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Abstract

Background: In the last decade, a significant improvement in detecting remote similarity between
protein sequences has been made by utilizing alignment profiles in place of amino-acid strings.
Unfortunately, no analytical theory is available for estimating the significance of a gapped alignment
of two profiles. Many experiments suggest that the distribution of local profile-profile alignment
scores is of the Gumbel form. However, estimating distribution parameters by random simulations
turns out to be computationally very expensive.

Results: We demonstrate that the background distribution of profile-profile alignment scores
heavily depends on profiles' composition and thus the distribution parameters must be estimated
independently, for each pair of profiles of interest. We also show that accurate estimates of
statistical parameters can be obtained using the "island statistics" for profile-profile alignments.

Conclusion: The island statistics can be generalized to profile-profile alignments to provide an
efficient method for the alignment score normalization. Since multiple island scores can be
extracted from a single comparison of two profiles, the island method has a clear speed advantage
over the direct shuffling method for comparable accuracy in parameter estimates.

Background

The statistical significance of a local alignment score
between two sequences of amino-acid letters can be
assessed by analyzing background distribution of the
alignment scores between random sequences. For Smith-
Waterman alignments [1] lacking gaps, it has been well
established that the background score distribution is
approximately Gumbel [2], specified by two analytically
computable parameters 4 and K [3-6].

Assessing score statistics for profile-based alignments is
much more challenging problem. In order to quickly esti-
mate the significance of a database match, the HMMER
method (Eddy, 1997) pre-computes extreme value distri-
bution parameters for each Hidden Markov model in the

profile library. These model dependent parameters are cal-
culated by aligning and scoring a given HMM against
thousands of real or random sequences. PSI-BLAST esti-
mates score significance "on the fly", by reconstructing
residue scores within each profile column to the same
scale as the scores specified in the BLOSUMG62 matrix [7].
The assumption is that, after rescaling, the background
distribution of PSI-BLAST scores will be the same as the
distribution of the gapped BLAST scores. Many experi-
ments suggest that this hypothesis is valid and that the res-
caling technique yields accurate p-values.

The assessment of statistical significance of profile-profile
scores is still an unsolved problem. In lieu of a rigorous
analytical theory, many profile-profile algorithms resort
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to Z-score statistics [8,9]. For sequence only methods, the
Z-value of an alignment score between two sequences is
computed by comparing the first sequence with randomly
shuffled versions of the second sequence. An advantage of
Z-values is that they eliminate the sequence length and
compositional bias, since the shuffling of a sequence pre-
serves these two variables. However, there are certain dis-
advantages to using raw Z-scores to rank the significance
of the alignment scores. First, the Z-score statistics makes
a false assumption about the Gaussian form of the under-
lying score distribution. A reader interested in the magni-
tude of the error introduced by this assumption in referred
to [10]. Second, Z-scores do not provide the probability
that an alignment score could be obtained by chance.

Nevertheless, the Z-values can be made very useful for
computing accurate p-values via a "change of variable"
technique [11]. More specifically, it has been shown that
if the raw alignment scores follow a standard Gumbel law,
then the p-values of associated Z-scores are free of
sequence length and amino acid composition biases
[12,13]. Since the only drawback of this approach is the
computational expense associated with random simula-
tions, it would be very interesting to see whether the
"change of variable" approach can be used in other set-
tings.

Recently, an interesting approach to alignment score nor-
malization has been described that uses so-called Shared
Amount of Information (SAI) between the amino-
acid[12]. The model proposed in [12] is unique since it is
derived from the reliability theory applied to sequences of
amino-acids.

To date the studies on score normalization for local pro-
file-profile alignments have been limited to some specific
alignment scoring schemes. For example, an explicit gen-
eralization of techniques implemented in PSI-BLAST has
been successfully used in the COMPASS algorithm [14].
However, the method described in Sadreyev et al. works
only in the context of the COMPASS scoring function. The
statistical significance of alignment scores produced by
the LAMA method is estimated using an approach based
on Fisher's combining method [15]. In HHSEARCH [16],
the profile specific parameters were computed by compar-
ing each profile to the set of profiles built for the repre-
sentative sequences in the SCOP database [17] (SCOP
folds). The alignment scores obtained by PROF_SIM [18],
STRUCTFAST[19], and UNI-FOLD [20] were also shown
to follow the extreme value distribution, but the distribu-
tion parameters in these methods must be pre-calculated
using computationally expensive curve-fitting procedure.
This approach is commonly referred to as the "direct
method". In the "direct method", thousands of optimal
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alignment scores between real or random profiles are usu-
ally needed for moderately accurate estimates of the distri-
bution parameters. On the other hand, profile-profile
methods are computationally very expensive, making the
direct method too slow for parameter estimation, in par-
ticular for deriving the score statistics "on the fly" for each
given pair of profiles.

Here, we study a generalization of the well known island
method [21,22] to score normalization problem for pro-
file-profile alignments. The island method uses the scores
of local alignment "islands" obtained by a simple modifi-
cation of the dynamic programming matrix. Since multi-
ple island scores can be computed from a single path
graph, the island method has a distinct speed advantage
over the direct method.

Methods

The statistical theory

The statistical significance of an alignment score is usually
expressed by the score's p-value. The p-value of a score x is
defined as the probability of obtaining a score of at least x
purely by chance, given the probabilistic models for the
sequences and the alignment scoring scheme.

For a pair of random sequences of lengths m and n, the
expected number of locally optimal gapless sub-align-
ments with score of at least x is approximately Poisson dis-
tributed with mean value E given by

E= Kmne_M (1)

The analytically computable parameters 4 and K depend
on the background probabilities of amino-acid letters and
the residue-residue substitution scores specified in the
mutation matrix.

The equation 1 implies that the p-value of a score x is

P(S=x)=1—-exp( - E) =1—exp(— Kmne™) (2)

There is plenty of evidence suggesting that equation 1 still
holds for alignments with gaps [23-28], as well as for pro-
file-sequence and profile-profile alignments[7,18,29].
However, for these methods, 4 and K must be estimated
from random simulations rather than computed analyti-
cally [3,18,28,8]. We note that precise estimates of 4 are
particularly important since the p-value is a doubly expo-
nential function of 4. We also note that, in contrast to
local alignment scores, the scores of global sequence-
sequence alignments are shown to approximately follow
a three-parameter gamma distribution function|[31]. For
global alignment statistics, the computational complexity
is still an open problem.
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Need for composition-based statistics for profile-profile
alignments

For alignment methods that use substitution matrices and
residue type information (such as BLAST[4] or
FASTA[32]), it has been well established that 4 and K
depend, not only upon the alignment scoring system, but
also upon the frequencies of amino-acid letters in the
sequences being aligned. In these methods, A can vary
more than 10% from one sequence pair to another, due
entirely to change in sequence amino-acid composition
[21].

The variation in A is much larger for profile-profile meth-

ods. Figure 1 shows the histogram of estimates of A for
500 pairs of profiles selected at random from the set of
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profiles constructed for representative sequences in the
FSSP database [33]. For each pair of profiles, 4 is com-
puted by repeatedly shuffling the columns (positions) in
both profiles and fitting statistical parameters to optimal
local alignment scores between profiles' shuffles. As seen
in Figure 1, for some alignment methods, the difference in
A between pairs of profiles reaches an order of magnitude.
On the other hand, for marginally significant alignment
scores between average length profiles, even a relatively
small change in 4 of 10% results in over 16 fold change in
the estimated E-value (see Figure 2). This implies that E-
values computed for profile-profile scores using any fixed
A are unreliable, establishing a need for computing the
statistical parameters independently, for each given pair
of profiles.
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Profile-pair specific estimates of A. The histogram of estimates of A for 500 pairs of profiles selected at random from the
set of profiles built for representative sequences in the FSSP database. For each pair of profiles, the distribution parameters
were fit to 10,000 optimal alignment scores between the profiles' shuffles. The standard error in each estimate of 1 is 0.78%.
The mean and standard deviation of A are: (a) 1 = 0.244, ¢ = 0.093 (b) n = 0.353, 6 =0.139 (c) 0.238, c = 0.067 (d) n. = 0.283
o = 0.089. For sequence only comparisons, p = 0.307 and ¢ = 0.048.

Page 3 of 12

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:112

300 -

250 -

200

150 -

100 -

(22
o
1

Change in E-value (by factor of)

o

5 10 15 20

% variance in lambda

o

Figure 2

Change in E-value as a function of variance in 1.
Impact of variance in A on E-values for marginally significant
alignment scores (p-value ~ 10-%) between profiles of lengths
350. For example, 1%, 3%, and 5% error in lambda leads to
an error in E-value by a factor greater than 1.3, 2.3, and 4,
respectively. On the other hand, 20% change in A leads to an
almost 300 fold change in the estimated E-value.

Island statistics

To circumvent the computational expense associated with
random simulations for sequence-sequence methods,
Olsen et al. proposed using the scores of the so-called
"alignment islands" [22]. An alignment island is a region
in the dynamic programming matrix corresponding to
positively scoring segments in two sequences. More pre-
cisely, an island is a collection of locally optimal align-
ments that start at the same cell (anchor cell) in the path
graph [21,22]. The score of an island is defined as the
highest score among all local alignment scores for that
island.

Since the accuracy of equation 1 increases with increasing
values of x, accurate estimates of A and K can be obtained
by considering islands i with sufficiently high peak scores
o (i). Assuming continuity of alignment scores, the maxi-
mum likelihood estimate of 1 is

i _ |Rc|

X ()0 ()
i€eR,
where R_denotes the set of islands i such that o (i) > ¢[21].

The standard error in XC/K is 1/J| R¢ |, where 2 denotes
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the asymptotic parameter ("true" value). The maximum
likelihood estimate of K is

R, = [Rele?c (4)
Bmn

where m and n are the lengths of the random sequences
used in each island comparison and B is the total number
of sequence comparisons performed to generate the
islands[21].

We note that the island method is similar to the
"declumping" method of Waterman and Vingron[26,27],
but is much faster, because, unlike clumps, the islands
and their scores can be collected with a minor modifica-
tion of the Smith-Waterman algorithm [22]. Several appli-
cations have recently been developed that incorporate
island statistics for score normalization, including CTX-
BLAST [34], ConSequenceS[35], and CIS [36].

An added benefit of the island statistics (and other score
normalization methods based on sequence shuffling) is
flexibility in choosing the scoring system. In order to be
amenable to island statistics, the only requirement a
method needs to satisfy is that that the alignments it gen-
erates stay in the local regime, i.e. that the distribution of
alignment scores between random sequences (profiles) is
approximately Gumbel. Therefore, since the procedure for
computing statistical parameters does not change with
changes to the scoring function, one can entirely focus on
improvements to the scoring scheme. This is important,
because incorporating additional information into the
alignment process, such as, for example, the composition-
ally adjusted background frequencies [20,37,38] or pro-
tein secondary structure information [9,39] is known to
significantly increase sensitivity of an alignment
method[9,16].

Results and discussion

The island statistics for profile-profile alignments

The alignment score significance can be assessed using
either real or random profiles [40]. We use random pro-
files to avoid bias in the results toward any particular
group of proteins. A random profile of length n is
obtained by sampling n profile columns at random from
the collection of profiles computed for ~2,500 represent-
ative sequences from the FSSP database (FSSP family rep-
resentatives). The database of FSSP profiles is generated by
running three PSI-BLAST iterations on each FSSP
sequence and parsing amino-acid letter frequencies from
the corresponding PSI-BLAST checkpoint files.

We study the applicability of the island statistics on four
popular and well tested profile-profile scoring schemes:
JensenShannon (implemented in the PROF_SIM method
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[18]), CrossProduct (PRALINE [39]), WeightedLogOdds
(COMPASS|14]), and Multinomial (UNI-FOLD[20]). The
definition of each scoring function is given in the appen-
dix. The column-column scores in all four methods are
scaled (multiplied by constant factors) so that the align-
ment score distributions have similar parameters.

Since the island statistics applies only to methods for
which the background distribution of optimal alignment
scores is approximately Gumbel, we first verify that the
algorithms in our study belong to this category. Figure 3
shows the score distributions of (globally) optimal local
alignments between the shuffles of random profiles. As
seen in Figure 3, for all four profile-profile methods in our
study, the best-fit extreme value distribution closely fol-
lows the data, with »2 goodness-of-fit p-values ranging
from 0.15 to 0.95.

To establish a link between the statistics of peak island
scores and optimal alignment scores, we compare, for a
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range of cutoff values ¢, the observed number of islands
with scores > ¢ with the expected number of such islands
computed from the best-fit extreme-value distribution.
defined as

The expected number of islands is

E = Kmne ™ , where A and K are parameters obtained

with the direct method. More specifically, A and K are
the maximum likelihood estimates of parameters in equa-
tion 2, obtained from the scores of (globally) optimal
local alignments between profile shuffles. For more on the
maximum likelihood estimates of statistical parameters,
the reader is referred to [41].

As seen in Figure 4, there is strong agreement in the
expected and observed counts of the island peak scores
beyond the small score regime, independent of the scor-
ing system employed and the lengths of the profiles. An
analysis of real (as opposed to random) profiles demon-
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Figure 3

Optimal alignment score distribution. The distribution of 10,000 optimal local alignment scores between the shuffles of
random profiles of lengths 1,500. Solid line represents the best-fit extreme value distribution. (a) WeightedLogOdds: A 2 good-
ness-of-fit test with 43 degrees of freedom has value 35.46, corresponding to a P-value of 0.79 (b) CrossProduct: df = 37, y2=
32.47, P-value = 0.68 (c) JensenShannon: df = 39, x2 = 25.38, P-value = 0.95 (d) Multinomial: df = 39, y2 = 48.0, P-value = 0.15.
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Figure 4

Observed and expected island counts. Semi-log plot of the observed and expected number of islands (per alignment) with
score 2 ¢. The islands were collected from 10,000 comparisons between the shuffles of random profiles.

strates an equally strong correlation between two statistics
for high scoring islands.

The two statistics obviously differ for low scoring islands
(Figure 4). As argued before [21,22] the low scoring
islands often correspond to ungapped alignments of only
few profile positions, and therefore, the scores of those
islands follow a different distribution, namely the distri-
bution of gapless alignment scores.

The plots in Figure 4 show faster decay in the number of
islands with score > ¢ for profiles of size 350 compared to
profiles of size 1500 x 1500. We note that the apparent 4
for each comparison in Figure 4 is equal to -k, where k
denotes the slope of the set of data points. For sequence
only alignments, this dependence of the apparent 1 on
sequence length is due to the "edge effect", which arises
because the length of the longest island, and hence its
associated score, is limited by the lengths of the sequences
[21]. Thus, if the variance in slopes for profile-profile

methods seen in Figure 4 is also due to the edge effect, one
would expect to observe larger difference in slopes for
methods that generate longer alignments. Indeed, our
analysis of alignments generated by four methods in our
study demonstrates that the variance in A for small and
large comparisons seen in Figure 4 scales proportionally
with average alignment length generated by each method
(30 for WeihgtedLogOdds, 47 for CrossProduct, 37 for
JensenShannon, and 35 for Multinomial).

The "edge effect" may be corrected for by allowing the
islands to extend beyond the ends of the sequences [21].
For sequence only methods, this is done by embedding
each n x n comparison within a lager comparison with a
border of length b and then collecting only the islands
anchored within the central n x n region [21]. We tested a
similar technique for computing profile-pair specific
asymptotic parameters from small size comparisons. We
note that our procedure is slightly different from the pro-
cedure described in [21] because it treats the boundary
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and the central region separately. More specifically, to
account for compositional bias in the profiles, only the
scores in the central n x n square are shuffled and the
boundary is filled in with scores chosen at random from
the central region. Figure 5 shows the asymptotic distribu-
tion of island scores obtained from a comparison of size
350 x 350 surrounded by a border of size 50.

To assess the accuracy of the island method, we (like Alts-
chul et al. [21]) compute, for each island score cutoff ¢, the
estimates of A and K using equations 3 and 4. Table 1 gives
the island estimates of 4 and K for a single pair of random
profiles of lengths 1,500 using the WeightedLogOdds scor-
ing function. Similar results were obtained with the other
three scoring functions (data not shown).

To better illustrate the dependence of the island estimate

of 2 on the cutoff value ¢, we plot the values i, from

Table 1 in Figure 6. As seen in Figure 6, the value of 715

decreases with increasing island cutoff score ¢, until it
reaches the value of 0.166 (direct method estimate of 1)
at ¢ = 44 and then randomly oscillates around this point.

Speed vs. accuracy

There are two types of errors that can occur when comput-
ing the statistical parameters using random simulations.
The first error, called "bias", represents the difference
between the estimated and "true" statistical parameters.
The second error is the standard error, which, unlike the
bias, can be controlled by the number of data points used
in parameter estimation. More specifically, the standard

— 350
~==~ 350 with border
—— 1500

Island score ¢

Figure 5

The edge effect correction. Semi-log plot of the observed
and expected number of islands with score > ¢. The dashed
line represents the distribution obtained by surrounding the
lattice of shuffled scores by a border of width 50 and count-
ing only the islands anchored within the central 350 x 350
area.
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Table I: Island estimates of 1 and K

c R Ae SE AN
20 18942541 0.1924 0.02% 0.0395
21 15451236 0.1899 0.03% 0.0371
2 12673131 0.1882 0.03% 0.0354
23 10416563 0.1866 0.03% 0.0339
24 8557899 0.1846 0.03% 0.0320
25 7041327 0.1825 0.04% 0.0300
26 5794787 0.1800 0.04% 0.0278
27 4796202 0.1782 0.05% 0.0262
28 3981201 0.1767 0.05% 0.0249
29 3312692 0.1753 0.05% 0.0238
30 2761460 0.1740 0.06% 0.0227
31 2307980 0.1730 0.07% 0.0219
2 1931516 0.1720 0.07% 0.0211
33 1618724 0.1712 0.08% 0.0204
34 1358277 0.1704 0.09% 0.0198
35 1141702 0.1697 0.09% 00193
36 960448 0.1692 0.10% 0.0188
37 809392 0.1688 0.11% 00185
38 681757 0.1683 0.12% 0018l
39 575054 0.1679 0.13% 00179
40 484923 0.1675 0.14% 00175
41 409305 0.1671 0.16% 00172
2 345792 0.1668 0.17% 0.0169
43 292455 0.1666 0.18% 0.0168
44 247162 0.1663 0.20% 0.0166
45 209396 0.1664 0.22% 0.0167
46 177245 0.1664 0.24% 0.0166
47 14981 | 0.1661 0.26% 00163
48 127130 0.1664 0.28% 0.0166
49 107539 0.1663 0.30% 0.0165
50 91004 0.1661 0.33% 0.0164
51 77013 0.1660 0.36% 00163
52 65225 0.1660 0.39% 00163
53 55132 0.1656 0.43% 0.0159
54 46798 0.1659 0.46% 0.0162
55 39719 0.1663 0.50% 0.0166
56 33618 0.1662 0.55% 0.0165
57 28394 0.1657 0.59% 0.0160
58 24094 0.1660 0.64% 00163
59 20398 0.1659 0.70% 0016l
60 17282 0.1659 0.76% 0.0162
6l 14634 0.1659 0.83% 0.0162
62 12430 0.1663 0.90% 0.0166
63 10497 0.1659 0.98% 0016l
64 8837 0.1647 1.06% 0.0149
65 7579 0.1667 1.15% 0.0172
66 6407 0.1665 1.25% 0.0169
67 5416 0.1662 1.36% 0.0165
68 4591 0.1662 1.48% 00165
69 3892 0.1663 1.60% 0.0167
70 3280 0.1654 1.75% 0.0156
71 2786 0.1658 1.89% 0.0160
72 2367 0.1663 2.06% 0.0167
73 1985 0.1645 2.24% 00145
74 1695 0.1656 2.43% 0.0158

The estimates of A and K and the standard error (SE) in 7\‘6/7\‘ for a pair

of random profiles obtained with the island method (equations 3 and 4) from
10,000 comparisons of size 1500 x 1500 using the WeightedLogOdds scoring

scheme. The parameters estimated with the direct method are A=

0.16636, K =0.01677.
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error in 71/7» is 1/</R for the island method and 0.78/

JR for the direct method [21], where R denotes the
number of data points, i.e. the number of island scores
above the cutoff and the number of optimal alignment
scores, respectively.

Both direct and island method suffer from bias in the esti-
mates of the statistical parameters. As seen in Figure 6, the
bias of the island method is closely related to the island
cutoff score. Similarly, the direct method tends to overes-
timate A due to the nonexistence of an optimal alignment
score threshold. The maximum likelihood estimates of
distribution parameters obtained with the direct method
most strongly depend on the low scoring data points,
because of the steep decrease of the left tail of the extreme
value distribution. Therefore, the extent of bias for the
direct method is proportional to the fraction of low scor-
ing optimal alignments used for parameter estimation.

We note that the biases of the direct and island method
can be computed (and compared) for local alignments of
single sequences, due to availability of experimentally ver-
ified "best estimate" of the asymptotic A [21]. Using the
"best estimate" of 1 as the reference point, Altschul and
co-workers were able to find a threshold island score that
eliminates all cutoff-based bias for large size comparisons
of random sequences. By considering only the islands
with peak scores over the threshold, they computed accu-
rate, sequence length specific parameter estimates of 4,
and used these estimates as gold standards to assess the
extent of bias for both methods [21].

Unfortunately, it would be difficult to perform a similar
experiment in our setting because of the dependence of
statistical parameters on profiles' composition and
because of the computational complexity of profile-pro-
file methods. Thus, instead of comparing the bias side-by-
side, we focus our attention on measuring the difference
between the island and direct method estimates of A and
on comparing the computational efficiencies of two
methods.

The speed advantage of the island method is due to its
ability to generate multiple data points in a single com-
parison of two shuffled profiles. However, the average
number of islands per pair of shuffled profiles does not
directly translate into the speed advantage of the island

method. First, for the same standard error in A/A, the

island method needs to generate 64% more data points
than the direct method. Second, a single comparison of

http://www.biomedcentral.com/1471-2105/10/112

two profiles with the island method is computationally
more expensive than the same comparison with the direct
method, since the island method needs to keep track of
the islands and their peak scores. Our implementation of
the dynamic programming engine for the island method
is ~1.5 times slower than the procedure that only returns
an optimal alignment score. Taking those two factors into
consideration, the total speed advantage of the island
method is about A_ /2.4, where A, denotes the average

number of island with peak scores > ¢ collected in a single
comparison of two shuffled profiles. We note that our
results are identical to previously reported results for
sequence-sequence alignments [21].

We emphasize that the speed advantage of island method
also depends on the scoring scheme used in a profile-pro-
file method. Figure 7 shows the relationship between the
speed-advantage of the island method and the discrep-
ancy in estimates of A obtained with two methods. As seen
in Figure 7, for the same speed-up, the difference in the
estimates of 1 obtained by two methods is smaller for
large size comparisons. This is expected, because, for two
equal size collections of top scoring islands, the average
island score for a large size comparison exceeds the aver-
age island score for small size comparison, resulting in
overall more accurate parameter estimates.

To compute the actual running times of two methods, we
tested both programs on an Intel Xeon 2.13 GHz CPU
computer with 4 GB of RAM. Table 2 gives the relation-
ship between the running time of the island method and
percent deviation of the island estimates of A from the
estimates obtained with the direct method (using direct
method estimates as reference points). As seen in Table 2,
for a typical comparison of size 350 x 350, the island
method using the JensenShannon scoring function needs
about 4 seconds to obtain an estimate of A within 4% of
the direct method estimate (standard error 0.78%). To

achieve the same standard error in 71/7», the direct method

requires ~1.3 minutes, corresponding to a 20-fold speed
advantage of the island method. When compared to the
direct method, the efficiency of the island method further
increases with increasing lengths of the profiles. For
instance, for the same 4% difference in the estimates of 1
and comparisons of size 1500 x 1500, the island method
is 100 times faster than the direct method (16 seconds vs.
~1/2 hour). For 2% difference in 4, the island method is
10 times faster for comparisons of size 350 x 350 and 30
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times faster for comparisons of size 1500 x 1500. We note
that increased computational efficiency on large profiles
makes the island method particularly useful, since using
the direct method to compute the parameters "on the fly"
for large size comparisons would be computationally pro-
hibitive.

We emphasize that, by using the direct method estimates
as reference points, we do not argue that these estimates
are more accurate than the estimates obtained with the
island method. In fact, the results of a similar analysis for
sequence-only methods [21] suggest that, for compari-
sons of size ~350 x 350, the bias of the direct method
would be about three times larger than the bias of the

island method, for the same standard error in 71/%

Previous studies of the island statistics for sequence-
sequence alignments addressed the speed-accuracy trade-
off by optimizing the island score cutoff c¢. For the
BLOSUMG62 matrix and gap opening and extension penal-
ties of 11 and 1, respectively, the cutoff value of ¢ = 28 was
found appropriate [21]. Olsen and co-workers suggested
the cutoff value of ¢ = 1.3 - max{s,,}, where s, is the score
for matching amino acid letters a and b, specified in the
substitution matrix [22].

A slightly different interpretation of the results in Table 2
suggests an alternative approach to controlling speed and
accuracy tradeoff for an arbitrary profile-profile scoring
scheme and a range of profile lengths. For example, for a
pair of profiles of lengths 350, the JensenShannon scoring
scheme, and the standard error of 0.78%, the island esti-
mate of A that is within 4% of the direct method estimate
of A can be obtained by running the island method for ~4
seconds and computing A using the top scoring 16,437
islands (this number of islands yields standard error in

A/ of 0.78%).

We used our in-house computer cluster to directly com-
pare the performance of the island and the direct method
in identifying the relationships between the sequences in
the Lindahl test set [42]. The Lindahl test set is composed
of 1310 pairs of proteins classified in three groups accord-
ing to SCOP[17] hierarchy. The accuracy of an alignment
method in the Lindahl benchmark is defined as its ability
to place a correct member of the SCOP group (family,
superfamily, and fold) on the top of its ranked list. The

http://www.biomedcentral.com/1471-2105/10/112
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Figure 6

Island method estimates of A. The values of ic from

Table I. The solid horizontal line corresponds to direct
method estimate of 4 obtained from 10,000 globally optimal
local alignments between profile shuffles. The standard
errors are shown as vertical lines for the island method and
the dashed horizontal lines for the direct method.

results of our test, presented in Table 3, show no signifi-
cant difference in fold recognition sensitivity between the
two methods.

Conclusion

By utilizing the information present in protein families,
profile-profile alignment algorithms are often able to
detect extremely week relationships between protein
sequences, as evidenced by the large scale benchmarking
experiments such as CASP [43], CAFASP [44], and Live-
Bench [45]. However, estimating the score statistics for
profile-profile alignments is a challenging problem. The
background distribution of profile-profile alignment
scores is constrained by profiles' composition and hence
the distribution parameters must be estimated independ-
ently, for each given pair of profiles.

We study the applicability of the well known "island
method" to profile-profile score normalization. In the
island method, the statistical parameters are computed
based upon the top scoring islands that can be collected
using a simple modification of the Smith-Waterman algo-
rithm. Since multiple high scoring islands can be extracted
from a single path graph, the island method has a distinct
speed advantage over the direct method. For some widely
used profile-profile scoring schemes, the speed advantage
of the island method exceeds an order of magnitude for
comparable accuracy in parameter estimates. For larger
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Figure 7

Speed-up vs. the difference in the estimates of 1. The speed advantage of the island method and the deviation of the
island estimates of A from the parameters obtained by the direct method. The island scores and the optimal alignment scores
were collected from 10,000 comparisons between the shuffles of random profiles. The results are averaged over 100 pairs of

random profiles.

profiles, a significant speed advantage of the island statis-
tics comes with almost perfect accuracy. This is important,
since using the direct method as the only other alternative
to compute the parameters "on the fly" for large size com-
parisons is computationally prohibitive.

Appendix

The JensenShannon score [18] between probability distri-
butions ¢! and ¢? is defined as

Score(ql,qz):%(l—])(1+8) (5)

where ] = DS (g, ¢2) is the Jenson-Shannon divergence
between ¢! and g2 and S = D’S (1, b) is the Jenson-Shannon
divergence between the "most likely common source dis-
tribution" r for ¢! and g2 and the "overall" distribution of
20 amino acid letters b. The distribution r is defined as

Lttt 6
r2q+2q (6)

The Jenson-Shannon divergence is given by

) 1 1
D]S(qlqu)=EDKL(q1,r)+5DKL(q2’T) (7)
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Table 2: Running time of the island method and the deviation in 1
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Table 3: Lindahl benchmark

m, n =350 m, n= 1500 Top | Top 5
Method 2s 4s 8s 16s 32s 64s Fold +1.2% +0.9%
Superfamily -0.9% -0.5%
WeightedLogOdds 7% 5% 1% 4% 2% 1% Family -0.7% +11%
CrossProduct 10% 5% 2% 14% 7% 4%
JensenShannon 8% 4% 2% 4% 3% 2% The performance of the island method in the Lindahl benchmark for
Multinomial 6% 3% 3% 5% 2% 1% fold recognition. We show the difference in the percentage of the

The actual running time of the island method and the (percent)
difference in the island estimates of A from the values obtained with
the direct method. The results are averaged over 100 pairs of random
profiles. The standard error in each estimate of A for both methods is
0.78%. The running time of the direct method is ~1.3 minutes for
comparisons of size 350 X 350 and ~30 minutes for comparisons of
size 1500 x 1500.

where DKL js the Kullback-Leibler divergence

20 ql
D*(q',4*) = ) dilog—% (8)
k=1 q;,

The CrossProduct scoring function [39] multiplies the
products of the amino-acid target frequencies by the cor-
responding elements s, of the BLOSUMG62 substitution
matrix

20 20
SCOTe(qllqz)=zthlﬂz25kz )
k=1 I=1

The WeightedLogOdds [14] and the Multinomial [20] scor-
ing functions use the effective amino-acid counts when
scoring a pair of profile positions. More specifically, the
score for matching ¢! and ¢? is given as

20 ql% 20 qllz
1 .2y _ 17, 'k 21, 'R
Score(q”.q )—clgnkln by +02; niin by

(10)

where n}, and nj are the "effective counts" for the amino
acid k observed at two profiles' columns and b, is the back-

ground probability of k. In the WeightedLogOdds function,
the parameters ¢, and ¢, are set to

20
Y n}%—l
_ k=1
R L 20 , (11)
Y n,+ Y nk—2
k=1 k=1

relationships identified by the island and the direct method (% island —
% direct) in the first and the top five ranks, at each SCOP level (family,
superfamily and fold). In this analysis we used the Multinomial scoring
system. Similar results were obtained with the other three scoring
schemes (data not shown).

20 1

Y nk—l

k=1 (12)
20 1 20 9

Y ny+ Y nk—2

k=1 k=1

sz

In the Multinomial scoring function, both ¢, and c, are set
to 1.
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