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Abstract

Application of machine learning (ML) algorithms to structural magnetic resonance

imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age

of the brain (brain-age). The choice of the ML approach in estimating brain-age in

youth is important because age-related brain changes in this age-group are dynamic.

However, the comparative performance of the available ML algorithms has not been

systematically appraised. To address this gap, the present study evaluated the accuracy

(mean absolute error [MAE]) and computational efficiency of 21 machine learning algo-

rithms using sMRI data from 2105 typically developing individuals aged 5–22 years

from five cohorts. The trained models were then tested in two independent holdout

datasets, one comprising 4078 individuals aged 9–10 years and another comprising

594 individuals aged 5–21 years. The algorithms encompassed parametric and non-

parametric, Bayesian, linear and nonlinear, tree-based, and kernel-based models. Sensi-

tivity analyses were performed for parcellation scheme, number of neuroimaging input

features, number of cross-validation folds, number of extreme outliers, and sample size.

Tree-based models and algorithms with a nonlinear kernel performed comparably well,

with the latter being especially computationally efficient. Extreme Gradient Boosting

(MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vec-

tor Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years)

emerged as the three most accurate models. Linear algorithms, with the exception of

Elastic Net Regression, performed poorly. Findings of the present study could be used

as a guide for optimizing methodology when quantifying brain-age in youth.
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1 | INTRODUCTION

Brain development involves highly organized multistep processes

(Tau & Peterson, 2010) that lead to the emergence of adult levels of

cognitive and behavioral competency (Paus, 2005; Spear, 2000). Brain

development involves numerous cellular and noncellular events

(Tau & Peterson, 2010), which are below the resolution of magnetic

resonance imaging (MRI) but underpin morphological changes in brain

Received: 12 April 2022 Revised: 25 May 2022 Accepted: 27 June 2022

DOI: 10.1002/hbm.26010

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

5126 Hum Brain Mapp. 2022;43:5126–5140.wileyonlinelibrary.com/journal/hbm

https://orcid.org/0000-0002-3210-6470
mailto:sophia.frangou@mssm.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hbm


organization that can be captured using structural MRI (sMRI) tech-

niques. Multiple studies have shown that the volume of subcortical

structures typically peaks in late childhood and adolescence and

decreases thereafter (Dima et al., 2021; Raznahan et al., 2014). Corti-

cal thickness shows a steep reduction in late childhood and adoles-

cence that continues at a slower rate throughout adult life (Frangou

et al., 2021; Wierenga et al., 2020). Cortical surface area expands dur-

ing childhood and most of adolescence showing gradual decrements

thereafter (Fjell et al., 2015; Tamnes et al., 2017). These age-related

changes demonstrate marked inter-regional and inter-individual varia-

tion (Mills et al., 2021; Wierenga et al., 2020).

Machine learning (ML) algorithms applied to sMRI data can har-

ness the multidimensional nature of age-related brain changes at the

individual-level to predict age, as a proxy for the biological age of the

brain (i.e., brain-age). The difference between brain-age and chrono-

logical age is referred to here as brain-age-gap-estimation (BrainAGE;

Franke & Gaser, 2019), which is equivalent to terms such as brain-pre-

dicted-age-difference (brainPAD; Luna et al., 2021), brain-age-gap

(BAG; Anatürk et al., 2021), and brain-age delta (Beheshti et al., 2019)

used in other studies. In adults, higher brain-age relative to chronolog-

ical age (i.e., higher BrainAGE) has been associated with adverse phys-

ical (Cole et al., 2018), cognitive (Anatürk et al., 2021; Boyle

et al., 2021; Elliott et al., 2019) and mental health phenotypes

(Kaufmann et al., 2019; Lee et al., 2021). By contrast, in children and

adolescents higher BrainAGE has been associated with better cogni-

tive test performance (Boyle et al., 2021; Erus et al., 2015; Luna

et al., 2021) while associations with clinical phenotypes show a more

complex pattern which may depend on the nature of the phenotype

and/or the developmental stage of the sample (Chung et al., 2018;

Luna et al., 2021). These findings underscore the importance of accu-

racy in brain-based age-prediction in youth, as childhood and adoles-

cence are periods of dynamic brain re-organization.

Therefore, the current study focuses exclusively on the evaluation

of the methods used to compute brain-age in youth from sMRI data

as a foundation for guiding study design into its functional signifi-

cance. We have previously shown that age prediction from sMRI data

in adults is influenced by the choice of algorithm (Lee et al., 2021).

Here addressed this knowledge gap in youth because with few excep-

tions (Ball et al., 2021; Brouwer et al., 2021; Lee et al., 2021; Luna

et al., 2021), studies on brain-age prediction in this population have

typically employed a single ML algorithm, most commonly relevance

vector regression (RVR), Gaussian process regression (GPR), or sup-

port vector regression (SVR; Cole et al., 2018; Franke et al., 2010;

Franke et al., 2012; Gaser et al., 2013; Liem et al., 2017; Valizadeh

et al., 2017). We systematically evaluated the performance of 21 ML

algorithms applied to sMRI data from youth from five different

cohorts and then tested their performance in two independent sam-

ples. The algorithms encompassed parametric and nonparametric,

Bayesian, linear and nonlinear, tree-based, and kernel-based models.

These algorithms were selected to include those that are commonly

used in brain-age prediction studies as well representative examples

of a range of algorithms that provide reasonable and potentially better

alternatives. We evaluated the ML methods for accuracy and for their

sensitivity to key parameters known to affect model performance per-

taining to parcellation scheme, number of neuroimaging input features

(Valizadeh et al., 2017), number of cross-validation folds, sample size

(by resampling the available data), and number of extreme outliers.

Our prediction was that nonlinear kernel-based and ensemble algo-

rithms would outperform other algorithms because they are theoreti-

cally better at handling collinear data and non-linear relationships with

age and, in the case of ensemble algorithms, they improve predictive

performance by aggregating results from multiple nodes. Collectively,

these analyses may assist in optimizing the design of future investiga-

tions on brain predicted age in youth.

2 | METHODS

2.1 | Samples

We used T1-weighted scans from six separate cohorts: Autism Brain

Imaging Data Exchange (ABIDE; Di Martino et al., 2014; Di Martino

et al., 2017); ABIDE II (Di Martino et al., 2017); ADHD-200 (ADHD-

200 Consortium, 2012); Human Connectome Project Development

(HCP-D; Harms et al., 2018); Child Mind Institute (CMI; Alexander

et al., 2017), Adolescent Brain Cognitive Development (ABCD;

Alexander et al., 2017; Garavan et al., 2018), Pediatric Imaging, Neu-

rocognition, and Genetics (PING) Data Repository (Jernigan et al.,

2016; details of the cohorts in the Data S1 and Table S1). Data col-

lection for these cohorts was conducted at multiple independent

sites located in eight countries: The United States, Germany, Ireland,

Belgium, the Netherlands, Switzerland, China, and France. Only psy-

chiatrically healthy participants with high-quality anatomical brain

scans from each cohort were included (details of quality assurance in

Data S1). Data from five cohorts (total n = 2105; 41% female, age-

range: 9–10 years; Figure S1) were used to train the ML algorithms

(training set) while data from the ABCD sample (n = 4078; 52%

female; age range: 9–10 years) and the PING sample (n = 594;

female = 49.6%; age-range: 5–21 years) comprised the independent

hold-out test-sets.

2.2 | Image processing

Across all cohorts, more than 98% of the participants were scanned

using 3-T MRI machines; Siemens Prisma and Trio Tim scanners were

each used for 31% of the participants of the total training sample

(Table S1). The T1-weighted images were downloaded from the

respective cohort repositories and processed at the Icahn School of

Medicine at Mount Sinai (ISMMS) using identical pipelines. Image pro-

cessing was implemented using standard pipelines in the FreeSurfer

7.1.0 software to generate cortical parcels based on the Schaefer

scheme (Schaefer et al., 2018) by projecting the parcellation onto indi-

vidual surface space (https://github.com/ThomasYeoLab/CBIG/tree/

master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/

Parcellations/project_to_individual) and using the mri_anatomical_stats
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function to extract cortical values. We used the 400-parcel resolution

(i.e., 400 cortical thickness and 400 cortical surface area values;

Figure S2) in the main analyses. The 400-parcellation scheme has been

shown to have good stability, signal to noise ratio, and performance in

different contexts, and correspondence to histology (Bryce

et al., 2021; Valk et al., 2020). Participants with missing values on any

parcellations were excluded, because it was assumed that the image

quality was compromised; participants in the training dataset only

were also excluded if more than 5% of their parcellation features had

extreme values (details in Data S1). We did not exclude participants

based on outlier values in the hold-out test sets but instead studied

the effect of outliers on model performance.

2.3 | Algorithms for brain-based age prediction

We used the caret package (version 6.0.84) in R (version 3.5.3) to con-

duct the ML analyses because it interfaces with multiple ML packages

and standardizes data preprocessing, model training and testing. Sev-

eral of the regression algorithms evaluated can be extended to accom-

modate non-linear associations using kernel functions. A kernel

function transforms the original non-linear data into a higher-

dimensional space in which they can become linearly separable. The

kernelized models evaluated here incorporated polynomial and radial

basis function (RBF) kernels. The former adds features using the poly-

nomial combinations of the original data up to a specified degree and

the latter adds features using the distance of the original data from

specified reference values. Below we describe the 15 base models, six

of which have non-linear kernelized variations; together, they amount

to 21 different algorithms:

1. Generalized linear model: This is a standard algorithm for regres-

sion that minimizes the sum of squared errors between the

observed variables and predicted outcomes. Models have no

tuning parameters and were implemented using the “glm”
function.

2. Bayesian general linear model (Gelman et al., 2008): This is a lin-

ear regression model in which the outcome variable and the

model parameters are assumed to be drawn from a probability

distribution; it therefore provides estimates of model uncertainty.

Models have no tuning parameters and were implemented using

the “bayesglm” function.
3. Gaussian Processes Regression (Williams & Barber, 1998): This is

a regression model that follows Bayesian principles. The covari-

ance function here was defined by using either a linear, or a poly-

nomial function or a RBF kernel as a prior. The polynomial kernels

were tuned using degree and scale and the RBF kernels were

tuned using the sigma parameter (the inverse kernel width param-

eter). Models were implemented using “gaussprRadial,”
“gaussprLinear,” and “gaussprPoly.”

4. Independent Component Regression (Shao et al., 2006): This is a

linear regression model in which components from a prior inde-

pendent component analysis are used as the explanatory

variables. The number of components was tuned, and the models

were implemented using the “icr” function.
5. Principal Component Regression: This is a linear regression model

in which components from a prior principal component analysis

are used as the explanatory variables. The number of components

was tuned, and the models were implemented using the “pcr”
function.

6. Kernel Partial Least Squares Regression (Dayal &

MacGregor, 1997): This is an extension of the partial least

squares (PLS) regression which creates components by using the

correlations between explanatory variables and outcome vari-

ables. The kernelized version used here (K-PLS) maps the data

vector from the sample space to a higher-dimensional, Euclidean

space; models were tuned for the number of components and

implemented using the “kernelpls” function.
7. Sparse Partial Least Squares Regression (SPLS; Chun &

Keleş, 2010): This is a different extension of PLS that reduces the

number of explanatory variables (sparsity) through a least abso-

lute shrinkage and selection operator (LASSO) approach. The

models were tuned for the number of components, and eta (the

sparsity parameter), and were implemented using the “spls”
function.

8. Quantile Regression with least absolute shrinkage and selection

operator (LASSO) Penalty (Wu & Liu, 2009): This algorithm

models the relationship between explanatory variables and spe-

cific percentiles (or “quantiles”) of the outcome variable; in this

variation, sparsity was introduced through the LASSO approach.

The number of selected variables was tuned, and models were

implemented with the “rqlasso” function.
9. Elastic Net Regression (Zou & Hastie, 2005): This is a linear

regression that adds two penalties, LASSO regression (L1-norm)

and ridge regression (L2-norm), in the loss function to encourage

simpler models and avoid overfitting. Models were tuned for

lambda (weight decay) and fraction of the full solution (equivalent

to ordinary least squares) and were implemented using the “enet”
function.

10. Boosted Generalized Additive Model (Bühlmann & Yu, 2003):

This generalized additive model is fitted using a gradient-based

boosting algorithm based on penalized B-splines. Overfitting was

reduced by pruning the number of iterations using the optimal

value of the Akaike Information Criterion. Models were imple-

mented using the “gamboost” function.
11. Random Forest Regression (Breiman, 2001): This an ensemble

machine learning method, which involves construction of multiple

decision trees (i.e., forests) via bootstrap (bagging) and aggregates

the predictions from these multiple trees to reduce the variance

and improve the robustness and precision of the results. Models

were implemented using the “rf” function and were tuned with

regard to the number of trees.

12. Support Vector Regression (Cortes & Vapnik, 1995): Support

Vector Regression (SVR) is characterized by the use of kernels,

sparsity, and control of the margin of tolerance (epsilon; ε) and

the number of support vectors (Awad & Khanna, 2015). It
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identifies a symmetrical ε-insensitive region, called the ε-tube,

which approaches the loss function as an optimization problem;

the ε-value determines the width of the tube and maximization of

the “flatness” aims to ensure that it contains most of the values

in the training sample. Here flatness maximization was subject to

the L2-norm penalty. In addition to the linear kernel, we also

tested a version with polynomial and RBF kernels. The corre-

sponding functions were “svmLinear3,” “svmPoly,” and “svmRa-

dial.” The regularization parameter (C) was used to optimize all

models, while scale and degree were also considered in polyno-

mial models and sigma for RBF models.

13. Relevance Vector Regression (Tipping, 2001): Relevance Vector

Regression (RVR) is an extension of SVR embedded in a Bayesian

framework. Its characteristic feature is that it imposes an explicit

zero-mean Gaussian prior on the model parameters leading to a

vector of independent hyperparameters that reduces the dataset.

The behavior of the RVR is controlled by the type of kernel,

which has to be chosen, while all other parameters are automati-

cally estimated by the learning procedure itself. Here we used a

linear, polynomial, or RBF kernel implemented with functions

“rvmLinear,” “rvmPoly,” and “rvmRadial,” respectively. The latter

two kernels require tuning for scale and degree (polynomial) and

for sigma (RBF).

14. Bayesian Regularized Neural Networks (Perez-Rodriguez

et al., 2013): This is a version of the feedforward artificial neural

network (ANN) architecture, in which robustness is improved

through Bayesian regularization of the ANN parameters. The

model includes two layers: the input layer—consisting of indepen-

dent variables—and the hidden layer of S number of neurons.

Models were implemented using the “brnn” function and tuned

for the number of neurons.

15. Extreme Gradient Boosting (Chen & Guestrin, 2016): Extreme

Gradient Boosting (XGBoost) is an ensemble decision-tree based

gradient boosting algorithm that allows for modeling complex

nonlinear relationships and interactions. The algorithm optimizes

model performance through parallel (simultaneous) processing,

regularization, tree pruning, optimal split (through a weighted

quantile sketch algorithm), automatic missing data handling, and

built-in cross-validation. Tuning parameters involved the number

of boosting iterations; maximum tree depth; eta (shrinkage

parameter); gamma (minimum loss reduction); subsample ratio of

columns; minimum sum of instance weights, and column subsam-

ple percentage. Models were implemented using “xgbTree”
function.

For clarity we refer to each algorithm by the name of the specific

function used for its implementation.

Computational efficiency for each algorithm was assessed by

recording the total Central Processing Unit (CPU) time, and the aver-

age and maximum memory usage. All models were run on the ISMMS

high-performance computing cluster.

Several analytic steps were common to all algorithms. As there

are known sex differences in the rate of age-related changes

(Brouwer et al., 2021; Wierenga et al., 2019; Wierenga et al., 2020),

models were separately trained for males and females. Hyperpara-

meter tuning (when required) was performed in the combined training

set (n = 2105), using a grid search in a fivefold cross-validation

scheme across five repeats. In each cross-validation 80% of the train-

ing sample was used to train the model and 20% was used to test the

model parameters. Subsequently, the model was re-trained on the

whole training dataset using the optimal hyperparameters identified

through cross-validation. Finally, the generalizability of the model was

tested in two hold-out datasets (ABCD n = 4078 and PING n = 594).

The primary accuracy measure for each algorithm was the Mean

Absolute Error (MAE) which represents the absolute difference

between the neuroimaging-predicted age and the chronological age.

For each algorithm, the abbreviation MAET refers to values obtained

in the hold-out test dataset and MAEcv refers to the mean cross-

validation value in the training dataset. We also report two other com-

monly used accuracy measures: the Root Mean Square Error (RMSE),

which is the standard deviation of the prediction errors, and the corre-

lation between predicted and actual age. This correlation coefficient

was not calculated in the ABCD data because of the narrow age range

(<2 years). Based on these criteria we identified the three best per-

forming algorithms which we evaluate further in the subsequent

sections.

2.4 | Calculating BrainAGE and corrected
BrainAGE for the three best performing algorithms

BrainAGE in each individual was calculated by subtracting the chrono-

logical age from the age predicted by each of the three best perform-

ing algorithms. Positive BrainAGE values indicate an older than

expected brain-age for the given chronological age, and the opposite

is the case for negative BrainAGE values. BrainAGE is typically overes-

timated in younger individuals and underestimated in older individ-

uals. To counter this bias, multiple methods have been proposed

(Beheshti et al., 2019; Cole et al., 2018). Here we used a robust

approach introduced by Beheshti and colleagues (Beheshti

et al., 2019), which relies on the slope (α) and intercept (β) of a linear

regression model of BrainAGE against chronological age in the training

set. This way an offset is calculated (as αΩ + β) and then subtracted

from the estimated brain-age to yield a bias-free BrainAGE (Beheshti

et al., 2019), hereafter referred to as “corrected BrainAGE”
(BrainAGEcorr).

2.5 | Quantifying feature importance for age
prediction in the three best performing algorithms

Estimates of the contribution of individual neuroimaging features to

age prediction in each of the three best performing algorithms were

obtained using Shapley Values (SV) implemented via the fastshap

package Version 0.0.5 (Greenwell & Greenwell, 2020) in R. SVs derive

from the cooperative game theory (Lundberg & Lee, 2017) and
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measure the contribution of each feature value in the model by

abstracting away from the model specification. They accommodate

non-linearity and have properties that make their interpretation intui-

tive. For example, the sum of all the SVs of a model is equal to the

accuracy of the model and features with the same SV contribute

equally to the model.

2.6 | Sensitivity and supplemental analyses in the
three best performing algorithms

To test the effect of sex on model generalizability, we applied the

parameters trained on one sex to the other and compared differ-

ences in BrainAGE using a two-sample Student's t-test. Sensitivity

analyses focused on the parcellation scheme, number of input fea-

tures, sample size and number of repeats, and cross-validation folds

and outliers. Accordingly, we repeated the analyses using features

from (a) the Desikan–Killiany (DK) atlas (n of features = 136);

(b) the DK and subcortical Aseg atlas in FreeSurfer combined (n of

features = 157); (c) the 400-parcel Schaefer atlas with Aseg atlas

(n of features = 821); and (d) the 1000-parcel Schaefer atlas (n of

features 2000). To test effect of sample size, the training dataset

was randomly resampled with replacement in increments of

100, from 100 to 1500 (20 times each). Additionally, we conducted

the same analyses using 10 repeats and 10 cross-validation folds.

Finally, we tested the effect of number of extreme outliers (poten-

tial indicators of low-quality segmentation) on the model perfor-

mance, by calculating the Spearman's correlation coefficient

between the number of outliers and absolute error value among

the subjects in the hold-out test sets. An outlier was defined as

three median absolute deviation above or below the median for

each brain region.

3 | RESULTS

3.1 | Algorithm performance for age prediction

Linear algorithms, with the exception of Elastic Net Regression, per-

formed poorly while the XGBoost, RF regression and SVR with RBF

kernel emerged as the three top performing models in males and

females in cross-validation (Table S2) and in the combined hold-out

datasets (i.e., ABCD and PING; Figure 1, Table 1). Despite nominal

ranking of the algorithms, the top 10 algorithms performed compara-

bly (maximum difference <0.5 years). The results of the statistical

comparison in absolute error values between each pair of algorithms

are presented in Figures S3 and S4. The median correlation coefficient

between age predicted by the 21 different algorithms was 0.92 for

males and 0.94 for females (Figure 2). The wider age-range of the

PING dataset enabled examination of the association between

observed and predicted age from the different algorithms which had a

median correlation coefficient of 0.84 for males and 0.86 for females

(Table 1, Figures 3 and S5).

3.2 | Computational speed and memory usage of
each algorithm

The highest maximum memory usage was observed while training the

Bayesian regularized neural networks, the boosted generalized addi-

tive model, and XGBoost algorithms (in that order). Highest average

memory usage was seen with Bayesian regularized neural networks,

the boosted generalized additive model, and the quantile regression

with LASSO penalty. Bayesian regularized neural networks, XGBoost,

and SVR with a polynomial kernel engaged CPU for the longest time.

The generalized linear model, Kernel-partial least squares and principal

component regression were the fastest algorithms with the lowest

memory usage. Among the algorithms that performed best nonlinear

kernelized versions had a favorable memory-computational speed

profile (Table S3).

3.3 | BrainAGE and BrainAGEcorr for the three best
performing algorithms

In Table 2 we report the BrainAGE and BrainAGEcorr derived from

the three best performing algorithms. The corresponding values

for all algorithms are shown in Table S4. The values presented

refer to the models' performance in the ABCD and the PING sam-

ples using the optimized model parameters in the training phase.

There was a significantly negative correlation between BrainAGE

and chronological age but not for BrainAGEcorr, as this association

was mitigated by applying age-bias correction (Table S4,

Figures S6–S10).

3.4 | Feature importance in brain-age prediction in
the three best performing algorithms

Feature importance, as inferred by their SVs, varied considerably

across models specified with XGBoost, RF regression, and SVR with

the RBF kernel (Figure 4, Table S5). The values presented refer to

the models' performance in the training sample using the optimized

model parameters. In RF regression, a few regions made very large

contributions, with minimal contributions from other regions. In SVR

with the RBF kernel, most features contributed to the model

although the contribution of each feature was small. The profile of

feature contributions in XGBoost was intermediate between the

other two algorithms.

3.5 | Sensitivity and supplemental analyses for the
three best performing algorithms

3.5.1 | Sex

Application of parameters from models trained on males to the entire

sample, yielded marginally higher BrainAGE values for females than
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males (maximum difference across models = 0.2 years; Tables S6 and

S7). Similarly, application of parameters from models trained on females

to the entire sample yielded higher BrainAGE for females than males

(maximum difference across models = 0.6 years; Tables S6 and S7).

3.5.2 | Parcellation scheme and number of input
features

The different parcellation schemes had minimal influence on the MAE

in any of the three best performing algorithms (Figure 5a). The num-

ber of features in the range examined (136–2000) had minimal impact

on MAE and notably the Schaefer-1000 parcellation did not outper-

form the Schaefer-400 parcellation used in the main analyses. The

same pattern was seen in females and males in the ABCD and PING

datasets (Figures S11 and S12).

3.5.3 | Sample size

MAET improved in line with sample increase up to a size of 500 partici-

pants and it plateaued thereafter. The corrected MAET, on the other

hand sowed limited change across different sample sizes (Figures 5b

and S13).

F IGURE 1 Absolute Mean Error of the 21 algorithms evaluated. The figure presents the model performance in males and females in the hold-
out test sets: the Adolescent Brain Cognitive Development (ABCD) study (Panel a) and the Pediatric Imaging, Neurocognition, and Genetics Data
Repository (PING) (Panel b). The different algorithms are referenced by the function used for their implementation. bayesglm, Bayesian
Generalized Linear Model; brnn, Bayesian Regularized Neural Network; enet, Elastic Net Regression; gamboost, Generalized Additive Model with
Boosting; gaussprLinear, Gaussian Processes Regression Linear; gaussprPoly, Gaussian Processes Regression Polynomial; gaussprRadial, Gaussian
Processes Regression Radial; glm, Generalized Linear Model; icr, Independent Component Regression; kernelpls, Kernel Partial Least Squares; pcr,
Principal Component Regression; rf, Random Forest; rqlasso, Quantile Regression with LASSO penalty; rvmLinear3, Relevance Vector Machine-
Linear; rvmPoly, Relevance Vector Machine-Polynomial; rvmRadial, Relevance Vector Machine-Radial; spls, Sparse Partial Least Squares;
svmeLinear3, Support Vector Regression-Linear; svmPoly, Support Vector Regression-Polynomial; svmRadial, Support Vector Regression-Radial;
xgbTree, Extreme Gradient Boosting.
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TABLE 1 Algorithm performance in the hold-out sets

Algorithm (function name in caret package)

ABCD PING

MAET RMSE
Bias-adjusted
MAET MAET RMSE

Bias-adjusted
MAET Correlation

Males

Extreme Gradient Boosting (xgbTree) 1.57 2.03 1.16 2.02 2.5 1.32 0.86

Random Forest Regression (rf) 1.65 2.13 1.09 2.57 3.11 1.14 0.81

Support Vector Regression-Radial Basis Function
(svmRadial)

1.72 2.14 1.29 1.9 2.38 1.41 0.87

Support Vector Regression-Polynomial (svmPoly) 1.74 2.15 1.3 1.92 2.41 1.43 0.86

Relevance Vector Regression-Polynomial (rvmPoly) 1.78 2.2 1.38 1.9 2.41 1.46 0.86

Gaussian Processes Polynomial (gaussprPoly) 1.8 2.22 1.2 1.92 2.43 1.43 0.86

Gaussian Processes Radial (gaussprRadial) 1.81 2.22 1.34 1.99 2.48 1.26 0.87

Generalized Additive Model with Boosting (gamboost) 1.82 2.25 1.3 2.11 2.59 1.38 0.85

Sparse Partial Least Squares (spls) 1.86 2.29 1.44 1.93 2.44 1.53 0.86

Kernel Partial Least Squares (kernelpls) 1.86 2.29 1.44 1.93 2.44 1.53 0.86

Elastic Net Regression (enet) 1.9 2.32 1.44 1.99 2.5 1.49 0.85

Quantile Regression with LASSO penalty (rqlasso) 1.91 2.33 1.42 2.06 2.56 1.48 0.84

Relevance Vector Regression-Radial (rvmRadial) 1.94 2.39 1.53 2 2.6 1.6 0.83

Bayesian Regularized Neural Network (brnn) 1.99 2.51 1.69 2.09 2.62 1.74 0.83

Independent Component Regression (icr) 2.1 2.55 1.37 2.47 2.99 1.4 0.79

Principal Component Regression (pcr) 2.1 2.55 1.37 2.47 2.99 1.4 0.79

Support Vector Regression-Linear (svmLinear3) 2.7 3.37 2.5 2.7 3.44 2.52 0.73

Gaussian Processes-Linear (gaussprLinear) 2.77 3.45 2.52 2.73 3.38 2.56 0.74

Generalized Linear Model (glm) 2.81 3.49 2.56 2.76 3.41 2.6 0.74

Bayesian Generalized Linear Model (bayesglm) 2.81 3.5 2.56 2.76 3.41 2.60 0.74

Relevance Vector Machine-Linear (rvmRaidal) 11.09 11.22 1.32 12.95 13.25 1.39 0.81

Females

Random Forest Regression (rf) 1.23 1.66 1.08 2.62 3.15 1.2 0.84

Extreme Gradient Boosting (xgbTree) 1.25 1.69 1.19 2.17 2.69 1.41 0.86

Support Vector Regression-Radial (svmRadial) 1.47 1.89 1.21 2.08 2.63 1.38 0.87

Support Vector Regression-Polynomial (svmPoly) 1.47 1.89 1.24 2 2.56 1.48 0.87

Gaussian Processes Polynomial (gaussprPoly) 1.48 1.9 1.2 2.05 2.62 1.5 0.86

Generalized Additive Model with Boosting (gamboost) 1.49 1.91 1.33 2.19 2.73 1.57 0.86

Relevance Vector Regression-Polynomial (rvmPoly) 1.51 1.94 1.28 2.04 2.62 1.53 0.86

Gaussian Processes Radial (gaussprRadial) 1.52 1.95 1.24 2.1 2.62 1.28 0.88

Relevance Vector Regression-Radial (rvmRadial) 1.64 2.08 1.44 2.23 2.89 1.66 0.83

Quantile Regression with LASSO penalty (rqlasso) 1.66 2.08 1.43 2.13 2.65 1.61 0.85

Independent Component Regression (icr) 1.67 2.11 1.44 2.32 2.85 1.52 0.83

Principal Component Regression (pcr) 1.67 2.11 1.44 2.32 2.85 1.52 0.83

Elastic Net Regression (enet) 1.7 2.15 1.51 2 2.54 1.73 0.86

Kernel Partial Least Squares (kernelpls) 1.78 2.21 1.5 1.91 2.45 1.62 0.87

Sparse Partial Least Squares (spls) 1.78 2.21 1.5 1.91 2.45 1.62 0.87

Bayesian Regularized Neural Network (brnn) 1.97 2.52 1.79 2 2.59 1.7 0.86

Support Vector Regression-Linear (svmLinear3) 3.66 4.58 3.51 3.87 4.88 3.74 0.61

Gaussian Processes-Linear (gaussprLinear) 4.17 5.23 3.97 4.48 5.62 4.35 0.54

Bayesian Generalized Linear Model (bayesglm) 5.24 6.61 5.06 5.68 7.15 5.53 0.42

Generalized Linear Model (glm) 5.3 6.69 10.47 5.74 7.23 10.13 0.41

Relevance Vector Machine-Linear (rvmLinear) 11.67 11.83 1.47 13.17 13.49 1.58 0.82

Note: Correlations were only conducted in the PING dataset which has a wider age-range and not in the ABCD dataset were the age-range was very
restricted (9–10 years).
Abbreviations: ABCD, adolescent brain cognitive development; LASSO, least absolute shrinkage and selection operator; MAET, mean absolute error; PING,
Pediatric Imaging, Neurocognition, and Genetics Data Repository; RMSE, root mean squared error.
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3.5.4 | Number of cross-validation folds and
repeats

In the main analyses, we used fivefold repeats and fivefold cross-vali-

dations. Using 10 instead of fivefolds and repeats did not improve

performance and in the case of XGBoost, we noted markedly worse

performance in the MAET (Table S8).

3.5.5 | Effect of extreme outliers in the test set

In the PING dataset, spearman's correlation coefficients between the

number of outliers and the MAE derived from the three best

performing algorithms was small (all rho <0.15). In the ABCD dataset,

the corresponding values were of similar magnitude with a maximum

rho of 0.25 for RF regression. The magnitude of these associations

was reduced when using age-bias-corrected MAE (max rho <0.2).

Among the three best performing models, the performance of SVR

with the RBF kernel was the least impacted by extreme outliers

(Table S9).

4 | DISCUSSION

In the present study, we undertook a comprehensive comparison of

machine learning algorithms for sMRI-based age prediction as a proxy

F IGURE 2 Pairwise correlations of the predicted age of the 21 algorithms. Figure demonstrates correlations between predicted age as
estimated by different models in the females and males in the cross-validation set (Panels a and b), and in females and males in the hold-out
Pediatric Imaging, Neurocognition, and Genetics Data Repository (PING) dataset (Panels c and d). The different algorithms are referenced by the
function used for their implementation. bayesglm, Bayesian Generalized Linear Model; brnn, Bayesian Regularized Neural Network; enet, Elastic
Net Regression; gamboost, Generalized Additive Model with Boosting; gaussprLinear, Gaussian Processes Regression Linear; gaussprPoly,
Gaussian Processes Regression Polynomial; gaussprRadial, Gaussian Processes Regression Radial; glm, Generalized Linear Model; icr, Independent
Component Regression; kernelpls, Kernel Partial Least Squares; pcr, Principal Component Regression; rf, Random Forest; rqlasso, Quantile
Regression with LASSO penalty; rvmLinear3, Relevance Vector Machine-Linear; rvmPoly, Relevance Vector Machine-Polynomial; rvmRadial,
Relevance Vector Machine-Radial; spls, Sparse Partial Least Squares; svmeLinear3, Support Vector Regression-Linear; svmPoly, Support Vector
Regression-Polynomial; svmRadial, Support Vector Regression-Radial; xgbTree, Extreme Gradient Boosting.
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for the biological age of the brain in youth. We identified three algo-

rithms, namely XGBoost, RF regression, and SVR with the RBF kernel,

that outperformed all others in terms of accuracy while being compu-

tationally efficient. Notably we also show that sMRI-based age predic-

tion was suboptimal in models using linear algorithms.

Linear algorithms consistently underperformed compared with

other algorithms probably because of the multicollinearity of the neuro-

imaging data, as suggested by the relative better performance of those

linear algorithms that are based on covariance (such as SPLS regression

or PCA regression). Further, the general underperformance of linear

models may also reflect the fact that they do not account for nonlinear

and interactive associations between brain imaging features and age.

As predicted XGBoost and RF regression, which are both ensem-

ble tree-based algorithms, performed well in terms of their accuracy

and generalizability to unseen samples. A decision tree is a machine

learning algorithm that partitions the data into subsets based on con-

ditional statements. Although each tree has generally low predictive

performance, their combination (ensemble) improves generalizability

F IGURE 3 Correlations between chronological age (years) and predicted age across 21 algorithms in the PING dataset. The figure shows the
correlation of chronological age with sMRI-age in each of the 21 algorithms tested in males and females in the Pediatric Imaging, Neurocognition,
and Genetics Data Repository (PING). The different algorithms are referenced by the function used for their implementation. bayesglm, Bayesian
Generalized Linear Model; brnn, Bayesian Regularized Neural Network; enet, Elastic Net Regression; gamboost, Generalized Additive Model with
Boosting; gaussprLinear, Gaussian Processes Regression Linear; gaussprPoly, Gaussian Processes Regression Polynomial; gaussprRadial, Gaussian
Processes Regression Radial; glm, Generalized Linear Model; icr, Independent Component Regression; kernelpls, Kernel Partial Least Squares; pcr,
Principal Component Regression; rf, Random Forest; rqlasso, Quantile Regression with LASSO penalty; rvmLinear3, Relevance Vector Machine-
Linear; rvmPoly, Relevance Vector Machine-Polynomial; rvmRadial, Relevance Vector Machine-Radial; spls, Sparse Partial Least Squares;
svmeLinear3, Support Vector Regression-Linear; svmPoly, Support Vector Regression-Polynomial; svmRadial, Support Vector Regression-Radial;
xgbTree, Extreme Gradient Boosting.
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without sacrificing accuracy (Qi, 2012). Further advantages of these

methods, particularly in the context of neuroimaging datasets, is that

they are nonparametric, they do not involve assumptions about the

distribution for the data and can account for nonlinear effects and

interactions, which may be particularly relevant in modeling develop-

mental brain-age. They also require minimal preparation of the input

sMRI features as they can handle multicollinear data without losing

accuracy. Notably, these algorithms were relatively insensitive to the

number of the neuroimaging features, when the size of the feature

sets ranged between 136 and 2000, with the mid-point feature set

(n = 841) being relatively better.

Similar considerations applied to SVR with RBF algorithm which

had the additional advantage of being particularly robust to outliers.

This may represent a particular strength of this algorithm for studies

with relatively small datasets where strict rules for outlier exclusion

may result in significant data loss. Despite similar performance in

terms of accuracy, the sMRI features contributing to age prediction

differed across the three best-performing algorithms. Relative to the

other two algorithms, more features contributed to age prediction in

SVR with RBF which may contribute to its robustness to outliers.

Two recent studies also undertook benchmarking of methods

used for brainAGE computation in adult (Baecker et al., 2021;

TABLE 2 BrainAGE and BrainAGEcorr in the ABCD and PING sample

Algorithm (function
name in caret
package)

ABCD PING

Males
BrainAGE

Males
BrainAGEcorr

Females
BrainAGE

Females
BrainAGEcorr

Males
BrainAGE

Males
BrainAGEcorr

Females
BrainAGE

Females
BrainAGEcorr

Extreme Gradient

Boosting (xgbTree)

1.33 (1.53) 0.22 (1.50) 0.73 (1.52) �0.15 (1.49) 0.06 (2.51) 0.05 (1.66) �0.28 (2.68) �0.19 (1.80)

Random Forest

Regression (rf)

1.55 (1.46) �0.03 (1.38) 0.97 (1.34) �0.37 (1.27) �0.13 (3.10) �0.19 (1.42) �0.43 (3.10) �0.34 (1.50)

Support Vector

Regression-Radial

(svmRadial)

1.44 (1.57) 0.56 (1.55) 1.04 (1.57) 0.21 (1.55) 0.24 (2.40) 0.26 (1.73) �0.22 (2.62) �0.16 (1.88)

Note: Values shown as mean (standard deviation).

Abbreviations: ABCD, adolescent brain cognitive development; BrainAGEcorr, Age-bias corrected BrainAGE; MAET, mean absolute error; PING, Pediatric

Imaging, Neurocognition, and Genetics Data Repository.

F IGURE 4 Relative

importance of neuroimaging
features for age prediction in the
three best performing algorithms.
The figure shows the relative
variable importance of the
features of the 400-parcel
Schaefer Atlas for age-prediction
based on their Shapley Values in
females (Panel a) and males (Panel
b). The relative importance values
shown were rescaled such that
the feature with the maximum
average absolute Shapley Value in
each model was assigned a value
of 100. The algorithms are
referenced by the function used
for their implementation: rf,
Random Forest Regression;
svmRadial, Support Vector
Regression-Radial; xgbTree,
Extreme Gradient Boosting.
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Beheshti et al., 2022). Baecker et al. (2021) examined the performance

of three of the algorithms tested here, namely support vector regres-

sion, relevance vector regression and Gaussian process regression, in

10,824 participants in the UK Biobank, aged range 47–73 years. They

reported minimal differences in accuracy in the three algorithms

tested. Beheshti et al. (2022) tested the performance of 22 different

algorithms in a sample of 876 healthy adults, aged 18–94 years. The

algorithms overlapped with those used here and included linear, non-

linear, and tree-based models. They also found that linear models

underperformed compared with kernel-based and tree-based models.

The range of MAE values in both studies was 3.7–7.1 years which is

numerically higher than that observed here probably because of the

wider age-range.

A major concern in neuroimaging research is the effect of site on

the generalizability of ML models (Dockes et al., 2021; Solanes

et al., 2021). Sites may differ in terms of scanner infrastructure, acqui-

sition protocols, and neuroimaging feature extraction pipelines as well

as sample composition. Here the post-acquisition extraction of neuro-

imaging features was undertaken for all cohorts using the same pipe-

line which may have reduced variability in the neuroimaging feature

set. However, all other parameters differed between cohorts (and

between recruitment sites within cohorts). Yet the three best per-

forming algorithms showed excellent generalizability to the hold-out

datasets, which is likely to reflect the robustness of these algorithms.

Additionally, the inclusion of observations from multiple sites in the

training dataset may have forced the ML algorithms to select and

F IGURE 5 Mean absolute error
(MAE) as a function of Parcellation
scheme and sample size. Panel a: The
mean absolute error for the three best
performing algorithms as a function of
parcellation scheme in male participants
from the Adolescent Brain Cognitive
Development (ABCD) study. The
corresponding information from female

ABCD participants and the PING sample
are shown in Figures S8 and S9); Panel b:
Mean absolute error of each of the three
best performing algorithms as a function
of sample size in the ABCD sample;
model parameters for each algorithm
were obtained by randomly resampling
the training dataset without replacement
generating subsamples of 100–1500. The
algorithms are referenced by the function
used for their implementation: rf,
Random Forest Regression; svmRadial,
Support Vector Regression-Radial;
xgbTree, Extreme Gradient Boosting.
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weight features that are robust to site differences, therefore reducing

the dependence of the model on the effects of site.

We observed a lower MAE for females compared with males

across most models. This has been reported in prior studies (Brouwer

et al., 2021; Wierenga et al., 2019; Wierenga et al., 2020), and can be

attributed to either biological differences, that is, female brain show-

ing less variability or confounding, that is, males may move more, on

average, than females which could make their brain measurements

less accurate. Brouwer et al. (2021) demonstrated that in individuals

aged 9–23 years, females have higher sMRI-derived BrainAGE than

their male counterparts. The same pattern was reported by Tu et al.

(2019) using sMRI data from 118 males and 147 females, aged 5–18,

from the NIH MRI Study of Normal Brain Development. In these stud-

ies, as well as in ours, sex differences in BrainAGE are small and within

the range of the MAE for brain-predicted age.

We acknowledge that the list of algorithms evaluated is not

exhaustive but provides a good coverage of the many models that are

currently available. We were unable to account for potential influ-

ences of race and ethnicity as such information was either absent or

not uniformly coded in the cohorts used for model training. Based on

the racial constitution of the general population, in the countries of

the recruitment sites, we anticipate an over-representation of white

individuals. As more data becomes available on other racial/ethnic

groups, it should be possible to address this issue in future studies.

In summary, using a wide range of ML algorithms on geographi-

cally diverse datasets of young people, we showed that tree-based

followed by nonlinear kernel-based algorithms offer robust, accurate,

and generalizable solutions for predicting age based on brain morpho-

logical features. Findings of the present study can be used as a guide

for quantifying brain maturation during development and its contribu-

tion to functional and behavioral outcomes.
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