of
Shahraiyni and Ataie-Ashtiani (2011) showed that a fully implicit FD schemewith a standard
chord slope (CSC) approximation (Rathfelder and Abriola 1994) not only solved the mass
balance problem of the h-based form but also improved convergence. Thus, in the paper we
adopt this approach, although other numerical formulations are by no means precluded. The
h-based form of Richards equation can be written as follows:

u(h)
∂h

∂t
− ∇ · K(h)∇(h + x3) = 0, (x, t) ∈ R × (0, T ], (40)

where h is the pressure head, u(h) = ∂θ/∂h is the specific moisture capacity, in which θ is
the moisture content, K (h) is the unsaturated hydraulic conductivity, and x = (x1, x2, x3)T

is the spatial coordinate, in which x3 is the vertical coordinate. The nonlinear functions θ(h)

and k(h) can take on different forms. For example, in Haverkamp et al. (1977), a least square
fit to experimental data was used to derive:

θ(h) = α1(θs − θr )

α1 + |h|α2 + θr ,

K(h) = Ks(x)
α3

α3 + |h|α4 ,

(41)

where θr and θs are the residual the saturated water contents, Ks(x) is the saturated hydraulic
conductivity, and α1, α2, α3 and α4 are fitting parameters. We adopt the relationships (41)
and use the parameter values in Haverkamp et al. (1977): α1 = 1.611 × 106, α2 = 3.96,
α3 = 1.175 × 106, α4 = 4.74, θs = 0.287 and θr = 0.075. The domain R is taken to
be 20 cm × 20 cm × 20 cm. Ks(x) is treated as a random field input with a log-normal

123



64 C. Gadd et al.

0 2000 4000 6000
x1 / m

0

1000

2000

3000

x 2 / 
m

25

30

35

40

0 2000 4000 6000
x1 / m

0

1000

2000

3000

x 2 / 
m

0

1

2

3

4

5

0 2000 4000 6000
x1 / m

0

1000

2000

3000

x 2 / 
m

25

30

35

40

0 2000 4000 6000
x1 / m

0

1000

2000

3000
x 2 / 

m

0

1

2

3

4

5

0 2000 4000 6000
x1 / m

0

1000

2000

3000

x 2 / 
m

0

0.005

0.01

0 2000 4000 6000
x1 / m

0

1000

2000

3000

x 2 / 
m

0

0.005

0.01

0.015

(a) (b)

(c) (d)

(e) (f)

Fig. 10 Moments of the mean and standard deviation of the pressure head for P = 15, N = 75 (ModelM2).
The emulator variation is a consequence of the hyperparameter and predictive distribution samples. We have
a single, parameterized realization of the manifold. aMonte Carlo mean. bMonte Carlo standard deviation. c
Mean of the mean for 75 training points. d Mean of the standard deviation for 75 training points. e Standard
deviation of the mean for 75 training points. f Standard deviation of the standard deviation for 75 training
points
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Fig. 11 Log normalized error between true and predictive mean in the normalized pressure head prediction
from an emulator trained on 300 and 500 points yn and interrogated with Q = 5000 test points ỹ∗

q for different
nearest neighbour numbers P (ModelM3). Predictions were obtained by averaging over hyperparameter and
precision posterior samples. a 300 training points. b 500 training points

distribution (Ks(x) = exp(Z(x)), again discretized using the Karhunen–Loève theorem. We
generate realizations of a corresponding discrete random field on an n1 × n2 × n3 finite
difference grid (ky = n1n2n3), with grid spacings �x1, �x2 and �x3 in the directions x1,
x2 and x3, respectively. The output field of interest is again the pressure head, at a fixed time
T . Thus, we set u(x; K ) = h(x, T ).

The boundary conditions are those used in Haverkamp et al. (1977), corresponding to
laboratory experiments of infiltration in a plexiglass column packed with sand. Along the top
boundary (surface) x3 = 20 cm, the pressure head ismaintained at h = −20.7 cm (θ = 0.267
cm3 cm−3), and along the bottom boundary x3 = 0 cm, it is maintained at h = − 61.5 cm.
At all other boundaries a no-flow condition is imposed: ∇h · n = 0, where n is the unit,
outwardly pointing normal to the surface. The initial condition is h(x, 0) = − 61.5 cm.

The covariance function for the random field Z(x) is again of the form:

cZ (x, x′) = σ 2
Z exp

{
− (x1 − x ′

1)
2

l21
− (x2 − x ′

2)
2

l22
− (x3 − x ′

3)
2

l23

}
, (42)

where the li are correlation lengths, chosen as l1 = l2 = l3 = 7.5 cm. The mean mZ and
variance σ 2

Z are chosen such that the mean and standard deviation of K (x) are 0.0094 cm s−1

(Shahraiyni and Ataie-Ashtiani 2011; Haverkamp et al. 1977) and 0.00235 cm s−1 (25 %

of the mean), respectively. The generalized variance satisfies
∑kξ

i=1

√
λi/

∑n
i=1

√
λi = 0.75

for kξ = 15.
The training and test input samples were drawn independently: ξn ∼ N (0, I) and ξq ∼

N (0, I) to yield {yn}Nn=1 for training and {̃y∗
q}Qq=1 for testing and UQ. We set Q = 5000 and

N ≤ 800. As before, the manifold dimension was set to kz = kξ . The number of neighbours
P and the number of training points N were chosen as in the first example by examining the
errors eq = ||̃y∗

q − y∗
q ||/||̃y∗

q || on the test set, where again ỹ∗
q is the solver output (truth) and

y∗
q is emulator prediction based on the GP predictive mean (26).
Equation (40) was solved using a finite difference scheme with first-order differencing for

the first-order derivatives, central differencing for the second-order derivatives and a fully
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Fig. 12 The test predictive means and standard deviations for predictions of the normalized pressure head
with the highest errors from emulators using P = 70, N = 300 and with P = 80, N = 500, corresponding
to the relevant boxplots in Fig. 11 (Model M3). a True value, N = 300. b True value, N = 500. c Mean of
the mean, N = 300. d Mean of the mean, N = 500. e Mean of the standard deviation, N = 300. f Mean of
the standard deviation, N = 500
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Fig. 13 The test predictive means and standard deviations for predictions of the normalized pressure head
with errors at the median from emulators using P = 70, N = 300 and with P = 80, N = 500, corresponding
to the relevant boxplots in Fig. 11 (Model M3). a True value, N = 300. b True value, N = 500. c Mean of
the mean, N = 300. d Mean of the mean, N = 500. e Mean of the standard deviation, N = 300. f Mean of
the standard deviation, N = 500
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Fig. 14 The pdfs of the pressure head response at the spatial coordinate x = x631 = (2511, 486) on the
finite difference grid, obtained using kernel density estimation on Q = 5000 points (Model M3). The black
line gives the MC prediction using the simulator. The contour shows how the emulator predictions vary with
hyperparameter, precision and predictive distribution samples. a 300 training points, P = 70. b 500 training
points, P = 80

implicit backward Euler time stepping scheme. A picard iteration scheme is used (Celia et al.
1990) at each time step. Details are provided in “Appendix C”.

We followed the procedure of the first example. Training point numbers below 600 led
to inaccurate results. For N = 600, the results were reasonably accurate but to achieve
good accuracy we required N > 700. We present the results for N = 800. The pressure
head is normalized as in the first example in order to highlight the errors in the predictions
more clearly. In Fig. 16a we plot the log normalized error ln(eq) for an emulator trained
on N = 800 points yn and tested with Q = 5000 points ỹ∗

q for different nearest neighbour
numbers P > 20 (averaging over hyperparameter and precision posterior samples). For
P ≤ 20 the errors were high, with the same trend as seen in the first example.

We use Algorithm 1 and KDE to obtain predictions of the pdf of a feature of the response.
We choose as a feature the pressure head at the location x = (10.4, 10.4, 10.4)T (grid point
number 4411). The distributions are shown in Fig. 16b for N = 800. We can again find
the means and standard deviations across predictive posterior, hyperparameter and precision
samples to obtain distributions over the moments of the marginalized distribution (32). These
are plotted in Fig. 17, alongside comparisons to the true values obtained from {̃y∗

q}Qq=1. These
results show that the emulator performs extremely well, accurately capturing both the mean
and standard deviation with high precision.

7 Numerical Computation

LTSA naturally lends itself to parallelization since almost all computations are performed on
each neighbourhood independently. After merging threads we need only solve an eigenvalue
problem for an N × N matrix. Similarly, independent Gaussian processes across latent
dimensions leads to a natural parallelization framework.

For large sample sizes and feature space dimensions saving each Qi can become infeasible
(N × ky × kz elements). Similarly, for large sample and neighbourhood sizes saving f can
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Fig. 15 Moments of the mean and standard deviation for P = 80, N = 500 of the pressure head (ModelM3).
The emulator variation is a consequence of the hyperparameter and predictive distribution samples. We have
a single, parameterized realization of the manifold. aMonte Carlo mean. bMonte Carlo standard deviation. c
Mean of the mean for 500 training points. dMean of the standard deviation for 500 training points. e Standard
deviation of the mean for 500 training points. f Standard deviation of the standard deviation for 500 training
points
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Fig. 16 a Log normalized error ln(eq ) for an emulator trained on N = 800 points yn and tested with
Q = 5000 test points ỹ∗

q for different nearest neighbour numbers P . Predictions were obtained by averaging
over hyperparameter and precision posterior samples. b The pdfs of the pressure head response at the location

x = (10.4, 10.4, 10.4)T (N = 800), obtained using kernel density estimation on {̃y∗
q }Qq=1. The black line

gives the MC prediction using the simulator. a 800 training points. b 800 training points, 30 k-NN

become infeasible (N × k2 elements). In such cases, these tensors may be saved to file or
re-calculated online.

The scalability of our approach is limited by the computational complexity of Gaussian
processes O (

N 3
)
. However, this can be alleviated by using sparse Gaussian process regres-

sion models. These models introducem inducing points, reducing computational complexity
to O (

m2N
)
. We may also use active learning to reduce the number of samples required.

8 Summary and Conclusions

In this paper we developed a new approach to the emulation of a model involving a random
field input and a field output, with a focus on problems arising in groundwater flowmodelling.
The main challenges are the high input and output space dimensionalities, which we dealt
with using a KL expansion and manifold learning, respectively. We implemented LTSA on
the given outputs (training data), which allowed us to perform Bayesian inference in a low-
dimensional feature space. Furthermore, we developed a framework for UQ in such problems
by marginalizing over the inputs, either analytically (the mean and possibly in some cases
the standard deviation) or using MC sampling.

Testing the emulation method on two examples reveals that it performs well in certain
cases. When the variance of the log-normal input is high or the correlation lengths of the
normal process Z(x) are short, the accuracy suffers, as is found in all other approaches.
Nevertheless, the accuracy in terms of the forward UQ problem is high even in such cases
for the examples considered. (Of course, further increases in the variance and correlation
lengths would eventually lead to unacceptably poor performance.)

The major drawback of the KL expansion approach (and similarly with circulant embed-
ding) is the curse of dimensionality as the number of retained coefficients grows. Some
progress can be made in this regard by using a Smolyak algorithm (Smolyak 1963) for sam-
pling or incremental local tangent space alignment (Liu et al. 2006) combined with active
learning (Settles 2012), but the gains will be limited. Our method, in common with other
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Fig. 17 Moments of the mean and standard deviation of the pressure head for P = 30, N = 800. Shown are
the planes x1 = 10.4 cm and x2 = 10.4 cm. The emulator variation is a consequence of the hyperparameter
and predictive distribution samples. We have a single, parameterized realization of the manifold. a Monte
Carlo mean. b Monte Carlo standard deviation. c Mean of the mean. d Mean of the standard deviation. e
Standard deviation of the mean. f Standard deviation of the standard deviation

methods except direct Monte Carlo or ROMs, is therefore potentially limited, given current
computational resources, to problems in which the domain size is at most a few multiples of
the shortest correlation length. The assumption of independence of the feature vector coordi-
nates is also sub-optimal. Since the number of coordinates is small, however, this assumption
can easily be relaxed by adopting, e.g. a convolved GP approach.
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Appendix A: Moments of the Marginal Distribution Over z

Focusing on the i th feature of z, we find the first two moments, i.e. the mean and variance,
of the marginal distribution p (zi |D, θ i , βi ). Following Girard andMurray-Smith (2003), we
approximate p (zi |D, θ i , βi ) as a Gaussian with mean m and variance v:

p (zi |D, θ i , βi ) =
∫

p(zi |ξ ′,D, θ i , βi )p(ξ
′)dξ ′ ≈ N (m, v) . (A1)

Below we use the notation Eχ [·] and Varχ (·) to denote an expectation and variance operator
with respect to a random variable χ , respectively. Using Fubini’s theorem and the laws of
total expectation and variance, the moments are then given by:

m =
∫

z′i p
(
z′i |D, θ i , βi

)
dz′i

=
∫

z′i
[∫

p
(
z′i |ξ ′,D, θ i , βi

)
p(ξ ′)dξ ′

]
dz′i

=
∫ [∫

z′i p
(
z′i |ξ ′,D, θ i , βi

)
dz′i

]
p(ξ ′)dξ ′

= Eξ

[
Ezi

[
zi |ξ ,D, θ i , βi

]]
= Eξ

[
μ(ξ)

]

= Eξ

[
ch(ξ ,			; θ i )

T
(
Ci + β−1

i I
)−1

z:,i
]

= Eξ

[
ch(ξ ,			; θ i )

]T (
Ci + β−1

i I
)−1

z:,i

(A2)

and:

v =
∫

(z′i )2 p
(
z′i |D, θ i , βi

)
dz′i − m2

=
∫

(z′i )2
[∫

p
(
z′i |ξ ′,D, βi

)
p(ξ ′)dξ ′

]
dz′i − m2

= Eξ

[
Varzi (zi |ξ ,D, θ i , βi )

] + Varξ
(
Ezi

[
zi |ξ ,D, θ i , βi

])
= Eξ

[
σ 2(ξ)

] + Varξ (μ(ξ))

= Eξ

[
σ 2(ξ)

] + Eξ

[
μ(ξ)2

] − m2

= Eξ

[
ch(ξ , ξ ; θ i ) − ch(ξ ,			; θ i )

T
(
C + β−1

i I
)−1

ch(ξ ,			; θ i )

]

+ Eξ

[(
ch(ξ ,			; θ i )

T
(
Ci + β−1

i I
)−1

z:,i
)2

]
− m2

= Eξ

[
ch(ξ , ξ ; θ i )

] − m2

−
[(

Ci + β−1
i I

)−1 −
((

Ci + β−1
i I

)
z:,i

)2]
Eξ

[
ch(ξ ,			; θ i )

T ch(ξ ,			; θ i )
]
.

(A3)
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Appendix B: Kernel Expectation

Given a squared exponential kernel and a Gaussian stochastic input distribution, we are able
to analytically find the mean and variance of the marginalized latent predictive distribution.
This kernel takes the form:

ch(ξ , ξ ′; θ i ) = s exp

(
−1

2

(
ξ − ξ ′)T A

(
ξ − ξ ′)) , (B1)

where A is a diagonal matrix whose elements are inversely proportional to the correlation
lengths across input dimensions. For computational convenience, we write this covariance

function in Gaussian function form with normalizing constant a = (2π)kξ /2 |A| 12 s:

ch(ξ , ξ ′; θ i ) = aNξ

(
ξ ′,A

)
. (B2)

where the notation Nχχχ (·, ·) denotes a normal distribution over a random vector χχχ , with
mean and covariance matrix given by the first and second arguments, respectively. We wish
to evaluate:

Eξ

[
ch(ξ , ξ ; θ i )

] = a,

Eξ

[
ch(ξ ,			; θ i )

] = Eξ

[
ch(ξ , ξ ; θ i )

] = a
∫

Nξ (ξ ,A)Nξ

(
μμμ,�ξ

)
dξ ,

Eξ

[
ch(ξ ,			; θ i )

T ch(ξ ,			; θ i )
]

= Eξ

[
ch(ξ , ξ ; θ i )ch(ξ , ξ ; θ i )

]

= a2
∫

Nξ (ξ ,A)Nξ (ξ ,A)Nξ

(
μμμ,�ξ

)
dξ ,

(B3)

where
(
μμμ,�ξ

)
are the stochastic input distribution moments. The solutions can be found by

using the product of Gaussians rule:

Eξ

[
ch(ξ , ξ ; θ i )

] = aNμμμ

(
ξ ,A + �ξ

)
,

Eξ

[
ch(ξ , ξ ; θ i )ch(ξ , ξ ; θ i )

] = a2Nξ (ξ , 2A)Nμμμ

(
ξ , �ξ + A

2

)
.

(B4)

Appendix C: Numerical Algorithm for Richards Equation

Let ψ
n′,m′
i ′, j ′,k′ denote the value of a quantity ψ at time step n′ (time t = n′�t for a constant

time step �t), at Picard iteration m′ and at the spatial location x1 = i ′�x1, x2 = j ′�x2 and
x3 = k′�x3. The spatial and temporal discretizations lead to:

a1h
n+1,m+1
i−1, j,k + bhn+1,m+1

i, j,k + c1h
n+1,m+1
i+1, j,k + a2h

n+1,m+1
i, j−1,k + c2h

n+1,m+1
i, j+1,k

+ a3h
n+1,m+1
i, j,k−1 + c3h

n+1,m+1
i, j,k+1 = d,

(C1)
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which is applicable to all interior nodes (grid points), and where:

a1 = −kn+1,m
i, j,k + kn+1,m

i−1, j,k

2�x21
, a2 = −kn+1,m

i, j,k + kn+1,m
i, j−1,k

2�x22
, a3 = −kn+1,m

i, j,k + kn+1,m
i, j,k−1

2�x23

b = un+1,m
i, j,k

�t
+ kn+1,m

i+1, j,k + 2kn+1,m
i, j,k + kn+1,m

i−1, j,k

2�x21

+ kn+1,m
i, j+1,k + 2kn+1,m

i, j,k + kn+1,m
i, j−1,k

2�x22
+ kn+1,m

i, j,k+1 + 2kn+1,m
i, j,k + kn+1,m

i, j,k−1

2�x23

c1 = −kn+1,m
i, j,k + kn+1,m

i+1, j,k

2�x21
, c2 = −kn+1,m

i, j,k + kn+1,m
i, j+1,k

2�x22
, c3 = −kn+1,m

i, j,k + kn+1,m
i, j,k+1

2�x23

d = −kn+1,m
i, j,k+1 + kn+1,m

i, j,k−1

2�x3
+ un+1,m

i, j,k

hni, j,k
�t

(C2)
The CSC approximation (Rathfelder and Abriola 1994) yields un+1,m

i, j,k = (θ
n+1,m
i, j,k −

θni, j,k)/(h
n+1,m
i, j,k − hni, j,k). In matrix form, the system of Eq. (C1) can be written as:

A(hn+1,m)hn+1,m+1 = a(hn+1,m) (C3)

where hn+1,m′ ∈ R
ky is a vector of values of hn+1,m′

i, j,k , i = 1, . . . , n1, j = 1, . . . , n2,

k = 1, . . . , n3. A ∈ R
ky×ky and a ∈ R

ky depend only on values of the head at iteration m.
Thus, the system (C3) is linear in hn+1,m+1. It can be solved by iterating (in m) within each
time step n until convergence; that is, for each time step n,m is incremented until the residual
satisfies ||A(hn+1,m+1)hn+1,m+1 − a(hn+1,m+1)|| < ε for some specified tolerance ε. In the
results presented in Sect. 6.2, we use n1 = n2 = n3 = 26 (�x1 = �x2 = �x3 = 0.8 cm),
�t = 0.5 s and ε = 0.01.
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