
Page 1 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(4):181 | https://dx.doi.org/10.21037/atm-21-6894

Introduction

A glioma is a tumor in the central nervous system that 
originates from glial cells (1). As the most prevalent primary 
brain tumor, glioma accounts for around 80% of malignant 

cases (2). Glioma has high disability and mortality rates 
due to the high likelihood of metastasis and relapse (3). 
Generally, high-grade glioma is incurable, and accounts 
for 8% of malignant tumors in the human central nervous 
system (4). At present, the most common regimen for 
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glioma is surgical resection plus radiotherapy, or adjuvant 
chemotherapy (5). However, the survival rate of high-
grade glioma patients is extremely low (6). Thus, a better 
and more effective form of glioma treatment needs to be 
urgently found.

In recent years, gene therapy has emerged as a new 
method for glioma treatment. The chemokine-like factor 
(CKLF) MARVEL transmembrane domain-containing 
family (CMTM) is ubiquitous in the immune system, 
cardiovascular system, and tumorigenesis, and the abnormal 
expression of CMTM is related to the development of 
various diseases (7,8). A recent in-depth study revealed 
that CMTM is closely related to the occurrence, 
development, and metastasis of tumors (9). Among the 
CMTM family, CMTM6, which is located in the 3p22 
region (10), is a regulator of PD-L1 expression and tumor  
immunity (11). CMTM6 is implicated in epigenetic 
regulation, embryogenesis, and tumorigenesis (12). It has 
been reported that high membrane expression of CMTM6 
in hepatocellular carcinoma is associated with tumor 
recurrence (13). CMTM6 promotes cell proliferation and 
invasion in oral squamous cell carcinoma by interacting 
with NRP1 (14). Interestingly, CMTM6 overexpression is 
also related to glioma development (15). However, there 
is still no specific mechanism of CMTM6 in developing 
glioma. Studying and determining the mechanism of 
CMTM6 in glioma may reveal a new way for treating 
glioma. Additionally, the mammalian target of rapamycin 
(mTOR) pathway is often activated in tumors, and regulates 
cell proliferation, apoptosis, and tumor metabolism (16). 
Phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR pathway 
is one of the classical cancer-activated signaling pathways 
in human cancers and the mTOR is considered as a key 
regulator of PI3K-Akt-mTOR pathway. Glioma growth 
is driven by pathways that converge on protein synthesis 
machinery through mTOR signaling molecules (17). 
The hyperactivation of the mTOR pathway is common 
in human glioma and critical in monitoring messenger 
ribonucleic acid (mRNA) translation, and cell biological 
behaviors (18). Hence, the mTOR pathway plays an 
essential role in developing of glioma. In our research, 
based on the above information, we hypothesized that there 
may be interactions between CMTM6 and the mTOR 
pathway in glioma progression, innovatively explaining 
the process of CMTM6 in developing glioma. Thus, we 
performed histology and molecular experiments to verify 
this hypothesis and help provide new approaches for glioma 
treatment.

We present the following article in accordance with 
the ARRIVE reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6894/rc).

Methods

Sample collection

From January 2016 to June 2017, 44 pairs of specimens of 
glioma and normal tissues were collected from The Third 
Affiliated Hospital of Soochow University from 24 males 
and 20 females, aged 26–77 years with an average age of  
52 years. According to the World Health Organization 
(WHO) classification of tumors, there were 16 cases of 
low-grade glioma (I–II) and 28 cases of high-grade glioma  
(III–IV). 

To be eligible for inclusion in the study, patients had 
to meet the following inclusion criteria: (I) have been 
hospitalized for the first time, and not have undergone any 
radiotherapy, chemotherapy, or immunotherapy before the 
operation; (II) not have tumors or metastasis in other parts 
of the body; (III) have undergone surgery by the same group 
of neurosurgeons under the microscope; (IV) have their 
tumor tissue pathologically confirmed to be glioma after 
the operation; and (V) have detailed and complete clinical 
data for all specimens. All procedures performed in this 
study involving human participants were in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by ethics committee board of The Third 
Affiliated Hospital of Soochow University [No. 2021(135)] 
and informed consent was taken from all the patients.

Immunohistochemistry

The glioma and normal t issues were f ixed in 4% 
paraformaldehyde, embedded in paraffin, and sliced at 3 µm, 
and then dewaxed in xylene. Next, the sections were heated 
in citrate solution for 15 minutes for antigen extraction. 
After incubation for 10 minutes in 3% hydrogen peroxide 
solution to block endogenous peroxidase activity, the 
sections were blocked in normal goat serum for 20 minutes. 
Subsequently, the tissue sections were incubated with 
CMTM6 primary antibody (1:200, NBP1-31183, Novus 
Biological Inc., Littleton, CO, USA) at 4 ℃ overnight, 
and then with horseradish peroxidase-conjugated anti-
rabbit immunoglobulin G antibody (1:200, NBP2-19301). 
Afterwards, the sections were dyed with diaminobenzene, 
counterstained with hematoxylin (Beyotime Biotechnology 

https://atm.amegroups.com/article/view/10.21037/atm-21-6894/rc
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Co., Ltd., Shanghai, China), and sealed by neutral gum. 
Two senior pathologists read the films in a double-
blind manner, and each section was observed in 5 visual 
fields under a high-power microscope. According to the 
cell staining and proportion of positive cells, the mean 
value was used statistics. In case of disagreement, a 3rd 
pathologist was invited to make identification. The 
H-score semi-quantitative scoring method was used to 
score immunohistochemical staining results; the H-score 
ranged from 0 (100% negative tumor cells) to 300 (100% 
strongly stained tumor cells), and was calculated using the 
following formula: (% non-staining tumor cells × 0) + (% 
light-yellow tumor cells × 1) + (% brown tumor cells × 2) + 
(% chocolate-brown tumor cells × 3) (19).

HE staining

The tissue sections were dewaxed, stained with hematoxylin 
(Beyotime), differentiated with 1% hydrochloric acid and 
alcohol for 3 seconds, stained with 1% eosin for 1 minute, 
dehydrated, cleared, sealed, and observed under an optic 
microscope (DM3000, Leica, Solms, Germany).

Cell culture

The human glioma cell lines (T98G, U87, U251, and 
U373) and glial cells HEB were provided by the Cell Bank 
of Type Culture Collection Committee of Chinese Academy 
of Sciences (Shanghai, China), and cultivated in Dulbecco’s 
modified Eagle’s medium (DMEM; Invitrogen, Carlsbad, 
CA, USA) with 10% fetal bovine serum (FBS; Sigma, St. 
Louis, MO, USA) and 1% penicillin/streptomycin (Sigma) 
at 37 ℃ with 5% carbon dioxide (CO2).

Construction and transfection of interfering lentivirus

CMTM6 short hairpin RNA (shRNA) was constructed 
according to the CMTM6 sequence (NCBI Reference 
Sequence: NM_017801.3) published on the GenBank. The 
sense sequence was 5'-gatccGGCCTTCATCTGTGAA
GAAGTTGTATTCAAGAGATACAACTTCTTCAC
AGATGAAGGCCTTTTTTg-----3', and the antisense 
sequence was 5'-aattcAAAAAAGGCCTTCATCTGTGA
AGAAGTTGTATCTCTTGAATACAACTTCTTCACA
GATGAAGGCCg-----3'. CMTM6-shRNA1 was obtained 
from Shanghai Generay Biotech Co., Ltd. (Shanghai, 
China) and cloned into pLVX-shRNA lentiviral vector. The 
recombinant CMTM6-targeting lentivirus (sh-CMTM6) 

and control mock lentivirus (sh-NC) were transfected into 
cells.

RT-qPCR

One mL of precooled TRIzol (15596018, Thermo Fisher, 
Waltham, MA, USA) was added to ground glioma tissues 
or phosphate buffer saline (PBS)-washed glioma cells for 
lysis. Trichloromethane was then added to the samples for 
high-speed centrifugation, and the samples were transferred 
into the upper aqueous phase. After adding 0.8 volume of 
isopropanol, the samples were allowed to stand at –20 ℃, 
and centrifuged at 4 ℃ at high speed. Next, 75% ethanol 
was added to wash white RNA precipitation, followed by 
centrifugation and air drying. The RNA was then dissolved 
with RNA-free double distilled water. After incubation 
at 55 ℃, Nanodrop 2000 (Thermo Fisher) was used to 
measure the ultra-violet (UV) absorbance of RNA, and the 
concentration was adjusted to 200 ng/µL. According to the 
Revertaid first strand complementary deoxyribonucleic acid 
(cDNA) synthesis kit (Toyobo Co., Ltd., Tokyo, Japan), 
the reverse transcriptase was inactivated on the polymerase 
chain reaction (PCR) instrument (Applied Biosystems, 
Carlsbad, CA, USA). The SYBR (Synergy Brands) Green 
method (Roche Diagnostics, Mannheim, Germany) was 
used for the quantitative (qPCR). The PCR reaction system 
included 25 µL. The PCR conditions were as follows: pre-
denaturation at 95 ℃ for 10 minutes, then at 95 ℃ for  
15 seconds, and then at 60 ℃ for 60 seconds, for a total of 40 
cycles. The dissolution curve ranged from 60–95 ℃, and the 
temperature rose 0.3 ℃ every 15 seconds. The value of each 
sample was analyzed 3 times to obtain the average value. 
The CT value was recorded, and the relative expression 
of mRNA was calculated using the 2−ΔΔCT method (20).  
The primer sequences designed by Sangon Biotech Co., 
Ltd. (Shanghai, China) are listed in Table 1; GAPDH 
(glyceraldehyde-3phosphate dehydrogenase) was used as the 
control.

Western blot assay

Following the lysis of the glioma tissue or cells with 
radio-immunoprecipitation assay buffer (Beyotime), the 
samples were centrifuged at low temperature to absorb 
the supernatant and obtain the total protein. After protein 
concentration measurement by a bicinchoninic acid kit 
(Pierce, Rockford, IL, USA), equal amounts of proteins 
were run on 12.5% sodium dodecyl sulfate-polyacrylamide 
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gel electrophoresis, and transferred to polyvinylidene 
difluoride membranes. Subsequently, the membranes were 
probed with primary antibodies against CMTM6 (1/1,000, 
NBP1-31183), mTOR (mammalian target of rapamycin) 
(1/1,000, ab32028, abcam), p-mTOR (p-mammalian 
target of rapamycin) (1/1,000, ab109268, abcam), P70S6K 
(ribosomal protein S6 kinase) (1/5,000, ab32529, abcam), 
and p-P70S6K (p-ribosomal protein S6 kinase) (1/500, 
ab59208, abcam) at 4 ℃ overnight. After washing with 
PBS-Tween (PBST), the membranes were probed 
with HRP (horseradish peroxidase)-labeled anti-rabbit 
immunoglobulin G (IgG) antibody (1:5,000, NBP2-19301). 
After being washed 3 times with PBST, the protein bands 
were evenly coated with luminescent liquid, and exposed 
using a full-automatic exposure meter (Fujifilm, Japan). 
Image J software (Olympus, Japan) was used to analyze the 
gray value of CMTM6 protein bands.

CCK-8

Glioma cell suspension (100 µL) was prepared in 96-well 
plates at 2×104 cells/mL. After culturing for 24 hours at  
37 ℃ with 5% CO2, 10 µL of Cell Counting Kit 8 (CCK8) 
solution (Beijing Wobisen Biotechnology Co., Ltd., 
Beijing, China) was added to each well at 0, 24, 48, and  
72 hours. The optical density at 450 nm was measured using 
a microplate reader (Bio-Rad, Inc., Hercules, CA, USA).

Flow cytometry

Cell-cycle detection: the glioma cells were fixed overnight 
in 70% ethanol solution (v/w) at 4 ℃, and stained in 
propidium iodide (PI) the next day at 37 ℃ for 30 minutes. 
The cell cycle was detected on a FACScalibur flow 
cytometer (BD, Franklin Lakes, NJ, USA), and estimated 
using Mod Fit LT3.1 software (Verity Software House, 
Topsham, ME, USA).

Apoptosis detection: after centrifugation, the cells were 
collected and counted, and 5×105 cells were centrifuged at 
1,000 rpm at 4 ℃ for 10 minutes, and the supernatant was 

removed. Afterward, 1 mL of precooled PBS was added to 
the cells, and the tube slightly shaken. After centrifugation 
for 2 times at 1,000 rpm at 4 ℃, the supernatant was 
discarded and cells were resuspended in 200 µL binding 
buffer. Next, the cells were mixed with 10 µL of annexin-
V-FITC solution (51-65874X, BD) for 15 minutes without 
light exposure. Finally, the cells were treated with 300 µL 
of combined buffer and 5 µL of PI, and tested on the flow 
equipment.

Transwell assay

U87 and U251 cells were trypsinized and resuspended 
i n  D M E M  c o n t a i n i n g  1 %  F B S ,  a n d  s e t  a t  
5×105 cells/mL. Next, 100 µL of prepared cell suspension 
was added to the apical chambers (8 µM), which had been 
precoated with Matrigel (BD), and 600 µL of DMEM with 
20% FBS was paved in the basolateral chambers. After  
24 hours of culture, the Transwell chambers were removed, 
and the culture solution in the wells was sucked off, washed 
twice in calcium-free PBS, and fixed with methanol for  
30 minutes. After natural drying, the chambers were dyed 
for 20 minutes with 0.1% crystal violet (Beyotime). The un-
invaded cells were swabbed lightly with a wet cotton swab, 
washed with PBS 3 times, and photographed and counted 
under an inverted light microscope (Leica).

Wound healing assay

The cells were cultured in 6-well microplates at 5×105 cells/
well for 24 hours at 37 ℃ with 5% CO2. The cells were 
then incubated for 4 hours in serum-free DMEM, until 
cell proliferation slowed down. A sterilized 10-µL pipette 
was used to draw straight lines on the monolayer cells in 
the microplates, with 3 straight lines between each well. 
After PBS cleaning, the scratched cells were removed. 
The microplates were cultured in serum-free DMEM for  
24 hours. Finally, the migration distance was observed 
under an inverted light microscope and analyzed using 
image-Pro Plus 6.0 software.

Tumorigenicity assay in nude mice

Specific pathogen-free female immunodeficient mice 
(3~5 weeks old, 18~21 g) were obtained from Hangzhou 
Ziyuan Experimental Animal Technology Co., Ltd. 
[SCXK(Zhejiang)2019-0004]. U87 cells (4×106) were 
transfected with sh-CMTM6 or sh-NC and injected into 

Table 1 Primer sequences for RT-qPCR

CMTM6 Forward 5'-AGTGCCTTTCTTCTGAGTCTCCTT-3'

Reverse 5'-CTTCAGCCCTAGTGGTATTTTCAG-3'

GAPDH Forward 5'-CACCATCTTCCAGGAGCGAG-3'

Reverse 5'-AAATGAGCCCCAGCCTTCTC-3'
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each nude mouse. Tumor growth was measured every  
7 days. Tumor volume was calculated as (length × width2)/2. 
Finally, the mice were euthanized and tumors were removed 
and weighed. The tumor tissues were incubated with anti-
Ki-67 antibodies (1:500, ab231172, abcam). 3 fields were 
selected to calculate the ratio of positive tumors and staining 
intensities. Animal experiments were performed under a 
project license [No. SYXK(SHU)2017-0044] granted by 
ethics committee board of The Third Affiliated Hospital 
of Soochow University, in compliance with Institutional 
Animal Care and Use Committee (IACUC) guidelines for 
the care and use of animals.

Statistical analysis

SPSS 21.0 software (IBM Corp. Armonk, NY, USA) was 
used for the data processing. The Kolmogorov-Smirnov test 
was used to check that the data were normally distributed. 
The measurement data are presented as mean ± standard 
deviation. Comparisons between 2 groups were processed 
by the t-test, and comparisons among multi-groups 
were processed by a 1-way or 2-way analysis of variance 
(ANOVA), followed by the Tukey multiple comparisons 
test. The P value was calculated using a 2-tailed test, and a 
P value <0.05 indicated a significant difference.

Results

CMTM6 was upregulated in glioma and associated with a 
poor prognosis

The overexpression of  CMTM6 is  related to the 
development of glioma (13). Through The Cancer 
Genome Atlas (TCGA) database (http://ualcan.path.uab.
edu/analysis.html), we learned that CMTM6 expression 
was upregulated in various cancers (see Figure 1A), and 
CMTM6 upregulation was associated with a poor prognosis 
in glioma (see Figure 1B,1C); however, CMTM6 expression 
did not differ significantly across each age group (see 
Figure 1D). Hematoxylin and eosin (HE) staining and 
immunohistochemistry were performed on normal tissues, 
and low-/high-grade glioma tissues. The density of cells 
in the normal brain tissues was uniform, the layers were 
clear, the nuclei were regular without abnormal staining 
in cytoplasm and heteromorphic cells. Conversely, the 
density of low-grade glioma cells increased, the cytoplasm 
was stained, and the nuclei were stained deeply, while the 
cells in high-grade glioma gathered in different sizes and 

were in disorder, and the heteromorphism was obvious 
(see Figure 1E). CMTM6 was higher in high-grade 
glioma tissue than low-grade glioma tissue (P<0.05) (see  
Figure 1F). The real-time-qPCR (RT-qPCR) results showed 
that CMTM6 expression in glioma tissues was higher than 
that in adjacent normal tissues (see Figure 1G). The average 
CMTM6 expression detected by RT-qPCR (21) was used 
as the threshold value, and the patients were assigned to 
low expression (n=21) and high expression groups (n=23), 
and the relationship between CMTM6 expression and 
clinicopathology was analyzed. CMTM6 expression in 
glioma tissue was correlated with WHO grade (P<0.05), but 
CMTM6 expression was not significantly correlated with 
other clinicopathological parameters (including gender, age, 
and tumor diameter) (see Table S1). Additionally, CMTM6 
expression in glioma cells was higher than that in normal 
glial cells (P<0.05; see Figure 1H).

Knockdown of CMTM6 prevented glioma cell proliferation 
and promoted apoptosis

To further explore the effect of CMTM6 on glioma cells, 
U87 and U251 cells were transfected with sh-CMTM6 
(see Figure 2A,2B). The CCK-8 results revealed that the 
proliferation of cells decreased markedly after CMTM6 
knockdown (P<0.05; see Figure 2C). The flow cytometry 
results showed that after the knockdown of CMTM6, the 
apoptosis rate and the G1/G0 phase increased significantly 
(P<0.01) (see Figure 2D,2E).

Knockdown of CMTM6 inhibited the invasion and 
migration of glioma cells

The Transwell and wound healing assays indicated that after 
the knockdown of CMTM6, the invasion and migration of 
U87 and U251 cells was noticeably inhibited (P<0.01; see 
Figure 3A,3B).

Knockdown of CMTM6 blocked the activation of mTOR 
pathway

From the above results, we noted that the knockdown of 
CMTM6 inhibited the malignant biological behaviors of 
glioma. We then sought to understand the downstream 
mechanism of CMTM6 affecting glioma. A biological 
website (https://string-db.org/cgi/input.pl?Sessionid) 
revealed that CMTM6 and mTOR were interrelated (see 
Figure 4A). The inhibition of the mTOR pathway inhibited 

http://ualcan.path.uab.edu/analysis.html
http://ualcan.path.uab.edu/analysis.html
https://cdn.amegroups.cn/static/public/ATM-21-6894-Supplementary.pdf
https://string-db.org/cgi/input.pl?Sessionid
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the proliferation and invasion of glioma cells (22). Thus, we 
speculated that CMTM6 may affect glioma development via 
the mTOR pathway. To verify this hypothesis, we detected 
the levels of mTOR pathway-related proteins in U87 and 
U251 cells by Western blot, and found that p/t-mTOR 
and p/t-p70S6K decreased significantly after CMTM6 
knockdown (P<0.05; see Figure 4B,4C).

Activation of mTOR pathway reversed the inhibitory 
effects of CMTM6 knockdown on glioma cell behaviors

We conducted functional rescue experiments to further 
confirm that the knockdown of CMTM6 inhibited the 
malignant episodes of glioma cells by inhibiting the mTOR 
pathway. The cells were treated with the mTOR activator, 

Figure 1 CMTM6 was upregulated in glioma and correlated with a poor prognosis. (A) TCGA database showed that CMTM6 was 
upregulated in various tumor tissues; blue indicates normal tissues, and red indicates tumor tissues; (B) TCGA database showed that the 
upregulation of CMTM6 was related to a poor prognosis; (C) TCGA database showed the relationship between the survival prognosis of 
patients with different grades of glioma and CMTM6 expression; (D) TCGA database showed CMTM6 expression in glioma patients with 
different ages; (E) normal tissue and glioma tissue were stained with HE and immunohistochemistry; (F) relatively positive expression of 
CMTM6 measured by immunohistochemistry; (G) CMTM6 expression in tumor tissues and normal tissues as detected by RT-qPCR (n=44); 
(H) CMTM6 expression in glioma cells and glial cells as detected by RT-qPCR (n=3). The data in Panel G were analyzed by t-test, and data 
in Panels F/H were analyzed by a 1-way ANOVA and Tukey’s multiple comparisons test. *, P<0.05, **, P<0.01. TCGA, The Cancer Genome 
Atlas.
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MHY1485, and knocked down with CMTM6. The 
biological behaviors of U87 and U251 cells were evaluated 
by CCK-8 (see Figure 5A), flow cytometry (see Figure 5B), 
Transwell (see Figure 5C), and wound healing assays (see 
Figure 5D). The proliferation, invasion, and migration of 
U87 and U251 cells in the sh-CMTM6 + MHY1485 group 
were promoted and apoptosis was inhibited compared to 
that caused by the single knockdown CMTM6 (all P<0.05).

Knockdown of CMTM6 inhibited glioma cell growth in vivo

U87 cells stably transfected with sh-CMTM6 were injected 
subcutaneously into nude mice, and the volume and mass 
of tumors and Ki67-positive expression were measured. 
After CMTM6 knockdown, the volume and mass of 
tumors decreased (see Figure 6A-6C), and the positive 

expression of Ki67 was decreased significantly as the 
immunohistochemistry results indicated (all P<0.05; see 
Figure 6D).

Discussion

Glioma is the most common tumor in the central nervous 
system, and accounts for nearly 27% of all brain tumors 
and 80% of all malignant primary brain tumors (23). 
The molecular mechanism of glioma is complicated, 
and urgently needs to be understood to improve anti-
tumor efficacy and overall survival (24). In this study, 
we discussed the mechanism underlying CMTM6 in 
glioma. Consequently, a novel molecular interaction was 
identified in which CMTM6 knockdown prevented glioma 
progression by inactivating the mTOR pathway.

Figure 2 The knockdown of CMTM6 inhibits proliferation and promotes apoptosis of glioma cells. (A,B) RT-qPCR and Western blot 
detected CMTM6 levels in glioma cells after the transfection of sh-CMTM6; (C) CCK-8 detected the proliferation of glioma cells at 0, 
24, 48, and 72 h, respectively; (D) flow cytometry detected the apoptosis rate of glioma cells; (E) flow cytometry detected the cell-cycle 
distribution. Replicates =3; all data were analyzed by a 2-way ANOVA and Tukey’s multiple comparisons test. **, P<0.01.
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Figure 3 The knockdown of CMTM6 inhibits he invasion and migration of glioma cells. (A) The invasion ability of glioma cells detected by 
Transwell assay dyed with 0.1% crystal violet (Beyotime). Scale bar =50 µm; (B) the migration ability of glioma cells detected by wound healing 
assay. Replicates =3; all the data were analyzed by a 2-way ANOVA and Tukey’s multiple comparisons test. **, P<0.01. Scale bar =50 µm.
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A previous study found that high CMTM6 expression is 
related to reduced survival time and high-grade malignant 
gliomas (15). TCGA database revealed CMTM6 expression 
was upregulated in various cancers. In this study, through 
histological observation and RT-qPCR detection, we 
observed that CMTM6 was higher in high-grade glioma 
tissues and cells and correlated with severe pathological 
deterioration and WHO grade. CMTM6 is an important 
regulator in the tumor microenvironment and anti-tumor 
activities (25). CMTM6 overexpression indicates a poor 
prognosis for patients with head and neck squamous cell 
carcinoma (11).

To further evaluate the biological effect of CMTM6 
on glioma cells, U87 and U251 cells were transfected 
with sh-CMTM6. After the knockdown of CMTM6, the 
malignant episodes of glioma cells were inhibited. CMTM6 
is a leading modulator of T lymphocyte-mediated anti-

tumor responses (25). CMTM6-deficient tumor cells are 
susceptible to antigen-specific cytotoxic T-lymphocytes and 
result in longer survival in murine transplantable melanoma 
models (26). In the in-vivo experiments, after CMTM6 
knockdown, the volume and mass of tumors and Ki67-
positive expression were significantly decreased. Similarly, 
CMTM6 deficiency has been shown to enhance T cell 
activation and the anti-tumor response in mouse melanoma 
models (27).

Recent research on the glioma found that several 
deregulated pathways converge and activate mTOR (28). 
The biological website predicted that CMTM6 and mTOR 
were interrelated. This led us to speculate that CMTM6 
may affect glioma development via the mTOR pathway. 
The Western blot results revealed that p/t-mTOR and  
p/t-p70S6K in U87 and U251 cells decreased significantly 
after CMTM6 knockdown. mTOR is frequently activated 

Figure 5 The knockdown of CMTM6 inhibits proliferation and promotes apoptosis of glioma cells. (A) CCK-8 detected the proliferation 
of glioma cells; (B) flow cytometry detected the apoptosis rate; (C) Transwell assay detected the invasion ability of glioma cells dyed with 0.1% 
crystal violet (Beyotime). Scale bar =50 µm; (D) wound healing assay detected the migration ability of glioma cells. Replicates =3; the data 
were analyzed by a 2-way ANOVA and Tukey’s multiple comparisons test. **, P<0.01. Scale bar =50 µm.
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in pediatric low-grade glioma (29). The radio-sensitizing 
effects of mTOR inhibitors have been identified in the 
glioma xenografts in mice (30). The cells were treated with 
a mTOR activator (MHY1485) and CMTM6 was knocked 
down to further confirm that CMTM6 suppressed the 
malignant episodes of glioma cells by inhibiting the mTOR 
pathway. As expected, the malignant biological behaviors of 
glioma cells were inhibited in the sh-CMTM6 + MHY1485 
group. The activation of mTOR pathway is related to pro-
oncogenic cell processes; thus, mTOR could be used as an 
underlying target in a novel combined regimen (31). The 
inhibition of mTOR induces glioma-activated microglia to 
differentiate into the M1 phenotype with cytotoxic activity to 
prevent M2 phenotype, which promotes tumor growth (28). 
Innovative combination therapy with mTOR inhibitors will 
contribute to the application of mTOR targeted drugs and 
the personalized treatment of cancer patients (32).

In conclusion, the present study showed that CMTM6 

knockdown prevented glioma progression by inactivating 
the mTOR pathway. Our findings provide novel insights 
for glioma treatment and lay the foundation for further 
study about the underlying mechanism of CMTM6 in other 
tumors. However, this study had some limitations (e.g., 
the sample size was small). More efforts should be made to 
improve the relevant experiments in the future.
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