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Abstract

Interactions between proteins and nucleic acids are at the heart of many essential biological

processes. Despite increasing structural information about how these interactions may take

place, our understanding of the usage made of protein surfaces by nucleic acids is still very

limited. This is in part due to the inherent complexity associated to protein surface deform-

ability and evolution. In this work, we present a method that contributes to decipher such

complexity by predicting protein-DNA interfaces and characterizing their properties. It relies

on three biologically and physically meaningful descriptors, namely evolutionary conserva-

tion, physico-chemical properties and surface geometry. We carefully assessed its perfor-

mance on several hundreds of protein structures and compared it to several machine-

learning state-of-the-art methods. Our approach achieves a higher sensitivity compared to

the other methods, with a similar precision. Importantly, we show that it is able to unravel

‘hidden’ binding sites by applying it to unbound protein structures and to proteins binding

to DNA via multiple sites and in different conformations. It is also applicable to the detection

of RNA-binding sites, without significant loss of performance. This confirms that DNA and

RNA-binding sites share similar properties. Our method is implemented as a fully automated

tool, JET2

DNA, freely accessible at: http://www.lcqb.upmc.fr/JET2DNA. We also provide a

new dataset of 187 protein-DNA complex structures, along with a subset of 82 associated

unbound structures. The set represents the largest body of high-resolution crystallographic

structures of protein-DNA complexes, use biological protein assemblies as DNA-binding

units, and covers all major types of protein-DNA interactions. It is available at: http://www.

lcqb.upmc.fr/PDNAbenchmarks.

Author summary

Protein-DNA interactions are essential to living organisms and their impairment is asso-

ciated to many diseases. For these reasons, they have become increasingly important ther-

apeutic targets. Experimental structure determination has revealed different binding
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motifs and modes, associated to different functions. Yet, the available structural data gives

us only a glimpse of the multiplicity and complexity of protein surface usage by DNA. In

this work, we use a three-layer model to describe and predict DNA-binding sites at pro-

tein surfaces. Given a protein, we consider the way its residues are conserved through evo-

lution, their physico-chemical properties and geometrical shapes to decrypt its surface.

We are able to detect a large portion of interacting residues with good precision, even

when they are ‘hidden’ by conformational changes. We highlight cases where one protein

binds DNA via distinct regions to perform different functions. We are able to uncover the

alternative binding sites and relate their properties with their specific roles. Our work can

help guiding mutagenesis experiments and the development of new drugs specifically tar-

geting one site while limiting possible side effects.

Introduction

Interactions between proteins and DNA play a fundamental role in essential biological pro-

cesses [1] and their impairement is associated with human diseases [2, 3]. Thus, they represent

increasingly important therapeutic targets. The experimental determination of protein-DNA

complexes is a costly and time consuming process (<5000 protein-DNA complex structures

available in the Protein Data Bank [4], release 2019). This has motivated the development of a

large number of computational methods, most of them based on machine learning, to predict

DNA-binding residues [5–24]. Both sequence-based properties (conservation, amino acid

type, predicted secondary structure, solvent accessibility and disorder) and structural proper-

ties (electrostatic potential, dipole moment, surface shape and curvature, structural motifs, sec-

ondary structure, amino acid microenvironment, solvent accessibility and hydrogen-bonding

potential) have been considered. Among those, amino acid composition is one of the most

powerful feature. Indeed, positively charged and polar amino acids are largely over-repre-

sented in DNA-binding sites, in order to counterbalance the excess of negative charge coming

from the DNA phosphate groups [25]. Methods using a large body of features can achieve very

high accuracy on known binding sites but generally lack interpretability.

Our understanding of protein-DNA interactions is hampered by the fact that protein sur-

faces are complex dynamical objects which may interact with several DNA molecules at the

same time or at different moments but via the same region [26–28], accommodate indiffer-

ently DNA and RNA [29] and undergo substantial conformational changes upon binding [30].

A protein may harbour multiple DNA-binding sites on its surface, each of which may have a

different role with a different level of importance in the accomplishment of the protein’s func-

tion [28, 31] and thus display particular properties. The relatively small amount of available

structural data gives us only a glimpse of the many ways nucleic acid molecules use protein

surfaces. This calls for the development of tools able to comprehensively identify and charac-

terize protein-DNA interfaces and help decipher protein surface complexity.

Here, we present JET2

DNA, a new method for predicting DNA-binding sites at protein sur-

faces based on a few biologically and physically meaningful parameters. Specifically, we use

evolutionary conservation, physico-chemical properties and local/global geometry. These

descriptors recently proved useful to identify and characterize protein-protein interfaces [32,

33]. JET2

DNA predicts surface patches following the support-core-rim model for experimental

protein-protein interfaces, where interacting residues are classified based on their structural

role in the interaction [34]. This three-layer model comes from a reexamination of the previ-

ously proposed core-rim one, which proved useful in dissecting protein-protein [35, 36] and
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protein-DNA interfaces [37] and in understanding their properties. To the best of our knowl-

edge, this is the first time that the three-layer support-core-rim model is used for analyzing

and predicting protein-DNA interfaces. JET2

DNA implements three different scoring strategies,

aimed at detecting different types of protein-DNA interfaces and different subregions of a

given interface.

We assessed JET2

DNA performance on two new representative benchmarks of high-resolu-

tion structures, comprised of 187 protein-DNA complexes (HR-PDNA187) and 82 associated

bound-unbound pairs (HOLO-APO82), and on an independent test set of 82 nucleic acid

binding proteins (TEST-NABP82), taken from [18]. We show that JET2

DNA predictions are very

accurate and robust to protein conformational and stoichiometry changes associated to DNA

binding. Moreover, the predictive performances are equivalent for both DNA- and RNA-bind-

ing sites, showing that these sites share similar properties. In addition, rigorous comparison

with three established machine learning based methods, namely DISPLAR [7], multiVORFFIP

[15] and DRNApred [18] demonstrates the better predictive power of JET2

DNA on all datasets.

Specifically, JET2

DNA is able to significantly detect more interacting residues while retaining

similar precision and to unravel ‘hidden’ alternative binding sites. We show how one can learn

about the origins and specificities of different types of protein-DNA interfaces through direct

interpretation of JET2

DNA predictions. With this work, we pave the way to the discovery of yet

unknown binding sites, opening up new perspectives for drug design.

We provide the structures and the experimentally known DNA-binding sites for our

two newly created datasets, HR-PDNA187 and HOLO-APO82 at: http://www.lcqb.upmc.fr/

PDNAbenchmarks/. These datasets represent the largest body of non-redundant known high-

resolution crystallographic protein-DNA complex structures. They were manually curated to

ensure quality and biological relevance. They can be used as benchmark sets for evaluating

DNA-binding site predictors and DNA-protein docking methods. The code of JET2

DNA is avail-

able at: http://www.lcqb.upmc.fr/JET2DNA.

Materials and methods

Datasets

HR-PDNA187. The complete list of 1257 protein-double strand DNA complexes deter-

mined by X-ray crystallography with a resolution better than 2.5Å was downloaded from

the Nucleic Acid Database [38] (February 2016 release). This list was filtered using PISCES

sequence culling server [39] to define a set of 222 protein-DNA complexes non-redundant at

25% sequence identity, with an R-factor lower than 0.3 and with at least one protein chain lon-

ger than 40 amino acids. The complexes’ 3D structures were downloaded from the PDB [4].

Subsequently, the dataset was manually curated to ensure its good quality. We removed

entries where: (1) the asymmetric unit did not contain at least one biological unit or (2) the

DNA molecule was single-stranded or contained less than 5 base pairs or (3) only Cα atoms

were present. Moreover, only chains with more than one contact with the DNA were retained.

When the biological unit contained multiple copies of the protein-DNA complex, only one

copy was kept. The structure 4hc9 was excluded because it displays different DNA-binding

sites in the asymmetric and biological units. The complex 4aik was substituted with the 100%

homolog 4aij, where the DNA-binding site is twice bigger. Finally, we removed the only anti-

body present in the dataset (3vw3), since this class of proteins have very peculiar characteristics

and should be treated separately. In total, we retained 187 complexes (Table A in S1 File).

HR-PDNA187 covers all major groups of DNA-protein interactions according to Lus-

combe et al. classification [1]: helix-turn-helix (HTH), zinc-coordinating, zipper type, other α-
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helical, β-sheet, β-hairpin/ribbon, other. It spans a wide range of functional classes: it com-

prises 100 enzymes, 78 regulatory proteins, 7 structural proteins, 1 protein with other function

and 1 unclassified protein (Table A in S1 File).

HOLO-APO82. We collected all available X-ray structures of the APO forms of the pro-

teins from HR-PDNA187. We used the blastp program from the BLAST+ package [40] from

NCBI with a threshold of 95% for seq. id., 10−3 for the E-value, a percentage of coverage�

70% and a percentage of gaps� 10% with respect to the query protein chain. Among the struc-

tures matching these criteria, only the ones having the same UniProt code [41] or belonging to

the same organism as the query sequence were retained. If several structures passed all filters,

only the closest one to the query or the one with the highest resolution was chosen. We found

unbound forms for 81 complexes. For the complex 2isz, the unbound protein was found as a

monomer and also as a dimer in two different PDB structures. Both structures were retained

as they were both reported as present in equilibrium [42]. The resulting list comprises a total

of 82 HOLO(bound)-APO(unbound) pairs. Within each pair, the APO form may be in the

same oligomeric state as the HOLO form or may have fewer chains (Table A in S1 File).

TEST-NABP82. We used an additional recent dataset [18] of 82 proteins bound to

nucleic acids, with a resolution better than 2.5Å. Among these, 49 proteins were solved bound

to DNA (TEST-DBP49) and 33 to RNA (TEST-RBP33). Among the 49 DNA-binding proteins,

25 share more than 30% sequence identity with proteins from HR-PDNA187. To fairly assess

JET2

DNA performance, they were removed from the dataset and the remaining 24 were used as

non-redundant test set of DNA-binding proteins (TEST-DBP24). The list of the 24 complexes

present in TEST-DBP24, annotated with the reasons they were excluded from HR-PDNA187

despite their good (<2.5Å) resolution, is reported in Table B in S1 File.

Definition of interface residues

For each bound form from HR-PDNA187, we calculated the residues relative accessible sur-

face areas in presence (rasaDNA) and absence (rasafree) of DNA, using NACCESS 2.1.1 [43]

with a probe size of 1.4Å. Interface residues were defined as those being more buried in the

presence of DNA than in the free form (Δrasa> 0). They were classified in three structural

components [34]: support residues are buried both in presence (rasaDNA<25%) and absence of

DNA (rasafree<25%); core residues are exposed in absence of DNA (rasafree�25%) and become

buried upon binding (rasaDNA<25%); rim residues are exposed in presence (rasaDNA�25%)

and in absence (rasafree�25%) of DNA (Fig 1a).

The interfaces for TEST-NABP82 were directly taken from [18]. They were defined from

the PDB entries comprised in the dataset and also PDB structures of identical or similar com-

plexes (seq. id.�80% and TM-score�0.5) [44, 45]. This allows to account for interface variabil-

ity coming from molecular flexibility. Nevertheless, we should stress that these interfaces were

defined using a very stringent distance criterion of 3.5Å, and hence they are substantially

smaller than those we defined from HR-PDNA187. We used them to fairly assess JET2

DNA per-

formance on an independent dataset, not created by us, and to fairly compare JET2

DNA with

DRNApred [18], which was evaluated on them.

Residue descriptors

Evolutionary conservation. Conservation levels are computed using the Joint Evolution-

ary Trees (JET) method [46]. This measure is inspired but different from the evolutionary

trace introduced in [47, 48]. Briefly, the algorithm performs a PSI-BLAST search [49] to

retrieve a set of sequences homologous to the query. These sequences are then sampled by a

Gibbs-like approach and from each sample a phylogenetic tree is constructed [32, 46]. From

Unravelling multiple protein-DNA interfaces
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each tree, a tree trace is computed for each position in the query sequence: it corresponds to

the tree level where the amino acid at this position appeared and remained conserved thereaf-

ter [32, 46]. Tree traces are averaged over all trees to get more statistically significant values,

denoted as TJET, which vary in the interval [0, 1].

Physico-chemical properties. Propensities specific to every amino acid to be located at a

protein-DNA interface (PCDNA) were taken from [50] (see Fig. A in S2 File, in red). The origi-

nal values, ranging from 0 to 2.534, were scaled between 0 and 1.

Circular variance. The circular variance (CV) is a geometrical measure of the vectorial

distribution of a set of neighboring points localized around the center of a three dimensional

sphere of radius rc [51, 52]. The CV value of an atom i is computed as:

CVðiÞ ¼ 1 �
1

ni

X

j6¼i;ri�rc

~rij
k~rijk

�
�
�
�
�

�
�
�
�
�

ð1Þ

where ni is the number of all individual atoms distant by less than rc Å from atom i. The

CV value of a residue is then computed as the average of the atomic CVs, over all its atoms.

Fig 1. Experimental interface definition, JET2

DNA scoring schemes and complete automated clustering procedure. (a) Top,

sections of two experimental interfaces (on the left, PDB code: 1JE8; on the right, PDB code: 1D02). Bottom, the corresponding

JET2

DNA prediction using D-SC2. The experimental and predicted interface residues are displayed in opaque surfaces: support, core
and rim are in yellow, brown and green, respectively; cluster seed, extension and outer layer are in red, orange and cyan, respectively;

(b) Schematic representation of the three scoring schemes provided in JET2

DNA. TJET: conservation level, PCDNA: protein-DNA

interface propensities, CVlocal and CVglobal: local and global circular variance computed with a radius of 12 Å and 100 Å, respectively.

Different colors correspond to different combinations of properties used to predict interface residues in the three steps of the

clustering procedure. (c) Schematic representation of the complete automated JET2

DNA clustering procedure.

https://doi.org/10.1371/journal.pcbi.1007624.g001
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Given a residue, its CV value reflects the protein density around it. A low CV value (close to

0) indicates that a residue is located in a protruding region of the protein surface, while a high

value (close to 1) indicates it is buried within the protein. By consequence, the complement

measure (1- CV) shows low values for buried residues and high values for protruding ones.

As described in the following, since the algorithm clusters together highly scored residues, the

CVglobal measure is then used to detect globally buried residues, while (1 − CVlocal) is used to

detect locally protruding ones.

Varying the radius cutoff rc allows describing the local (CVlocal, rc = 12Å) and the global

(CVglobal, rc = 100Å) geometry of the surface. The values of rc for CVlocal and CVglobal are the

same ones we already used in [32] to predict protein-protein interfaces. In [32], we showed

that thresholds in the range 10-14Å for CVlocal would not change the results. On the other

hand, a CVglobal value of 100Å ensures the inclusion of essentially all protein atoms in the cal-

culation. Setting the threshold to a value larger than the standard protein size does not affect

the efficiency nor the outcome of the calculation.

JET2

DNA workflow

The JET2

DNA method requires as input a protein query sequence for which three-dimensional

(3D) structural coordinates are available in the PDB. It computes TJET, PCDNA, CVglobal and

CVlocal values and it combines them to assign a score to each residue. Different combinations

are implemented in three different scoring schemes (D-SC in Fig 1b) designed to detect differ-

ent types of protein-DNA interfaces (see Results). The computed scores are used to rank, select

and cluster protein residues. The clustering algorithm is adapted from the protein-protein

interface prediction method JET/JET2 [32, 46]. First, highly scored residues proximal in 3D

space are clustered together to form seeds. Then, the seeds are extended by progressively adding

highly scored neighboring residues. At this stage, if two predicted patches are in contact, they

will be merged. Finally, the prediction is completed with an outer layer of residues. The seed,

extension and outer layer (Fig 1a, in red, orange and cyan, respectively) approximate the sup-
port, core and rim (Fig 1a, in yellow, brown and green, respectively) detected in experimental

interfaces. For a more detailed description of the three-steps clustering procedure see Table C

in S1 File. JET2

DNA implements an automated procedure to choose the most appropriate scoring

scheme for the studied system (Fig 1c; see also Automated clustering procedure). Alternatively,

the user can manually choose a scoring scheme. The user has the possibility to complement

the predictions with another round of the clustering procedure using a complementary scoring

scheme (Fig 1c; see also Complete clustering procedure). To get more robust predictions, several

iterations of JET2

DNA can be run (iJET2

DNA; see also Iterative mode). A schematic representation

of the JET2

DNA pipeline is reported in Fig. B in S2 File. In the following, we explain in details the

new criteria and new procedures implemented in JET2

DNA, compared to JET2 [32].

Modification of the expected size of the interface. At each step of the clustering proce-

dure, JET2

DNA uses two thresholds, namely scorelayerres and scorelayerclus , that respectively determine

which residues should be considered as candidates for the predicted patches and when the

process of growing each patch should be stopped. The set up of these threshold is based on

the expected relative size of a protein-DNA interface, f DNAintfracðxÞ. f
DNA
intfracðxÞ was determined by

plotting the percentage of interface residues versus the total number of surface residues for

HR-PDNA187 (Fig. C in S2 File, circles). The function that best approximates our data is

f DNAintfracðxÞ ¼ ð2:66=
ffiffiffi
x
p
Þ þ 0:03 (Fig. C in S2 File, solid line), where x is the number of protein

surface residues. Compared to protein-protein interfaces [32], DNA-binding sites cover a

larger portion of the protein surface (Fig. C in S2 File, compare dotted and solid lines).
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Dynamic set up of the residue and cluster thresholds. Contrary to JET2 algorithm,

where scorelayerres and scorelayerclus thresholds were fixed at the beginning of the clustering procedure

and could not be changed, in JET2

DNA we decided to initially fix them more stringently and

relax them in a second stage, if the prediction is smaller than two thirds (<70%) of the expected

size (Fig. B in S2 File, in red). This dynamic set up limits false positives in cases where surface

regions outside but close to the interface display a detectable signal. It should be noted that the

thresholds in JET2

DNA, even relaxed, remain stricter than the ones in JET2. Details about thresh-

old values used in JET2

DNA are given in Table D in S1 File.

Avoiding small-ligand binding pockets. Like protein-protein interactions, protein-DNA

interactions are often mediated or regulated by small ligands. As a result, a significant number

of protein-protein and protein-DNA interfaces are close to or overlapping small ligand-bind-

ing pockets. These pockets are generally very conserved (e.g. active sites of enzymes) [32] and

may thus confound the prediction. In JET2, we resolved the issue by designing a specific scor-

ing scheme exploiting the fact that small ligand-binding pockets are more deeply buried than

protein-protein interfaces (see SC2 in Fig. 2 from [32]). The specific detection of protein-DNA

interfaces is more difficult, as these interfaces are more concave than protein-protein interfaces

(compare (1-CV) boxplots in Fig 2e–2g). To tackle the problem, we implemented a procedure

in JET2

DNA that redefines seeds when they are too buried. Specifically, if a seed comprises a sig-

nificant proportion (>20% for D-SC1, >30% for D-SC2) of highly buried residues, then the

clustering procedure restarts avoiding such residues (Fig. B in S2 File, in blue). The procedure

does not apply to D-SC3 as this scoring scheme specifically selects protruding/exposed resi-

dues. Residues were considered as highly buried if their CVlocal was higher than CVlocal
high =

0.9. They represent less than 3% of the protein surface (Fig. D in S2 File).

Filtering out putative false positive clusters. In JET2, small patches were filtered out

based on the comparison between their size and the size distribution of randomly generated

patches [46] after the seed or extension steps, depending on the scoring scheme used. In the

case of protein-DNA interfaces, we observed that this procedure removed too many true posi-

tives. Hence, we modified it in JET2

DNA. Namely, we first detect all possible seeds and extend

them. Then, if the patches represents more than two thirds (>70%) of the expected size of the

interface, we iteratively filter them starting from the smallest one (Fig. B in S2 File, in green).

To eliminate aberrant predictions, clusters composed of 1 or 2 residues are still systematically

filtered out.

Automated clustering procedure

The implemented algorithm is described in Fig 1c and Table E in S1 File. By default, JET2

DNA

first detects seeds using D-SC1 (TJET + PCDNA). If these display a very low conservation signal

(average TJET<0.3) then the strategy is to exploit the other two descriptors and look for locally

protruding residues that satisfy expected physico-chemical properties (D-SC3). Otherwise, the

algorithm analyses the physico-chemical and the geometrical properties of the detected seeds.
If the seeds are in a very concave region (average CVglobal>0.6) and do not display highly favor-

able physico-chemical properties (average PCDNA<0.9), then the algorithm switches from

D-SC1 to D-SC2, where CVglobal is employed to accurately detect an “enveloping” (concave)

interface. Otherwise, physico-chemical properties are considered the driving force for an accu-

rate prediction of the interface.

Selecting residues with a CVglobal>0.6 allows to well define globally concave protein

regions, giving a good compromise between too small and too large ones (see Fig. E(a) and

Fig. E(b) in S2 File, on top).
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Complete clustering procedure

A complete procedure is available for both manual and automated clustering procedure and is

described in Fig 1c and Table E in S1 File (see also Fig. B in S2 File, in yellow). It consists in

complementing the main clusters predicted in the first round by secondary clusters detected

by another scoring scheme. D-SC3 will be used in the second round if D-SC1 or D-SC2 were

chosen as main scoring schemes. D-SC1 will be the complementary one when D-SC3 is used

in the first round.

Iterative mode

Multiple JET2

DNA runs may lead to slightly different predictions, due to the Gibbs sampling of

the sequences. To get more robust predictions, JET2

DNA can be run in an iterative mode of the

program, which we call iJET2

DNA. In this way, we can compute the number of times a given

Fig 2. Signals detected in experimental interfaces. The calculations in (a)-(f) were performed on the HR-PDNA187 dataset. The

plot in (g) was taken from Fig. 1a in [32]. The support, core and rim are in yellow, brown and green, respectively. Atomic contacts are

defined by an atomic distance< 5Å. (a) Total number of atomic contacts between protein interface residues, divided in support, core
and rim, and DNA backbone atoms (plain color) and DNA base atoms (diagonal hatching). (b) Distributions of the proportion of

residues comprised in support, core and rim. (c) Distributions of the average number of atomic contacts per interface residue.

Interface residues are divided in support, core and rim. One outlier point, reaching a value of 206, was removed in the boxplot of the

distribution of core residues. (d) Distributions of the proportion of atomic contacts established by support, core and rim residues with

DNA backbone atoms and DNA base atoms. (e-g) Distributions of the proportion of interface residues, divided in support, core and

rim, having values above the median value computed over the entire protein. TJET: conservation level, PCDNA: protein-DNA

interface propensities, PCprot: protein-protein interface propensities, CVlocal and CVglobal: local and global circular variances

computed with a radius of 12Å and 100Å, respectively. Distributions are computed on: (e) all protein-DNA interfaces from

HR-PDNA187, (f) all polymerases interfaces from HR-PDNA187, (g) all the 176 protein-protein interfaces in PPDBv4 (see Fig. 1a in

[32]).

https://doi.org/10.1371/journal.pcbi.1007624.g002
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residue is detected in a cluster divided by the total number of runs. The result will be a number

comprised between 0 and 1 and it reflects the probability of the given residue to be at an

interface.

Evaluation of performances

We used six standard measures of performance:

Sens ¼
TP

TP þ FN
; PPV ¼

TP
TP þ FP

; Spe ¼
TN

TN þ FP
; Acc ¼

TP þ TN
TP þ FN þ TN þ FP

;

F1 ¼
2 � Sens � PPV
Sensþ PPV

; MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p

where TP (true positives) are the number of residues correctly predicted as interacting, TN

(true negatives) are the number of residues correctly predicted as non-interacting, FP (false

positives) are the number of non-interacting residues incorrectly predicted as interacting and

FN (false negatives) are the number of interacting residues incorrectly predicted as non-inter-

acting. Thus, in our case, Sensitivity (Sens) measures the proportion of true interface residues

that were correctly predicted as interacting with respect to the total number of interface resi-

dues; the Positive Predictive Value (PPV) measures the proportion of true interface residues

that were correctly predicted as interacting with respect to the total number of predicted resi-

dues; the Specificity (Spe) measures the proportion of true non-interface residues that were cor-

rectly predicted as non-interacting with respect to the total number of non-interface residues;

Accuracy (Acc) measures the proportion of correctly predicted residues (interacting and non-

interacting) with respect to the total number of residues; F1 score is a weighted average, specif-

ically the harmonic mean, between Sensitivity and PPV, measuring the balance between these

two; Matthew’s Correlation Coefficient (MCC) is a correlation coefficient between observed

and predicted residues. The MCC is the only measure varying in the range [-1, 1], where 0 rep-

resents a prediction no better than random. All the other measures return values in the range

[0, 1]. We multiplied by 100 all the statistical values reported in tables and figures, representing

them in percentages varying in the range [-100, 100] for the MCC, and [0, 100] for the other

measures.

To assess the statistical significance of the differences in performance between each pair of

methods, we relied on the paired t-test when the distributions were normal and on the Wil-

coxon signed-rank test [53] otherwise. To verify if the data were normally distributed we used

the Anderson-Darling test [54]. The difference was considered significant when the p-value

was lower than 0.05.

Choice of the other methods

To compare JET2

DNA performance, we considered a large set of popular DNA-binding site pre-

dictors [5–18, 20–24, 55, 56]. Among those, we discarded BindN [8], BindN+ [9], BindN-RF

[12], MetaDBsite [55], PreDs [21], DBindR [13], PreDNA [10], DBD-Hunter [23], RBscore

[20, 56] and PDNAsite [16] as their web servers are no longer available or do not work. We

finally retained three methods with a relatively short runtime, namely DISPLAR [7], multi-

VORFFIP [15] and DRNApred [18]. DISPLAR was reported to show better performance than

DP-Bind [11] and is more recent than DBS-Pred [6] and DBS-PSSM [5]. multiVORFFIP was

chosen because it showed good performance on protein-protein interfaces prediction [32].

DRNApred is a very recent predictor that uses only sequence information and which aims at

specifically detecting DNA-binding residues, discriminating them from RNA-binding resi-

dues. We ran the three tools with the default parameters. Since multiVORFFIP does not
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provide binary prediction results (binding versus non-binding residues), predicted residues

were defined by those with a normalized score (probability) > 0.5.

Results

Support-Core-Rim vs Core-Support-Rim model for protein-DNA

interactions

To identify characteristic features of protein-DNA interfaces, we analysed the non-redundant

set of protein structures bound to DNA available in the PDB. This dataset, HR-PDNA187,

comprises 187 high-resolution crystallographic structures, covers all major types of DNA-

interactions and spans a wide range of protein functions (see Materials and methods). Inter-

face residues were classified based on the support-core-rim model (Fig 1a, on top) proposed

for protein-protein interfaces [34]. The support (in yellow) comprises residues buried both in

presence and absence of DNA, the core (in brown) comprises residues exposed in absence of

DNA and becoming buried upon binding, and the rim (in green) comprises residues exposed

both in presence and absence of DNA (see Materials and methods). In protein-protein inter-

faces, the three components are spatially organized in concentric layers, with the support at the

center, the core in an intermediate position and the rim on the external border (see Fig. 2 in

[32]). In protein-DNA interfaces, in addition to this spatial organization (Fig 1a, on top left),

we also observe an organization where the support and the core switch positions (Fig 1a, on top

right). This variety reflects the different ways a protein may bind to DNA.

However, support, core and rim residues seem to play the same role during the DNA bind-

ing in both structural organizations described above. Overall, core residues establish the major-

ity of the atomic contacts (defined by an atomic distance<5Å) (Fig 2a and 2c) with both DNA

backbone and DNA base atoms (Fig 2a), despite a comparable number of support, core and

rim residues in HR-PDNA187 (Fig 2b) (support: 2501, core: 2958, rim: 2891). More than 75%

of protein-DNA base contacts involve core residues (Fig 2a and 2d), while support and rim resi-

dues prevalently establish contacts with DNA backbone atoms (Fig 2a and 2d).

Characteristics of protein-DNA interfaces

To characterize experimental protein-DNA interfaces, we relied on evolutionary conservation

(TJET), DNA-binding propensity (PCDNA) and local and global burial degree (CVlocal and

CVglobal) (Materials and methods for precise definitions of the descriptors). Specifically, for

each complex we computed the percentage of residues located in the support, core and rim, dis-

playing higher values than the median computed over the entire protein (Fig 2e and 2f). The

resulting distributions were compared with those obtained for the 176 protein-protein com-

plexes of the Protein-Protein Docking Benchmark version 4 (PPDBv4) [57] (Fig 2g), already

reported in Fig. 1a in [32].

DNA binding sites, especially the support and the core, are significantly more conserved

than the rest of the entire protein (Fig 2e, TJET). This conservation signal is stronger than in

protein-protein interfaces (compare Fig 2e and 2g). Residues with high DNA-binding propen-

sities tend to be located in the core and rim (Fig 2e, PCDNA). By contrast, residues displaying

physico-chemical properties favourable to protein-protein binding are mainly found in the

support, and to a lesser extent in the core, of protein-protein interfaces (Fig 2g, PCprot). These

different geometrical distributions reflect differences between the two PC scales (Fig. A in S2

File). Protein-DNA interfaces are enriched in positively charged and polar residues, which

tend to prefer regions exposed to the solvent. By contrast, protein-protein interfaces are

enriched in hydrophobic residues, which prefer to be located towards the interior of the
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interface. Regarding the surface geometry, the core and rim of protein-DNA interfaces are

enriched in locally protruding residues (Fig 2e, (1-CVlocal)), as observed for protein-protein

interfaces (Fig 2g). When looking at the status of the interface with respect to the global shape

of the protein surface (1-CVglobal), we found that the enzymes, and in particular the polymer-

ases and some nucleases, display a very specific profile (compare Fig 2e and 2f). All three inter-

face components, especially the support and the core, are located in concave protein regions

(Fig 2f), indicating that these proteins bind to DNA by “enveloping” it.

Overall, this analysis showed that protein-DNA interfaces encode signals that can be

described by a few residue-based features and that the way these signals are distributed can be

described using the support-core-rim model. It also confirmed that protein-DNA interfaces are

more conserved than protein-protein interfaces, as reported in [37, 58, 59]. They display spe-

cific physico-chemical and geometrical characteristics that vary depending on the type of pro-

tein-DNA interaction considered. Hence, the correct detection of these interfaces requires the

development of adapted scoring strategies.

Three strategies to detect protein-DNA interfaces

Following the support-core-rim model (Fig 1a, on top), we use a predictive model comprising

three components (Fig 1a, on bottom), namely the seed (in red), the extension (in orange) and

the outer layer (in cyan). JET2

DNA implements different algorithms and scores to detect each

one of these components (see Materials and methods). To be able to predict a wide range of

protein-DNA interfaces, we devised three scoring schemes (see D-SC1-3, Fig 1b). Each D-SC

combines TJET, PCDNA, CVlocal and CVglobal in a different way. As the support and the core
may exchange their positions, the same combination is used for seed detection and extension
in all D-SC (Fig 1b, same color for the two first layers). Specifically,

• D-SC1 first detects highly conserved residues with good physico-chemical properties (high

values of (TJET + PCDNA)) and completes the prediction with conserved locally protruding

residues (high values of (TJET + (1 − CVlocal))). It aims at detecting generic DNA-binding

sites.

• D-SC2 clusters together conserved residues located in highly concave regions (high values of

(TJET + CVglobal)); then, the prediction is completed by adding an outer layer of conserved

residues displaying good physico-chemical properties (high values of (TJET + PCDNA)). It is

designed to specifically detect interfaces characteristic of the “enveloping” binding mode dis-

played by polymerases.

• D-SC3 leaves out conservation, focusing on locally protruding residues displaying good phy-

sico-chemical properties (high values of (PCDNA + (1 − CVlocal))). It is intended to deal with

cases where no evolutionary information is available or the whole protein displays a homo-

geneous conservation signal. Moreover, it is useful to complete predictions of the previous

two scoring schemes, when some residues are less or no conserved than the rest of the bind-

ing site, sometimes because they are DNA sequence specific for a subfamily of the DNA-

binding protein (see Fig 3, bottom panel, and Discovery of alternative DNA-binding sites).

Examples of predictions are shown on Fig 3. D-SC1 is particularly suited for double-headed

interfaces stacking in the DNA grooves and some single-headed interfaces. These binding

modes are often adopted by transcription factors, regulatory proteins and some glycosilases.

The “enveloping” mode captured by D-SC2 is found in many polymerases and nucleases.

D-SC3 deals with cases where physico-chemical and geometrical properties have a better dis-

criminative power than conservation. By default, JET2

DNA will automatically determine the
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scoring scheme the most suited to the protein being analyzed (Fig 1c). In Fig. E in S2 File, we

report five examples of predictions by JET2

DNA automated clustering procedure. In the first

three cases, the protein concave regions coincide with the respective DNA-binding sites and

the JET2

DNA automated clustering procedure is able to correctly choose, for the first and third

cases, the D-SC2 scoring scheme designed to accurately predict these types of protein-DNA

interfaces (Fig. E(a) in S2 File, on bottom). Concerning the second case of Fig. E(a) in S2 File,

the JET2

DNA automated clustering procedure chose D-SC1, likely due to the physico-chemical

properties of this region. However, the predicted region by D-SC1 mostly overlap with the

D-SC2 one. In the other two cases, the concave regions are distant from the respective DNA-

binding sites and the JET2

DNA automated clustering procedure is able to avoid them and predict

the correct DNA-binding sites by choosing D-SC1 (Fig. E(b) in S2 File, on bottom), likely

because the conservation and physico-chemical properties of the concave regions do not

match with the ones expected for DNA-binding sites. Alternatively, the user can apply the

scoring scheme of his/her choice.

Some DNA-binding sites may be comprised of several regions exhibiting different signals.

To correctly detect those, JET2

DNA implements a complete procedure where patches predicted in

Fig 3. Examples of DNA-binding sites predicted by iJET2

DNA. In the first column, the experimental complexes formed between the

proteins of interest (greyscaled colored chains) and the DNA (orange) are represented as cartoons. In second and third columns, the

experimental and predicted DNA-binding sites are displayed as opaque surfaces, respectively. The experimental interface residues

are colored according to conservation levels (TJET values) computed by iJET2

DNA. iJET2

DNA predictions, obtained from a consensus of 2

runs out of 10, are colored according to the scoring scheme: D-SC1 in orange, D-SC2 in dark green and D-SC3 in blue. Statistical

performance values are given in percentages.

https://doi.org/10.1371/journal.pcbi.1007624.g003
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a first round are complemented by patches predicted in a second round and using a comple-

mentary scoring scheme (Fig 1c). An example of prediction is given in Fig 3 (bottom panel).

It may also happen that the DNA-binding site is overlapping or in close proximity to a small

ligand binding pocket. JET2

DNA implements a procedure to specifically avoid these pockets (see

Materials and methods). The impact of such procedure can be appreciated on Fig. F in S2 File.

Overall assessment of JET2

DNA performance

We report results obtained using the iterative mode of JET2

DNA (iJET2

DNA, see Materials and

methods), with a consensus of 2 and 8 iterations out of 10. For each protein, the best predicted

patch or combination of patches among the three scoring schemes was retained for the evalua-

tion. iJET2

DNA reaches an average F1-score of 61% on HR-PDNA187 and of 58-59% on a subset

of 82 proteins (HOLO-APO82) for which unbound forms are available (Table F in S1 File

and Fig 4, on top). The performance is similar on bound and unbound forms, indicating that

JET2

DNA is robust to conformational changes associated with DNA-binding. For the vast major-

ity of proteins (82%), the sensitivity attained on the unbound form is at least as high as 90%

of the sensitivity on the bound form, and in some cases it is even higher than 100%. Hence,

JET2

DNA is able to detect interacting residues even when they are ‘hidden’ by conformational

changes. Moreover, the extent of the conformational change is not correlated with the differ-

ence in performance (Fig. G-I in S2 File). The predictions are also robust to stoichiometry

changes (Table G in S1 File). Varying the consensus threshold enables shifting the balance

between sensitivity (Sens) and precision (or predictive positive value, PPV), such that the

lower threshold (2/10) yields more extended predictions while the higher threshold (8/10)

yields more precise ones. The seeds on their own cover about a third of the experimental

Fig 4. Comparison of iJET2

DNA, DISPLAR, multiVORFFIP and DRNApred performance. For iJET2

DNA, consensus predictions

were obtained from 2 (in light green) and 8 (in dark green) runs out of 10. Statistical performance values are given in percentages.

Top panel. HR-PDNA187 and APO82. To fairly assess DISPLAR, multiVORFFIP and DRNAPred performances, the proteins used

for training these methods were removed from HR-PDNA187. We used a sequence identity cutoff of 95% and ended up with 106 (�),

87 (��) and 42 (���) proteins, respectively. Bottom panel. TEST-NABP82 and its subsets. TEST-DBP49 and TEST-DBP24 contain

only DNA-binding sites, while TEST-RBP33 contains only RNA-binding sites. TEST-DBP24 and TEST-RBP33 contain only

proteins sharing less than 30% sequence identity with proteins from HR-PDNA187 (see Materials and methods). DRNApred and

multiVORFFIP were evaluated on their RNA-specific algorithms for the RNA-binding proteins, and on their DNA-specific ones for

the DNA-binding proteins. iJET2

DNA and DISPLAR, which do not have a specific algorithm to predict RNA-binding sites, were

evaluated on the same algorithm for both DNA- and RNA-binding proteins.

https://doi.org/10.1371/journal.pcbi.1007624.g004
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interfaces and contain very few positives (Table H in S1 File). On an independent test set

comprising both DNA- and RNA-binding sites (TEST-NABP82), iJET2

DNA achieves an average

F1-score of 45 (Table I in S1 File and Fig 4, on bottom). The sensitivity is roughly the same as

for HR-PDNA187 but the precision (PPV) is lower. This can be explained by the fact that the

experimental reference interfaces are defined using a much more stringent distance cutoff (see

Materials and methods). iJET2

DNA detects equally well DNA- and RNA-binding sites (Fig 4, on

bottom, compare TEST-DBP49/24 and TEST-RBP33).

Discovery of alternative DNA-binding sites

The complete and/or automated mode(s) of JET2

DNA produce patches that do not match the

experimental interfaces present in our datasets (Table J in S1 File). Due to the relatively small

number of protein-DNA complexes available in the PDB, it is difficult to systematically assess

the pertinence of these additional predictions. Nevertheless, we could identify several cases

where the protein binds to DNA via two completely distinct binding sites. We report four such

cases in the following (Fig 5 and see Table K in S1 File for F1 values).

1. RNA polymerase from bacteriophage T7. This protein first binds the DNA promoter

via its recognition site [26, 60] (site 1, Fig 5a, left), then undergoes a large conformational

change and starts the transcription at its catalytic active site [27] (site 2, Fig 5b, left), where a

short strand of RNA is paired to the DNA strand. We considered the ensemble of nucleic

acid binding residues as experimental interface. In both structures, D-SC1 (and D-SC2

with comparable values) correctly detected the catalytic active site (Fig 5a and 5b, right, in

orange) while D-SC3 predicted the recognition site and some DNA-binding residues flank-

ing the active site (Fig 5a and 5b, right, in blue). The fact that the two sites are detected by

two different D-SC indicates that they are characterized by different properties, which cor-

relate with their respective functions. Indeed, the active site is generic while the recognition

site is specific of this protein family [26]. The very high conservation signal of the former

masks the weaker signal of the latter (compare colors in Fig 5a and 5b, left), which is still

detectable based on the other properties.

2. N-terminal domain of the adeno-associated virus replication protein. This protein con-

tains three distinct DNA-binding sites [61]: a stem loop sequence specific binding site (site
1, Fig 5c, left), a tetranucleotide repeat recognition site (site 2, Fig 5d, left), and the Tyr153

active site (no PDB structure). D-SC1 and D-SC3 lead to accurate predictions of site 1 and

site 2 (Fig 5c and 5d), which both display rather low conservation signal and are mostly pro-

truding/exposed.

3. Modification-dependent restriction endonuclease. In the original structure from

HR-PDNA187 (Fig 5e, left), the DNA is bound only to the winged-helix domain binding

site [62] (site 1), while the catalytic domain (site 2) is partially disordered. In the alternative

structure (Fig 5f, left), both DNA-binding sites are occupied. Although the relative domain

orientations differ drastically between the two structures, JET2

DNA accurately identified the

two binding sites by combining D-SC1 with D-SC3 (Fig 5e and 5f, right, in orange and in

blue). The fact that a combination of D-SC is required reflects the heterogeneity of the con-

servation signal within each site (Fig 5e and 5f, left, colored by conservation level). D-SC3

enables rescuing lowly conserved subregions that D-SC1 is not able to detect.

4. Cyclic GMP-AMP synthase. DNA binding to this protein is associated to a catalytic reac-

tion producing a cyclic dinucleotide from ATP and GTP. The protein was solved bound to

DNA both in monomeric (Fig 5g, left [63]) and dimeric (Fig 5h, left [28]) forms. Since the
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Fig 5. Prediction of multiple DNA-binding sites by iJET2

DNA. For each protein (each row), the experimental complex present in HR-PDNA187 and

another experimental complex displaying a distinct DNA-binding site are shown on the first and third columns, respectively. For each structure, the

‘main’ DNA-binding site is colored according to TJET values and the site coming from the other structure is mapped and displayed in transparent

grey. The iJET2

DNA predictions computed on each experimental structure are displayed on the second and fourth columns, respectively, and colored

according to the scoring scheme. (a-b) RNA polymerase from bacteriophage T7 (PDB: 1CEZ and 1MSW); (c-d) N-terminal domain of the adeno-

associated virus replication protein (1UUT and 1RZ9); (e-f) R.DpnI modification-dependent restriction endonuclease (4ESJ and 4KYW); (g-h) Cyclic
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small ligand-binding active site is much more conserved than the DNA-binding sites, this

case is particularly difficult. In the monomeric form, only D-SC3 is able to identify the two

DNA-binding sites (Fig 5g, right, in blue). Upon dimerization, the interface geometry

changes such that the two sites form a large concave region (Fig 5h, left), detected by

D-SC2. Complementing the prediction with D-SC3 further improves the prediction (Fig

5h, right, in dark green and in blue).

These examples illustrate the different usages of JET2

DNA multiple scoring schemes and how

one can learn about each DNA-binding site properties from JET2

DNA predictions. Specifically,

different D-SC may target different binding sites (recognition or catalytic), or different regions

of the same binding site (conserved core or protruding rim), or even yield overlapping predic-

tions. In all cases, JET2

DNA detection proved to be robust to extensive conformational changes

and stoichiometry changes.

Comparison with other tools

We compared JET2

DNA with three other state-of-the-art machine learning based predictors,

namely DISPLAR [7], multiVORFFIP [15] and DRNApred [18] (see Materials and methods).

iJET2

DNA achieves�20% higher sensitivity and similar accuracy compared to DISPLAR and

multiVORFFIP on all the datasets (Table F and Table I in S1 File and Fig 4). The predictions

are slightly less precise (by�5-10%) than those of multiVORFFIP on HR-PDNA187�� and

APO82, but equally or more precise than DISPLAR and multiVORFFIP on the other datasets

(Table F and Table I in S1 File and Fig 4). This results in�5-10% higher F1 values and most of

the times�5-10% higher MCC values compared to both tools (Table F and Table I in S1 File

and Fig 4). Compared to DRNApred, iJET2

DNA’s detection is at least twice more sensitive and

at least�10% more precise on all the datasets (Table F and Table I in S1 File and Fig 4). We

should stress that DRNApred was designed to specifically discriminate DNA- from RNA-

binding residues, which is not the purpose of JET2

DNA. In particular, JET2

DNA performs much

better than the three other tools on the RNA-binding proteins of TEST-RBP33 (Table I in S1

File and Fig 4). Moreover, when looking at the four above mentioned cases of multiple DNA-

binding sites, JET2

DNA proved more powerful to detect alternative binding sites compared to the

three other tools (Fig. J-L in S2 File and Table K in S1 File).

Comparison with other benchmarks

We compared HR-PDNA187 and HOLO-APO82 with the most popular benchmarks, namely

PDNA62 [6, 64], DBP374 [13], MetaDBsite316 [55], Displar264 [7], PDDB1.2 [65], DBP206

[66], PDNA224 [10] and DNABINDPROT54 [24]. Contrary to our datasets, most of them

comprise only single chains, even if the functional biological unit of the protein in complex

with DNA is annotated as a multimer. Moreover, when applying to them the PISCES criteria

used to construct HR-PDNA187, the number of resulting complexes was systematically smaller

than 187 (Table L in S1 File). Finally, very few of them provide the APO forms of the proteins.

Robustness of the results to parameter changes

JET2

DNA parameters were set empirically based on our previous experience with JET and JET2,

our intuition and our analysis of the properties encoded in the experimental interfaces from

GMP-AMP synthase (cGAS) (4K98 and 4LEY). iJET2

DNA predicted patches were obtained from a consensus of 2, for (a-b) and (e-f), or 5, for (c-d) and

(g-h), runs out of 10. See Fig. J-L in S2 File and Table K in S1 File for comparison with other tools.

https://doi.org/10.1371/journal.pcbi.1007624.g005
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HR-PDNA187. However, we should stress that we did not use machine learning to infer them.

Hence, HR-PDNA187 is not a training set per se. Moreover, JET2

DNA parameters are few, physi-

cally explained and biologically intuitive. To validate our choices, we conducted a thorough

analysis of the impact of varying parameters on the predictions (Fig. M-W in S2 File). In total,

we ran about 220 000 additional JET2

DNA calculations to assess the influence of seven parame-

ters. These include the thresholds (% of residues and CVlocal) used in the detection of small

ligand pockets (Fig. Q-W in S2 File), the residue and cluster thresholds used to detect and

grow patches (Fig. M-P in S2 File) and the confidence threshold used to filter out small patches

(Fig. N-P in S2 File). This analysis showed that our choice of parameters is relevant, as the per-

formances obtained with our default values are close to the best one can expect within the

JET2

DNA framework. Moreover, we found that our default values are consistent with the inter-

vals/regions they fall in and that there are no abrupt changes in performance within these

regions. Hence, our predictions are stable to small parameter changes.

Discussion

We have collected and carefully curated 187 high resolution protein-DNA complexes repre-

sentative of all known types of protein-DNA interactions. This new dataset, supplemented by

the 82 available protein unbound conformations, could serve as a reference benchmark for the

community. Based on the analysis of the evolutionary and structural properties of the DNA-

binding sites from this dataset, we have proposed an original method to predict them. Impor-

tantly, we do not estimate interacting probabilities for individual residues, but we predict

ensembles of residues proximal in 3D space, in other words “patches”. Predictions based on

patches are justified by the fact that residues being conserved or displaying specific physico-

chemical properties at protein-DNA interfaces tend to cluster together [58, 67, 68]. Moreover,

we propose a “discretized model” of interfaces describing the role of each predicted residue in

the interface. This model is inspired by the support-core-rim model defined for protein-protein

interfaces. We have shown that it is also useful for protein-DNA interfaces, where the support
and the core may switch their positions. We have defined three archetypal protein-DNA inter-

faces, namely conserved generic, conserved enveloping and not conserved, and have devised

three scoring schemes to detect them.

We have thoroughly assessed our method’s performance on bound and unbound protein

forms and on an independent dataset. JET2

DNA compares favorably with machine learning

based state-of-the-art methods. Specifically, the predictions are more sensitive and remarkably

robust to extensive conformational changes and to stochiometry changes. Moreover, we have

highlighted several cases where the same complex was solved in different conditions or the

same protein was able to bind DNA via different locations. JET2

DNA was able to detect the ‘alter-

native’ binding sites despite major conformational changes between the different structures

bound to DNA. A single crystallographic structure may reveal only one site or may even com-

prise a truncated or misplaced DNA, resulting in a “partial” associated binding site. In this

context, JET2

DNA can be used as a mean to get a more realistic description of known binding

sites, when those are only partially covered experimentally, and to discover yet unknown bind-

ing sites.

Beyond predicting DNA-binding sites, JET2

DNA provides a unique way to understand the

origins and properties of these sites and interpret those in light of their functions. Transcrip-

tion factors typically display single- or double-headed binding modes [69], with one or two

highly conserved binding sites, which are well detected by D-SC1. Enzymes usually have larger

interfaces to accommodate an exposed recognition site, detected by D-SC3, and a highly con-

served active site, detected by D-SC1, or highly segmented protein-DNA interfaces, where the
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protein interacts with the DNA through multidomain units in addition to their active site [25,

69, 70]. Moreover, JET2

DNA is useful to unravel the heterogeneity of signals comprised within

given binding sites and to partition them in subregions displaying coherent properties. The

predictions can help designing or repurposing small molecules to target protein-DNA inter-

faces in an intelligent way, e.g. specifically targeting the non-conserved subregions to avoid

side effects.

There is growing experimental evidence that protein surfaces are used in many different

ways by many partners. For example, for protein-protein interactions, it is now clear that sev-

eral proteins can use the same region at the surface of a partner, possibly in different confor-

mations, that binding sites can be overlapping and that different binding site properties relate

to different interaction “types” or “functions” [33]. For protein-DNA interactions, the available

structural data is much smaller. Still, the examples we showed let us envision a much larger

complexity in the usage of protein surfaces by DNA than expected. Our work is inscribed in

an effort to decipher such complexity.

Finally, we found that JET2

DNA can be successfully applied to the prediction of RNA-binding

sites. This is in line with the growing body of evidence showing that proteins that bind DNA

are also likely to bind RNA. Indeed, although DNA-binding proteins used to be considered as

functionally different from RNA-binding proteins and studied independently, this view has

become outdated [29]. There are many examples of proteins binding both nucleic acids either

via the same region at different times or simultaneously via distinct regions. Some crystallo-

graphic structures of complexes between proteins and hybrid D/RNA molecules are also avail-

able in the PDB. Hence, discriminating DNA- from RNA-binding residues is very challenging.

The DRNApred method [18] represents a recent effort to address this issue. We found that it

predicts very few residues, compared to JET2

DNA. A future development for JET2

DNA could be to

include some RNA-specific features toward a better prediction of RNA-binding sites. It could

be advantageous to include disorder information, an electrostatic potential in addition or

replacing the residue propensities and/or restricting the calculation of the evolutionary conser-

vation to the subfamily associated to the query protein. This could help in identifying family-

or even protein-specific interfaces.
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We thank Chloé Dequeker for sharing her scripts, N. Fernandez-Fuentes for indicating good

practice for using the multiVORFFIP method and DISPLAR’s authors for helping us in run-

ning the tool.

Author Contributions

Conceptualization: Richard Lavery, Elodie Laine, Alessandra Carbone.

Data curation: Flavia Corsi.

Funding acquisition: Alessandra Carbone.

Unravelling multiple protein-DNA interfaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007624 February 3, 2020 18 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007624.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007624.s002
https://doi.org/10.1371/journal.pcbi.1007624


Methodology: Elodie Laine, Alessandra Carbone.

Software: Flavia Corsi, Elodie Laine.

Supervision: Elodie Laine, Alessandra Carbone.

Validation: Flavia Corsi.

Writing – original draft: Flavia Corsi, Elodie Laine, Alessandra Carbone.

References

1. Luscombe NM, Austin SE, Berman HM, Thornton JM. An overview of the structures of protein-DNA

complexes. Genome Biology. 2000; 1(1):reviews001–1. https://doi.org/10.1186/gb-2000-1-1-

reviews001 PMID: 11104519

2. Bullock AN, Fersht AR. Rescuing the function of mutant p53. Nature Reviews Cancer. 2001; 1(1):68.

https://doi.org/10.1038/35094077 PMID: 11900253

3. Chen-Plotkin AS, Lee VMY, Trojanowski JQ. TAR DNA-binding protein 43 in neurodegenerative dis-

ease. Nature Reviews Neurology. 2010; 6(4):211. https://doi.org/10.1038/nrneurol.2010.18 PMID:

20234357

4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic

Acids Research. 2000; 28(1):235–242. https://doi.org/10.1093/nar/28.1.235 PMID: 10592235

5. Ahmad S, Sarai A. PSSM-based prediction of DNA binding sites in proteins. BMC Bioinformatics. 2005;

6(1):33. https://doi.org/10.1186/1471-2105-6-33 PMID: 15720719

6. Ahmad S, Gromiha MM, Sarai A. Analysis and prediction of DNA-binding proteins and their binding resi-

dues based on composition, sequence and structural information. Bioinformatics. 2004; 20(4):477–486.

https://doi.org/10.1093/bioinformatics/btg432 PMID: 14990443

7. Tjong H, Zhou HX. DISPLAR: an accurate method for predicting DNA-binding sites on protein surfaces.

Nucleic Acids Research. 2007; 35(5):1465–1477. https://doi.org/10.1093/nar/gkm008 PMID: 17284455

8. Wang L, Brown SJ. BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in

amino acid sequences. Nucleic Acids Research. 2006; 34(suppl_2):W243–W248. https://doi.org/10.

1093/nar/gkl298 PMID: 16845003

9. Wang L, Huang C, Yang MQ, Yang JY. BindN+ for accurate prediction of DNA and RNA-binding resi-

dues from protein sequence features. BMC Systems Biology. 2010; 4(1):S3. https://doi.org/10.1186/

1752-0509-4-S1-S3 PMID: 20522253

10. Li T, Li QZ, Liu S, Fan GL, Zuo YC, Peng Y. PreDNA: accurate prediction of DNA-binding sites in pro-

teins by integrating sequence and geometric structure information. Bioinformatics. 2013; 29(6):678–

685. https://doi.org/10.1093/bioinformatics/btt029 PMID: 23335013

11. Hwang S, Gou Z, Kuznetsov IB. DP-Bind: a web server for sequence-based prediction of DNA-binding

residues in DNA-binding proteins. Bioinformatics. 2007; 23(5):634–636. https://doi.org/10.1093/

bioinformatics/btl672 PMID: 17237068

12. Wang L, Yang MQ, Yang JY. Prediction of DNA-binding residues from protein sequence information

using random forests. BMC Genomics. 2009; 10(1):S1. https://doi.org/10.1186/1471-2164-10-S1-S1

PMID: 19594868

13. Wu J, Liu H, Duan X, Ding Y, Wu H, Bai Y, et al. Prediction of DNA-binding residues in proteins from

amino acid sequences using a random forest model with a hybrid feature. Bioinformatics. 2008; 25

(1):30–35. https://doi.org/10.1093/bioinformatics/btn583 PMID: 19008251
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49. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-

BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997; 25

(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389 PMID: 9254694

50. Park B, Kim H, Han K. DBBP: database of binding pairs in protein-nucleic acid interactions. BMC Bioin-

formatics. 2014; 15(15):S5. https://doi.org/10.1186/1471-2105-15-S15-S5 PMID: 25474259

51. Ceres N, Pasi M, Lavery R. A protein solvation model based on residue burial. Journal of Chemical The-

ory and Computation. 2012; 8(6):2141–2144. https://doi.org/10.1021/ct3001552 PMID: 26593844

52. Mezei M. A new method for mapping macromolecular topography. Journal of Molecular Graphics and

Modelling. 2003; 21(5):463–472. https://doi.org/10.1016/s1093-3263(02)00203-6 PMID: 12543141

53. Wilcoxon F. Individual Comparisons by Ranking Methods. Biometrics Bulletin. 1945; 1(6):80–83.

https://doi.org/10.2307/3001968

54. Anderson TW, Darling DA, et al. Asymptotic theory of certain “goodness of fit” criteria based on stochas-

tic processes. The annals of mathematical statistics. 1952; 23(2):193–212. https://doi.org/10.1214/

aoms/1177729437

55. Si J, Zhang Z, Lin B, Schroeder M, Huang B. MetaDBSite: a meta approach to improve protein DNA-

binding sites prediction. BMC Systems Biology. 2011; 5(1):S7. https://doi.org/10.1186/1752-0509-5-

S1-S7 PMID: 21689482

56. Miao Z, Westhof E. A large-scale assessment of nucleic acids binding site prediction programs. PLoS

computational biology. 2015; 11(12):e1004639. https://doi.org/10.1371/journal.pcbi.1004639 PMID:

26681179

57. Hwang H, Vreven T, Janin J, Weng Z. Protein–protein docking benchmark version 4.0. Proteins: Struc-

ture, Function, and Bioinformatics. 2010; 78(15):3111–3114. https://doi.org/10.1002/prot.22830

58. Ahmad S, Keskin O, Sarai A, Nussinov R. Protein–DNA interactions: structural, thermodynamic and

clustering patterns of conserved residues in DNA-binding proteins. Nucleic Acids Research. 2008; 36

(18):5922–5932. https://doi.org/10.1093/nar/gkn573 PMID: 18801847

59. Luscombe NM, Thornton JM. Protein–DNA interactions: amino acid conservation and the effects of

mutations on binding specificity. Journal of Molecular Biology. 2002; 320(5):991–1009. https://doi.org/

10.1016/s0022-2836(02)00571-5 PMID: 12126620

60. Durniak KJ, Bailey S, Steitz TA. The structure of a transcribing T7 RNA polymerase in transition from ini-

tiation to elongation. Science. 2008; 322(5901):553–557. https://doi.org/10.1126/science.1163433

PMID: 18948533

Unravelling multiple protein-DNA interfaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007624 February 3, 2020 21 / 22

https://doi.org/10.1093/bioinformatics/btg224
http://www.ncbi.nlm.nih.gov/pubmed/12912846
https://doi.org/10.1186/1471-2105-10-421
http://www.ncbi.nlm.nih.gov/pubmed/20003500
https://doi.org/10.1074/jbc.M407385200
http://www.ncbi.nlm.nih.gov/pubmed/15456786
https://doi.org/10.1093/bib/bbv023
https://doi.org/10.1093/bib/bbv023
http://www.ncbi.nlm.nih.gov/pubmed/25935161
https://doi.org/10.1016/j.str.2011.02.015
https://doi.org/10.1016/j.str.2011.02.015
http://www.ncbi.nlm.nih.gov/pubmed/21565696
https://doi.org/10.1371/journal.pcbi.1000267
http://www.ncbi.nlm.nih.gov/pubmed/19165315
https://doi.org/10.1016/j.jmb.2003.12.078
https://doi.org/10.1016/j.jmb.2003.12.078
http://www.ncbi.nlm.nih.gov/pubmed/15037084
https://doi.org/10.1006/jmbi.1996.0167
https://doi.org/10.1006/jmbi.1996.0167
http://www.ncbi.nlm.nih.gov/pubmed/8609628
https://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
https://doi.org/10.1186/1471-2105-15-S15-S5
http://www.ncbi.nlm.nih.gov/pubmed/25474259
https://doi.org/10.1021/ct3001552
http://www.ncbi.nlm.nih.gov/pubmed/26593844
https://doi.org/10.1016/s1093-3263(02)00203-6
http://www.ncbi.nlm.nih.gov/pubmed/12543141
https://doi.org/10.2307/3001968
https://doi.org/10.1214/aoms/1177729437
https://doi.org/10.1214/aoms/1177729437
https://doi.org/10.1186/1752-0509-5-S1-S7
https://doi.org/10.1186/1752-0509-5-S1-S7
http://www.ncbi.nlm.nih.gov/pubmed/21689482
https://doi.org/10.1371/journal.pcbi.1004639
http://www.ncbi.nlm.nih.gov/pubmed/26681179
https://doi.org/10.1002/prot.22830
https://doi.org/10.1093/nar/gkn573
http://www.ncbi.nlm.nih.gov/pubmed/18801847
https://doi.org/10.1016/s0022-2836(02)00571-5
https://doi.org/10.1016/s0022-2836(02)00571-5
http://www.ncbi.nlm.nih.gov/pubmed/12126620
https://doi.org/10.1126/science.1163433
http://www.ncbi.nlm.nih.gov/pubmed/18948533
https://doi.org/10.1371/journal.pcbi.1007624


61. Hickman AB, Ronning DR, Perez ZN, Kotin RM, Dyda F. The nuclease domain of adeno-associated

virus rep coordinates replication initiation using two distinct DNA recognition interfaces. Molecular Cell.

2004; 13(3):403–414. https://doi.org/10.1016/s1097-2765(04)00023-1 PMID: 14967147

62. Siwek W, Czapinska H, Bochtler M, Bujnicki JM, Skowronek K. Crystal structure and mechanism of

action of the N6-methyladenine-dependent type IIM restriction endonuclease R. DpnI. Nucleic Acids

Research. 2012; 40(15):7563–7572. https://doi.org/10.1093/nar/gks428 PMID: 22610857

63. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, et al. Cyclic G (2’, 5’) pA (3’, 5’) p is the

metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013; 153

(5):1094–1107. https://doi.org/10.1016/j.cell.2013.04.046 PMID: 23647843

64. Selvaraj S, Kono H, Sarai A. Specificity of protein–DNA recognition revealed by structure-based poten-

tials: symmetric/asymmetric and cognate/non-cognate binding. Journal of Molecular Biology. 2002; 322

(5):907–915. https://doi.org/10.1016/s0022-2836(02)00846-x PMID: 12367517

65. Van Dijk M, Bonvin AM. A protein–DNA docking benchmark. Nucleic Acids Research. 2008; 36(14):

e88–e88. https://doi.org/10.1093/nar/gkn386 PMID: 18583363

66. Xiong Y, Liu J, Wei DQ. An accurate feature-based method for identifying DNA-binding residues on pro-

tein surfaces. Proteins: Structure, Function, and Bioinformatics. 2011; 79(2):509–517. https://doi.org/

10.1002/prot.22898

67. Dey S, Pal A, Guharoy M, Sonavane S, Chakrabarti P. Characterization and prediction of the binding

site in DNA-binding proteins: improvement of accuracy by combining residue composition, evolutionary

conservation and structural parameters. Nucleic Acids Research. 2012; 40(15):7150–7161. https://doi.

org/10.1093/nar/gks405 PMID: 22641851

68. Jones S, Shanahan HP, Berman HM, Thornton JM. Using electrostatic potentials to predict DNA-bind-

ing sites on DNA-binding proteins. Nucleic Acids Research. 2003; 31(24):7189–7198. https://doi.org/

10.1093/nar/gkg922 PMID: 14654694

69. Jones S, van Heyningen P, Berman HM, Thornton JM. Protein-DNA interactions: A structural analysis1.

Journal of Molecular Biology. 1999; 287(5):877–896. https://doi.org/10.1006/jmbi.1999.2659 PMID:

10222198

70. Nadassy K, Wodak SJ, Janin J. Structural features of protein- nucleic acid recognition sites. Biochemis-

try. 1999; 38(7):1999–2017. https://doi.org/10.1021/bi982362d PMID: 10026283

Unravelling multiple protein-DNA interfaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007624 February 3, 2020 22 / 22

https://doi.org/10.1016/s1097-2765(04)00023-1
http://www.ncbi.nlm.nih.gov/pubmed/14967147
https://doi.org/10.1093/nar/gks428
http://www.ncbi.nlm.nih.gov/pubmed/22610857
https://doi.org/10.1016/j.cell.2013.04.046
http://www.ncbi.nlm.nih.gov/pubmed/23647843
https://doi.org/10.1016/s0022-2836(02)00846-x
http://www.ncbi.nlm.nih.gov/pubmed/12367517
https://doi.org/10.1093/nar/gkn386
http://www.ncbi.nlm.nih.gov/pubmed/18583363
https://doi.org/10.1002/prot.22898
https://doi.org/10.1002/prot.22898
https://doi.org/10.1093/nar/gks405
https://doi.org/10.1093/nar/gks405
http://www.ncbi.nlm.nih.gov/pubmed/22641851
https://doi.org/10.1093/nar/gkg922
https://doi.org/10.1093/nar/gkg922
http://www.ncbi.nlm.nih.gov/pubmed/14654694
https://doi.org/10.1006/jmbi.1999.2659
http://www.ncbi.nlm.nih.gov/pubmed/10222198
https://doi.org/10.1021/bi982362d
http://www.ncbi.nlm.nih.gov/pubmed/10026283
https://doi.org/10.1371/journal.pcbi.1007624

