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Small GTPases participate in a broad range of cellular processes such as proliferation,
differentiation, and migration. The exchange of GDP for GTP resulting in the activation of
these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange
factors (GEFs), of which two classes: Dbl-related exchange factors and the more
recently described dedicator of cytokinesis proteins family exchange factors. Increasingly,
deregulation of normal GEF activity or function has been associated with a broad range
of disease states, including neurodegeneration and neurodevelopmental disorders. In this
review, we examine this evidence with special emphasis on the novel role of Rho guanine
nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic
lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only
RhoA GTPase activation but also functions as an RNA binding protein that directly acts
with low molecular weight neurofilament mRNA 3′ untranslated region to regulate its
stability. This dual role for RGNEF, coupled with the increasing understanding of the key
role for GEFs in modulating the GTPase function in cell survival suggests a prominent role
for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which,
when disturbed, contributes to neuronal loss.
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INTRODUCTION
Small GTPases are low-molecular-weight (approximately 21 kDa)
guanine nucleotide-binding proteins that function as binary
molecular switches by alternating between an active GTP-bound
state and an inactive GDP-bound state and in doing so, reg-
ulate the activation of several effectors (Figure 1). The five
subfamilies of small GTPases (Ras, Rho, Rab, Sar1/Arf, and
Ran) have highly diverse cellular roles. For example, GTPases of
the Rho family (including Rho proteins, Rac proteins, Cdc42,
TC10, TCL, Wrch1, Chp/Wrch2, and Rnd proteins; Van Aelst
and D’Souza-Schorey, 1997; Burridge and Wennerberg, 2004)
work through several effectors to influence a broad range of
cellular processes, including cell cycle progression, vesicular traf-
ficking, cell migration, intracellular actin dynamics, cell–cell
interactions, response to cellular injury, axonal development, and
guidance and neurite formation (Govek et al., 2005; Thumkeo
et al., 2013). GTPases of the Rab family, which includes at least
66 different proteins (Klopper et al., 2012), function as reg-
ulators of specific intracellular traffic pathways, coordinating
consecutive stages of transport, such as vesicle formation, vesi-
cle and organelle motility, and tethering of vesicles to their target
compartment (Zerial and McBride, 2001). Rab GTPases have
important roles in neurons such as participating in synaptic vesi-
cles fusion and endocytosis, axonal and dendritic transport, and
neurite formation (D’Adamo et al., 2014; Villarroel-Campos et al.,
2014).

The activation of small GTPases such as Rho or Rab proteins
requires the participation of specialized enzymes called guanine
nucleotide exchange factors (GEFs) which catalyze the exchange

of GTP for GDP in the GTPase with the requirement of Mg2+. This
event generates a GTP-bound active GTPase. Most GEFs belong to
two broad families: the classical diffuse B-cell lymphoma (Dbl)-
homology family in which the catalytic function is exerted by a
tandem of two domains [a Dbl-homology domain (DH) and an
adjacent pleckstrin-homology domain (PH) that together bind
other proteins and phospholipids; Snyder et al., 2002; Rossman
et al., 2005; Miller et al., 2014]; and, the dedicator of cytokinesis
proteins (Dock) family of atypical GEFs that lack the Dbl domain.
The highly conserved DH domain of the Dbl family of GEFs targets
Dbl GEFs to the plasma membrane where binding to phospho-
lipids is driven by the PH domain, while the DH domain interacts
with inactive GTPase-GDP and catalyzes the exchange of GDP for
GTP, activating the GTPase. Conversely, GTPase-activating pro-
teins (GAPs) stimulate the intrinsic hydrolytic capacity of small
GTPases to promote GDP-bound forms, deactivating the GTPases,
and terminating signaling (Rossman et al., 2005; Lemmon, 2008;
Figure 1).

Dbl GEFs are a highly complex family of about 80 proteins
containing a variety of differing functional domains, includ-
ing: (1) domains that modulate protein–protein interactions
such as Proline rich domains (Ahn and Ye, 2005), PDZ bind-
ing domains (Garcia-Mata and Burridge, 2007), SH3 domains
(van Rijssel and van Buul, 2012) and Fibronectin type-III
domains (Rabiner et al., 2005); (2) modulators of GEF activ-
ity such as APC-binding region domains (Zhang et al., 2012)
and Calponin homology domains (part of the actin binding
domain superfamily; Yu et al., 2010); (3) modulators of plasma
membrane interactions and localization such as FAK recognition
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FIGURE 1 | Regulation of small GTPase activity by GEFs and GAPs.

Small GTPases are inactive when they are GDP-bound. GEFs bind and
stabilize GDP-bound GTPases. However, due to the relatively high
concentration of intracellular GTP these complexes rapidly dissociate into
GTP-bound GTPases and free GEFs. When they are GTP-bound, GTPases
regulate the activity of their binding targets or effectors to promote several
cellular responses. GTPase-activating proteins (GAPs) stimulate the intrinsic
hydrolytic capacity of Rho GTPases to promote GDP-bound forms,
deactivating the GTPases and terminating the signaling. This reaction

generates inorganic phosphate (Pi). A list of representative effectors of
active small GTPases related with the regulation of the nervous system is
shown (Govek et al., 2005; Thumkeo et al., 2013; Villarroel-Campos et al.,
2014). Abbreviations used are: ACK-1, Activated Cdc42-associated kinase 1;
BICDR-1, Bicaudal-D-related protein 1; MRCKα, Myotonic dystrophy
kinase-related Cdc42-binding kinase alpha; N-WASP, Neural Wiskott-Aldrich
syndrome protein; PAK, P21 protein (Cdc42/Rac)-activated kinase; PKN,
Serine-threonine protein kinase N; ROCK, Rho-associated coiled-coil
containing protein kinase.

domains (Zhai et al., 2003), CRAL-TRIO (SEC14) domains
(van Rijssel and van Buul, 2012) and FERM domains (Kubo et al.,
2002); and (4) modulators of protein structure/function such
as Spectrin repeats (van Rijssel and van Buul, 2012), Zn bind-
ing domains (Gebbink et al., 1997), RGSL domains (Bielnicki
et al., 2011), PDZ domains (Garcia-Mata and Burridge, 2007),
and Leucine-rich domains (Gebbink et al., 1997). While per-
turbations in the Dbl GEF family have been best explored in
cancer (Lazer and Katzav, 2011), they are also associated with a
broad range of neurological disorders, including neurodegenera-
tion.

The Dock proteins are atypical GEFs in that they lack the
DH-PH module and instead contain a Dock homology region
(DHR)1-DHR2 module (Figure 2). This module functions simi-
larly to the DH-PH module in that DHR1 mediates phospholipid
binding and membrane targeting of Docks while DHR2 cat-
alyzes nucleotide exchange through a mechanism distinct from
the Dbl domain. The Dock proteins are further differentiated

from the classical GEFs in that they exhibit specificity for acti-
vation of Rac and/or Cdc42, but not RhoA or other members
of the Rho family. Eleven Dock proteins have been described
in mammals (Dock1–11; Table 1). They are divided into four
subfamilies based on sequence homology: Dock-A (includes
Dock1/180, 2 and 5); Dock-B (includes Dock3, 4); Dock-
C (also known as the zizimin-related or zir family, includes
Dock6, 7, 8), and Dock-D (also known as the zizimin fam-
ily, includes Dock9, 10, 11). Dock-A and -B members con-
tain both a Src homology 3 (SH3) domain in the N-terminal
region that can bind to the adaptor proteins ELMO (Engulf-
ment and Motility) 1, 2, and 3 in addition to a proline-rich
domain in C-terminus portion that binds Crk proteins. Dock-
D members contain an N-terminal PH domain. Conversely,
Dock-C members lack other recognizable domains outside of the
DHR1–DHR2 module (Figure 2; Cote and Vuori, 2002; Meller
et al., 2005). There is increasing evidence to suggest that per-
turbations in the function of both classical and atypical GEFs
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FIGURE 2 | Guanine nucleotide exchange factors (GEFs) associated

with neurodegenerative diseases. eIFB2 is not shown because its GEF
catalytic activity is given by two subunits (epsilon and gamma) of a
pentameric complex that forms the factor. Abbreviations used are:
ARFGEF2, ADP-ribosylation factor GEF protein; C2 domain, C2 superfamily
of C2 domain first identified in PKC; CalDAG-GEFI, calcium and
diacylglycerol-regulated GEFI; CRAL/TRIO domain, SEC14 homology
domain; DH domain, Dbl homology domain; DHR1, Dock Homology Region
1, a GEF domain; DHR2, Dock Homology Region 2, a GEF domain; Dock2,
Dedicator of cytokinesis 2; Dock3, Dedicator of cytokinesis 3; EF, EF-hand
motif (Calcium binding motif); hRGNEF, human Rho guanine nucleotide

exchange factor; L-rich, Leucine-rich region; MORN repeats, Membrane
Occupation and Recognition Nexus repeats; PH domain, Pleckstrin
homology domain; RAPGEF1, Ras-related protein GEF1; RasGEF, Guanine
nucleotide exchange factor for Ras-like small GTPases; RCC1 repeats,
Regulator of chromosome condensation repeats; REM, Ras exchanger
motif; Sec7, Domain named after the S. cerevisiae SEC7 gene product; Sec
7 NT, Amino-terminal Sec 7 domain; SH3, Src Homology 3 domain;
Spectrin repeats, Spectrin-like repeats; Zn, cysteine-rich zinc binding
domain. The schematics were based in the information obtained from the
“conserved domain” search tool from NCBI (http://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi).

are associated with a broad range of disease states, including
neurodevelopmental and neuropsychiatric disorders and neu-
rodegeneration. Although neurodegeneration is a broad term
generally used to describe a heterogeneous group of patholo-
gies sharing the progressive loss of neuronal function and the
death of neurons, one of their core neuropathological fea-
tures is the presence of intra and extracellular protein aggre-
gates (DiFiglia et al., 1997; Spillantini et al., 1997; Sieradzan
et al., 1999; Goedert, 2001; Tiraboschi et al., 2004; Strong et al.,
2005; Bloom, 2014). Classical examples of such neurodegen-
erative disorders include Alzheimer’s disease (AD), Parkinson’s
disease (PD), Huntington’s disease (HD), and amyotrophic lat-
eral sclerosis (ALS). In many of these disorders, GEF proteins
are increasingly recognized as determinants of both cell survival
and neurodegeneration. In this review, we examine the evi-
dence for both classical and atypical GEFs in neurodegeneration,
with a specific focus on the recently identified role of Rho gua-
nine nucleotide exchange factor (RGNEF/p190RhoGEF) in the
pathogenesis of ALS.

Dock PROTEIN FAMILY
The highly conserved dedicator of cytokinesis proteins (Dock)
family of proteins play a key role in multiple aspects of neuronal
development, including both axonal and dendritic differenti-
ation, in addition to involvement in both neuroinflammation
and the differentiation of Schwann cells (Watabe-Uchida et al.,
2006; Miyamoto et al., 2007; Li et al., 2008; Yamauchi et al., 2008,
2011; Xu and Henkemeyer, 2009; Miyamoto and Yamauchi, 2010;
Kim et al., 2011; Shi, 2013; Xiao et al., 2013). Not surprisingly
therefore, Dock proteins have been increasingly recognized to
be associated with a variety of neurodegenerative and neuropsy-
chiatric disorders (Table 1). In Alzheimer’s disease, there is an
increase in the number of Dock2-expressing microglia, a finding
of pathogenic significance given that Dock2 deficiency reduces
the size of β-amyloid (Aβ) plaque in cerebral cortex and hip-
pocampus of a mouse model of AD (Cimino et al., 2009, 2013).
It is likely that this effect is mediated through Dock2 association
with the prostaglandin E2 receptor (EP2), which in turn regu-
lates neuroinflammation (Liang et al., 2005; Cimino et al., 2009).
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Table 1 | Dock proteins, their role in the nervous system, and neurological disorders in which they have been implicated. Modified from Shi

(2013) and Namekata et al. (2014).

Dock

subfamily

Unique subfamily

features

Preferential

activation

Dock

protein

Function Related

neurological

diseases

Reference

Dock-A Contains a N-terminal

Src homology 3

(SH3) domain and a

proline-rich

C-terminus

Rac Dock 1/180 Axon guidance, axonal

pruning, dendritic spine

morphogenesis,

myoblast fusion

– Li et al. (2008), Xu and

Henkemeyer (2009), Kim et al.

(2011)

Dock 2 Lymphocyte migration;

in the nervous system

expressed exclusively in

microglia and thus is

linked to

neuroinflammation

Alzheimer’s

disease

Fukui et al. (2001), Cimino et al.

(2009), Le Floc’h et al. (2013)

Dock-B Contains a N-terminal

Src homology 3

(SH3) domain and a

proline-rich

C-terminus

Rac Dock3 Axonal growth and

regeneration, neurite

outgrowth,

neuroprotection

Alzheimer’s

disease, attention

deficit

hyperactivity

disorder

Chen et al. (2001, 2005), de Silva

et al. (2003), Namekata et al.

(2013)

Dock4 Establishment of axonal

polarity, neurite

differentiation, dendritic

spine morphogenesis

Autism, dyslexia,

schizophrenia

Ueda et al. (2008, 2013),

Pagnamenta et al. (2010), Alkelai

et al. (2012), Xiao et al. (2013)

Dock 5 Myoblast fusion; mast

cell degranulation

Parkinson disease

(suggested

association)

Laurin et al. (2008), Pankratz

et al. (2011), Ogawa et al. (2014)

Dock-C Contain only the

DHR1–DHR2 module

Rac or Cdc42 Dock6 Neurite outgrowth,

regulation of axonal

growth and regeneration

– Miyamoto et al. (2007, 2013)

Dock7 Neuronal polarization,

cortical neurogenesis,

Schwann cell

differentiation

– Watabe-Uchida et al. (2006),

Yamauchi et al. (2008, 2011),

Yang et al. (2012)

Cdc42 Dock8 T-cell and b-cell

development; dendritic

cell migration

Mental

retardation,

autism

Griggs et al. (2008), Randall et al.

(2009), Harada et al. (2012)

Dock-D Contain a N-terminal

PH domain

Cdc42 Dock9 Dendrite development Bipolar disorder Detera-Wadleigh et al. (2007),

Kuramoto et al. (2009)

Dock10 Neurite dynamics Autism Nava et al. (2014)

Dock 11 Lymphocyte migration – Sakabe et al. (2012)

Dock4, while also expressed in the lung, is highly expressed in
the central nervous system (CNS) where it is concentrated in den-
dritic spines within the hippocampus during development and
in adulthood (Ueda et al., 2013). It is associated with autism,
dyslexia, and schizophrenia (Table 1; Pagnamenta et al., 2010;

Alkelai et al., 2012). Less is known with respect to Dock10 and
Dock11, although a rare Dock10 gene deletion is associated with
autism spectrum disorders (Nava et al., 2014). Although an asso-
ciation between Dock5 and Parkinson’s disease has been suggested
(Pankratz et al., 2011), the authors themselves noted that the
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Dock5 copy number variants were more likely to be variable
numbers of tandem repeats as opposed to a typical copy num-
ber variation. Thus, the reports of Dock5 association with PD
remain to be validated.

It is however Dock3 that has the greatest biological and ther-
apeutic implications for neurodegenerative disorders, in part due
to the fact that it is the only Dock protein that demonstrates
high tissue specificity for the CNS. Initially discovered through
a yeast two-hybrid assay as a binding partner to presenilin 1 that
shares 40% homology with Dock1/180 [and termed presenilin
binding protein (PBP); Kashiwa et al., 2000], PBP was found to
be highly enriched in the CNS and to be specifically associated
with Alzheimer’s associated pathology including neurofibrillary
tangles, dystrophic neurites, and neuropil threads (Chen et al.,
2001). PBP was subsequently renamed MOCA (“modifier of
cell adhesion”) based on its ability to modulate cell-substratum
adhesion and amyloid-β secretion (Chen et al., 2002). Based on
its high sequence homology with Dock1/180 (51% homology
with the SH3 domain; 45% homology with the DHR1 domain,
42% homology with the DHR2 domain, and the inclusion of
a Crk binding site), Dock3/MOCA was identified as a member
of the Dock180 superfamily of proteins (Cote and Vuori, 2002).
Dock3/MOCA was initially thought to be devoid of GEF activ-
ity; however, it was subsequently shown to induce RAC-GTP
loading through the interaction of its SH3 domain with ELMO1
(engulfment and cell motility protein 1), a mechanism shared
with Dock1/180 (Grimsley et al., 2004; Namekata et al., 2004,
2012). Although the exact mechanism remains uncertain, PBP
stimulates phosphorylation of tau at Ser199 (Chen et al., 2001)
suggesting a direct mechanism in leading to the pathological
hyper-phosphorylation of tau in Alzheimer’s disease. The inter-
action of Dock3 with the γ-secretase presenilin 1 (De Strooper
et al., 2012) suggests a role in the Aβ precursor protein (APP)
processing. This is further supported by the observation that
Dock3 over-expression suppresses Aβ protein secretion (Chen
et al., 2002). Dock3 also acts downstream of the APP-mediated
signaling pathway and in doing so, promotes neuronal cell death
(Tachi et al., 2012). Distinct from this role in the pathogenesis
of Alzheimer’s disease, Dock3 has recently also been suggested
to attenuate NMDA-mediated neurotoxicity and in doing so,
prevent excitotoxic cell death (Bai et al., 2013; Namekata et al.,
2013).

There is thus significant evidence to implicate the Dock fam-
ily of GEFs in both neurodegeneration (largely restricted to
Alzheimer’s disease) and a range of both developmental and
neuropsychiatric disorders. As suggested earlier, this is not
entirely unexpected given the integral role of GEFs in neural
development.

Dbl-HOMOLOGY GEFs ASSOCIATED WITH
NEURODEGENERATION
While over 80 GEFs containing a Dbl-homology domain have been
described, to date only a finite number have been associated with
neurodegenerative disorders. The most lethal of these, presenting
most often as a childhood disorder, is associated with mutations
in any of the subunits of GEF eIF2B (eukaryotic initiation fac-
tor 2B). Conversely, alterations in the metabolism of the recently

discovered Rho guanine nucleotide exchange factor (RGNEF or
p190RhoGEF) are associated with the adult onset fatal disorder
ALS. As is also typical of these proteins, the mechanisms by which
these GEFs mediate neuronal degeneration is complicated by their
pluripotential functions.

eIF2B
The eukaryotic initiation factors (eIFs) play an essential role in the
initiation of translation in eukaryotes by mediating the formation
of a complex between Met-tRNA (initiator methionyl-tRNA), the
AUG start codon of the mRNA and the 80S ribosome. Key to this
process is eIF2, a classical G-protein which recruits Met-tRNA to
the 40S ribosome when in its GTP-bound (active) form. Inactive
GDP-bound eIF2 is regenerated by the GEF eIF2B in a process
that is the major point of regulation of protein synthesis in all
eukaryote cells (Mohammad-Qureshi et al., 2007). eIF2B consists
of five subunits (α–ε), of which eIF2B ε constitutes the catalytic
subunit which in turn is stimulated by the γ subunit (Anthony
et al., 2000; Mohammad-Qureshi et al., 2007). Given the critical
role of eIF2 in the initiation of translation, it is not surprising that
the activity of eIF2B would be subject to tight regulation in order
to regulate protein synthesis. Indeed, environmental stress leads to
phosphorylation of eIF2 which impedes the recycling of eIF2 to the
active GTP-bound form by actively competing with eIF2B, which
in turn reduces translation globally (Wek et al., 2006; Jennings
et al., 2013). This inhibition of translation initiation can also be
driven by phosphorylation of eIF2B in response to environmental
stress conditions, mediated through a small number of kinases
including casein kinases I and II, and glycogen synthase kinase-3
(Pavitt et al., 1998; Welsh et al., 1998; Quevedo et al., 2000; Wang
et al., 2001; Singh et al., 2006).

Mutations in the eIF2B ε-subunit were first described in
patients with clinical and MRI characteristics of childhood ataxia
with CNS hypomyelination (CACH)/leukoencephalopathy with
vanishing white matter (VWM) neurodegenerative syndrome
(Leegwater et al., 2001). Subsequently, mutations in the other
four eIF2B subunits were identified in association with VWM
disease (Leegwater et al., 2001; van der Knaap et al., 2002). This
fatal inherited neurodegenerative disease is characterized mainly
by progressive ataxia, spasticity, and variable optic atrophy, as
well as seizures. While VWM disease is one of the most common
childhood leukoencephalopathies, it can also be seen in later age
groups (Ghezzi et al., 2012). Mutations in any of the eIF2B sub-
units can cause loss of GEF function of human and yeast eIF2B;
some of them lead to almost complete loss-of-function (Fogli
et al., 2004; Li et al., 2004; Richardson et al., 2004; Leng et al.,
2011). Interestingly, the vast majority of the mutations found
in eIF2B genes are missense mutations in the eIF2B ε-subunit
(Fogli and Boespflug-Tanguy, 2006). Cell cultures from the brain
of an individual with VWM carrying mutations in the eIF2B ε-
subunit have shown that few GFAP-expressing astrocytes were
present, induction of astrocytes was severely compromised and
the few astrocytes generated showed abnormal morphologies
and antigenic phenotypes. Consequently, it has been suggested
that a deficiency in astrocyte function may contribute to the
loss of white matter in VWM leukodystrophy (Dietrich et al.,
2005).
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PURATROPHIN-1
Puratrophin-1 (Purkinje cell atrophy associated protein-1) is asso-
ciated with autosomal dominant spinocerebellar ataxia (ADCA),
a cerebellar pathology that manifests primarily as lack of motor
coordination. This protein contains spectrin repeats, a GEF for
Rho GTPases containing the classical Dbl homologous domain
(Ishikawa et al., 2005) and a CRAL/TRIO domain (Figure 2). In
fact, puratrophin-1 is a bona fide GEF that facilitates activation
of the small GTPases Rac1, Cdc42, and RhoA. The overexpression
of this protein induces rearrangements of the actin cytoskeleton,
specifically enhancing the formation of lamellipodia and filopodia
(Gupta et al., 2013). Mutations in the 5′ untranslated region of the
PLEKHG4 (puratrophin-1) gene have been found in patients with
ADCA. Interestingly, puratrophin-1 is aggregated in Purkinje cells
of ADCA brains (Ishikawa et al., 2005).

ARF GEF PROTEINS
The regulation of protein and lipid transfer within eukaryotic
cells is largely mediated by vesicles that are formed in response to
the need to transport between cellular compartments. The ADP-
ribosylation factor (ARF) GEF family of proteins are important
regulators of the initiation of vesicle formation in that they regu-
late the ARF GTPases through a GDP/GTP exchange (Donaldson
and Jackson, 2011; Wright et al., 2014). The ARF GEF subfam-
ily of proteins called the BIG/Sec7 ARF 1 GEFs activates ARF1.
ARFGEF2 is one of two proteins in this family responsible for
interior membrane trafficking in the trans-Golgi network and
endosomes (Bui et al., 2009; Figure 2). ARFGEF2 has been postu-
lated as a new potential biomarker of Huntington’s disease (HD)
because of its significant up-regulation in blood samples of HD
patients (Lovrecic et al., 2010).

CalDAG-GEFI
Another guanine nucleotide exchange factor (GEF) that has
been described as being involved in HD is a calcium and
diacylglycerol-regulated GEFI (CalDAG-GEFI), also called Ras-
GRP2 (Figure 2). CalDAG-GEFI is highly enriched in striatum
and targets the small G proteins, Rap1 and Rap2 (Kawasaki
et al., 1998; Ohba et al., 2000; Crittenden et al., 2004) and has
been described to participate in the signaling pathway of M(1)
muscarinic acetylcholine receptor (Guo et al., 2001). One of the
most significant transcriptional changes of HD patients and ani-
mal models is the down-regulation of CalDAG-GEFI (Morton
et al., 2005; Desplats et al., 2006, 2008; Kuhn et al., 2007). In
a brain-slice explant model of HD, knock-down of CalDAG-
GEFI expression rescues striatal neurons from pathology induced
by transfection of polyglutamine-expanded Huntingtin protein
(Htt) exon 1. This observation suggests that the striking down-
regulation of CalDAG-GEFI in HD could be a protective mecha-
nism that mitigates Htt-induced degeneration (Crittenden et al.,
2010).

RAPGEF1
The neuronal ceroid lipofuscinoses (NCLs) are the most common
inherited neurodegenerative disorders mainly affecting children.
That associated with mutations in the CLN3 gene gives rise to
CLN3 (ceroid-lipofuscinosis, neuronal 3) which manifests with a

progressive retinopathy leading to blindness, dementia, epilepsy,
and motor dysfunction. Microarray analyses have identified a GEF
protein for small GTPase of the Ras family, Ras-Related Pro-
tein GEF1 (RAPGEF1 or C3G; Figure 2), which is dysregulated
regardless of the clinical course of CLN3 disease, suggesting that
this protein could be a potential biomarker (Lebrun et al., 2011).
This is not surprising, considering the critical role of RAPGEF1 in
multiple signal transduction pathways that regulate growth, differ-
entiation, migration, and survival in neuronal cells (D’Arcangelo
et al., 1995; Voss et al., 2006, 2008; Radha et al., 2008).

Dbl-HOMOLOGY GEFs IN THE PATHOGENESIS OF ALS
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disor-
der characterized by the progressive loss of motor neurons leading
to death within three to five years of symptom onset. While
currently 1:350 men and 1:450 women are affected, increased
incidence rates are predicted as the population ages (Strong, 2004;
Murphy et al., 2008). Most cases are clinically sporadic ALS (sALS)
with approximately 5% being familial (fALS; Byrne et al., 2011).
The lack of treatments that fundamentally alter the disease course
is in part related to the confounding array of disturbed cellular
processes in ALS. However, there is increasing consensus that per-
turbations in RNA metabolism are critical to the disease process
(Strong, 2010; Droppelmann et al., 2014).

One of the pathological hallmarks of ALS is the presence of
neuronal cytoplasmic inclusions (NCIs) including RNA binding
proteins such as mutant superoxide dismutase 1 (mtSOD1), TAR
DNA binding protein (TDP-43), fused in sarcoma/translocated
in liposarcoma (FUS/TLS), TATA-binding protein-associated fac-
tor 15 (TAF15), Ewing sarcoma breakpoint region 1 protein
(EWS), and RNA binding motif protein 45 (RBM45; Stieber
et al., 2000; Ge et al., 2005; Arai et al., 2006; Neumann et al.,
2006; Kwiatkowski et al., 2009; Vance et al., 2009; Couthouis et al.,
2011, 2012; Collins et al., 2012) in addition to NCIs consisting
of intermediate filament cytoskeletal proteins such as neurofil-
ament (NF; Kondo et al., 1986) and peripherin (He and Hays,
2004). The NF inclusions have been shown to arise in response
to an alteration in the expression ratio of the three NF subunits
(low, middle, and high molecular weight NFs; NFL, NFM, and
NFH respectively, encoded by NEFL, NEFM, NEFH, respectively).
The traditional view of NF function is that they are integral to
the formation and maintenance of the cytoskeleton, including
axon diameter and integrity. The contemporary view includes
a critical role for NF as a protective sink for reactive nitrating
species (Strong et al., 2003; Szaro and Strong, 2010), in cell sig-
naling and transcriptional regulation (Eriksson et al., 2009), and
in mitochondrial morphology, motility, and fusion (Gentil et al.,
2012).

Notably, in ALS there is a selective loss of NEFL mRNA in spinal
motor neurons while the levels of NEFM and NEFH mRNA are
unchanged (Bergeron et al., 1994; Wong et al., 2000; Menzies et al.,
2002). The biological importance of perturbing the expression
ratio of NF has been repeatedly demonstrated both in vivo through
the induction of selective motor neuron degeneration (Eyer and
Peterson, 1994; Tu et al., 1997; McLean et al., 2005; Strong et al.,
2005; Li et al., 2006) and in vitro (Lin et al., 2003, 2004, 2005; Strong
et al., 2003). This evidence implies that alterations of NEFL mRNA
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levels on motor neurons could be associated with motor neuron
death and consequently with ALS pathogenesis.

ALSIN/ALS2
ALS2 gene encodes for a protein called ALS2 or alsin. Alsin
is a GEF protein predominantly expressed in central nervous
system (Devon et al., 2005) that exhibits selective GEF activity
on the members of small GTPase Rab5 (Rab5A, Rab5B, and
Rab5C; Otomo et al., 2003; Topp et al., 2004). This protein has
been involved in receptor trafficking, macropinocytic endocytosis,
autophagosome-endolysosomal trafficking and axonal outgrowth
(Devon et al., 2006; Hadano et al., 2006, 2010; Jacquier et al., 2006;
Kunita et al., 2007; Otomo et al., 2008).

A comparison of alsin with other proteins reveals the presence
of several interesting motifs. In its N-terminus domain, alsin con-
tains a GEF domain for Ran GTPase, called RCC1. Alsin has been
reported to have 5 RCC1 repeats that form a β-propeller similar
to RCC1 protein in which this domain was first described (Dasso,
2001; Topp et al., 2004). The middle portion of alsin contains a tan-
dem organization of diffuse B cell lymphoma Dbl homology (DH)
and pleckstrin homology (PH) domains, the hallmark of GEFs for
Rho-type GTPases (Rossman et al., 2005). The C-terminal region
contains the vacuolar protein sorting 9 (VPS9) domain, which has
been found in Rab5 GEFs (Zerial and McBride, 2001; Carney et al.,
2006) and a tandem of eight membrane occupation and recogni-
tion nexus (MORN) motifs, which is implicated in the targeting
and binding to the plasma membrane (Takeshima et al., 2000; Ma
et al., 2006; Figure 2).

ALS2 is a causative gene for the juvenile autosomal recessive
form of multiple motor neuron diseases, including type 2 ALS
(Hadano et al., 2001; Yang et al., 2001), primary lateral sclero-
sis (Yang et al., 2001) and infantile-onset ascending hereditary
spastic paralysis (Eymard-Pierre et al., 2002). Several mutations
distributed widely across the entire coding sequence of ALS2 have
been reported. They are predicted to result in either premature
termination of translation or substitution of an evolutionarily con-
served amino acid, leading to loss of its function (Hadano et al.,
2001; Yang et al., 2001; Eymard-Pierre et al., 2002; Sztriha et al.,
2008; Verschuuren-Bemelmans et al., 2008; Herzfeld et al., 2009;
Mintchev et al., 2009; Shirakawa et al., 2009; Luigetti et al., 2013;
Kocak Eker et al., 2014; Wakil et al., 2014). Despite all this evidence,
studies using ALS2 KO mice have demonstrated that the absence of
alsin does not produce a severe phenotype. However, it has been
reported that ALS2 KO mice develop age-dependent deficits in
motor coordination (Cai et al., 2005), an age-dependent and slow
progressive loss of cerebellar Purkinje cells, a reduction in ventral
motor axons during aging, astrogliosis, and evidence of deficits in
endosome trafficking (Hadano et al., 2006), degeneration of cor-
ticospinal axons and axonal transport defects (Gros-Louis et al.,
2008). In addition, primary cultured motor neurons lacking ALS2
have been found to be more susceptible to oxidative stress (Cai
et al., 2005).

RGNEF/p190RhoGEF
RGNEF protein (Rho guanine nucleotide exchange factor) is a
Rho-specific nucleotide exchange factor (GEF) that is part of the
Dbl family of GEFs encoded by the ARHGEF28 gene. This protein

was first cloned from a mouse brain cDNA library and was named
p190RhoGEF (Gebbink et al., 1997). Mouse RGNEF (mRGNEF)
is ubiquitously expressed and it is able to specifically activate RhoA
both in vitro and in vivo and binds to and co-localizes with micro-
tubules (van Horck et al., 2001). mRGNEF can interact with c-Jun
amino-terminal kinase (JNK) interacting protein-1 (JIP-1; Meyer
et al., 1999), the 14-3-3 adapter protein (Zhai et al., 2001) and the
Focal adhesion kinase (FAK; Zhai et al., 2003). The interaction
with FAK is integral to the progression of colon carcinoma tumors
(Yu et al., 2011).

Structurally, RGNEF has five important domains: an L-rich
region and a cysteine-rich Zn binding domain in the amino ter-
minus half of the protein; a Dbl homology domain (DH), a
Pleckstrin homology domain (PH), and an RNA binding domain
in the carboxyl terminus half of the protein (Gebbink et al., 1997;
Canete-Soler et al., 2001; van Horck et al., 2001; Volkening et al.,
2010; Droppelmann et al., 2013a; Figure 2). It is this latter aspect
that renders RGNEF as being unique amongst the remaining mem-
bers of the Dbl-homology GEF family of proteins in that it is
the only member that combines RNA binding activity with GEF
activity.

Mouse RGNEF can bind to a destabilizing element in the 3′
untranslated region (3′UTR) of the murine NEFL mRNA, conse-
quently stabilizing the transcript (Canete-Soler et al., 1998, 2001).
This interaction can be modulated by BC1 RNA (Ge et al., 2002),
an untranslated 152-nucleotide polymerase III transcript that is
highly expressed in large neurons of rat brain and spinal cord
(DeChiara and Brosius, 1987). Interestingly, mRGNEF is involved
in the NF protein aggregation formation observed in an RNA-
triggered transgenic model of motor neuron disease (Nie et al.,
2002; Lin et al., 2005) in which mRGNEF forms a protein complex
with aldolase A and C which participates in the regulation of NEFL
mRNA stability (Canete-Soler et al., 2005; Lin et al., 2005).

Given the evidence suggesting an important role for RGNEF
in the regulation of RNA metabolism in motor neurons, we
postulated that human RGNEF (hRGNEF) would play a key
role in the pathogenesis of ALS. Our group determined that
hRGNEF, similar to mRGNEF, is an RNA binding protein that
regulates the stability of NEFL mRNA (Volkening et al., 2010;
Droppelmann et al., 2013a). We observed that the RNA binding
domain of hRGNEF could interact with NEFL mRNA in whole
cell lysates (including proteins and RNA) from spinal cord in ALS
but not control cases (Volkening et al., 2010). This observation
was critical in that, in contrast to the effect of mRGNEF in sta-
bilizing murine NEFL mRNA, we found that the effect of full
length hRGNEF over human NEFL mRNA stability was the oppo-
site. hRGNEF destabilizes NEFL mRNA and decreases the levels of
NFL protein in vitro (Droppelmann et al., 2013a).

We also observed that hRGNEF immunoreactive NCIs in spinal
motor neurons in ALS (Figure 3) co-localized with other RNA
binding proteins, suggesting a common pathway of NCI forma-
tion in which multiple RNA binding proteins co-aggregate (Keller
et al., 2012; Droppelmann et al., 2013a). Moreover, we and others
found a heterozygous frameshift mutation in ARHGEF28 in both
fALS and sALS patients that predicts the expression of a truncated
protein by the mutated allele (Droppelmann et al., 2013b; Ma et al.,
2014).
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FIGURE 3 | RGNEF pathology in ALS motor neurons. Representative
image of RGNEF cytoplasmic inclusions observed in motor neurons of ALS
patients (indicated by arrows) compared with a control case. Immunohisto-
chemistry was performed as described previously (Keller et al., 2012;
Droppelmann et al., 2013a) using goat polyclonal anti-RGNEF (MediMabs;
1:500 dilution; Scale bar = 10 μm).

It is interesting to note that mRGNEF has been described as
an anti-apoptotic factor in neuronal cells (Wu et al., 2003). It
was observed that mRGNEF confers protection against stress-
induced apoptosis in neuronal cells which could be associated
with the interaction of mRGNEF with JIP-1 and 14-3-3 proteins.
This observation suggests that the sequestration of RGNEF into
aggregates in ALS may contribute to neuronal death.

C9ORF72
C9ORF72 is another gene strongly involved in neurodegeneration.
An expanded GGGGCC hexanucleotide repeat in the first intron
located between the 1st and 2nd non-coding exons of C9ORF72
is the most frequent genetic cause of frontotemporal dementia
and ALS (DeJesus-Hernandez et al., 2011; Renton et al., 2011).
C9ORF72 encodes a protein with largely unknown function. How-
ever, sensitive homology searches have shown that C9ORF72 is a
full-length distant homolog of proteins related to Differentially
Expressed in Normal and Neoplasia (DENN), a GEF that activates
Rab-GTPases. These results suggest that C9ORF72 is likely to reg-
ulate membrane traffic in conjunction with Rab-GTPase switches
(Levine et al., 2013).

CONCLUDING REMARKS
There is compelling evidence for the emerging role of GEFs in
neurodegeneration. Given the key role of many of these proteins
in neuronal development and differentiation as well as cellular
vesicular transport through the regulation of small GTPases, this is
perhaps not unexpected. In the examples provided, the associated
diseases range from lethal childhood onset disorders such a VWM
disease, to developmental disorders such as the autism spectrum
disorders, through to the fatal adult onset disorder ALS.

In this context, the example of RGNEF and its association
with ALS is notable as this is the only GEF that combines
RNA binding activity with the capacity to activate RhoA GTPase
(Figure 4). The observation that RGNEF is able to immunopre-
cipitate NEFL mRNA from ALS spinal cord homogenates and
not from controls suggests a preferential interaction in ALS that
would be predicted to suppress NEFL mRNA levels, consistent
with the loss of NEFL mRNA detected by in situ hybridization
in ALS motor neurons (Wong et al., 2000). This may be further
augmented through the sequestration of multiple RNA binding

FIGURE 4 | Rho guanine nucleotide exchange factor (RGNEF) is the

only GEF involved in neurodegeneration that also contains a RNA

binding domain. Scheme showing the participation of several GEFs in
neurodegeneration as was described in this review and RNA binding
proteins that participate in neurodegeneration (Ge et al., 2005;
Vanderweyde et al., 2013). RGNEF is the only protein involved in
neurodegeneration that can be grouped in both categories. Abbreviations
are: ARFGEF2, ADP-ribosylation factor GEF protein; CalDAG-GEFI, calcium
and diacylglycerol-regulated GEFI; Dock2, Dedicator of cytokinesis 2;
Dock3, Dedicator of cytokinesis 3; eIF2B, eukaryotic initiation factor 2B;
EWS, Ewing sarcoma breakpoint region 1 protein; FMR1, Fragile X mental
retardation protein 1; FUS/TLS, Fused in sarcoma/Translocated in
liposarcoma; G3BP, Ras-GTPase-activating protein SH3-domain-binding
protein; hnRNPA1, heterogeneous nuclear ribonucleoprotein A1;
hnRNPA2B1, heterogeneous nuclear ribonucleoprotein A2/B1; mSOD1,
mutant superoxide dismutase 1; RAPGEF1, Ras-related protein GEF1;
RBM45, RNA binding motif protein 45; RGNEF, Rho guanine nucleotide
exchange factor; SMN, Survival motor neuron protein; TAF15, TATA-binding
protein-associated Factor 15; TDP-43, TAR DNA binding protein; TIA-1, T-cell
intracellular antigen 1; TTP, Tristetraprolin.

proteins within pathological NCIs in ALS spinal motor neurons
with the net effect being a loss of the regulation of NEFL and
other mRNAs stability. In a similar vein, the sequestration of
RGNEF within NCIs in ALS would also be predicted to render
it unavailable to participate in the modulation of RhoA GTPase
activation and potentially lead to neuronal death. Understand-
ing this intricate relationship is currently the focus of ongoing
studies.

It is also interesting to postulate that alterations in GEF activ-
ity, while not directly inducing a disease state, could function as
a critical “second insult” through the loss of one or more effector
pathways. For instance, while the loss of NEFL mRNA stability is
critical to the formation of pathological NCIs in spinal motor
neurons, the concomitant loss of GEF activity due to RGNEF
sequestration may be sufficient to render the cell incapable of
responding to the subsequent cellular stressors. Such a conceptu-
alization is consistent with the increasing evidence for oligogenic
inheritance in ALS where a second gene might participate as a crit-
ical modulator of the pathological phenotype of the disease (van
Blitterswijk et al., 2012; Droppelmann et al., 2013b). In this con-
text, perturbations in the function of GEF proteins might well be
considered as key candidates for this “second hit” because of their
direct or indirect roles on cell survival (Chen et al., 2002, 2009; Wu
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et al., 2003; Cai et al., 2005; Dietrich et al., 2005; Crittenden et al.,
2010; Bai et al., 2013; Namekata et al., 2013).
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