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Abstract: Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin lymphoma,
including various clinical manifestations, such as mycosis fungoides (MF) and Sézary syndrome
(SS). CTCL mostly develops from CD4 T cells with the skin-tropic memory phenotype. Malignant T
cells in MF lesions show the phenotype of skin resident memory T cells (TRM), which reside in the
peripheral tissues for long periods and do not recirculate. On the other hand, malignant T cells in SS
represent the phenotype of central memory T cells (TCM), which are characterized by recirculation to
and from the blood and lymphoid tissues. The kinetics and the functional characteristics of malignant
cells in CTCL are still unclear due, in part, to the fact that both the malignant cells and the T cells
exerting anti-tumor activity possess the same characteristics as T cells. Capturing the features of both
the malignant and the benign T cells is necessary for understanding the pathogenesis of CTCL and
would lead to new therapeutic strategies specifically targeting the skin malignant T cells or benign
T cells.

Keywords: cutaneous T-cell lymphoma; mycosis fungoides; skin resident memory T cells; malignant
T cells; benign T cells

1. Introduction

Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin lym-
phoma. The clinical manifestation of CTCL is diverse. The most common type of CTCL is
mycosis fungoides (MF), presenting with inflammatory skin lesions, such as erythematous
patches, plaques, and tumors infiltrated by both malignant and benign T cells [1,2]. The
prognosis of early-stage MF is good, and skin-directed therapies can manage the disease
activity for the long term in many cases [3]. On the other hand, the advanced-stage MF
with the development of tumors, erythroderma, and involvement in the lymph nodes is
regarded as showing a poor prognosis. It is thus important to control the disease activity
of the early-stage MF to prevent the progression to the advanced stage. Another disease
subtype, Sézary syndrome (SS), which is a rare and more aggressive type of CTCL, presents
erythroderma, lymphadenopathy, and blood-circulating malignant T cells called Sézary
cells from the early phase of disease [1,4]. Malignant T cells in CTCL mostly develop from
CD4 fraction and possess the skin-tropic memory phenotype, and the lesions are regarded
as primarily developing in the skin [1]. The elucidation of molecular and cellular biology in
CTCL remains incomplete due, in part, to the fact that malignant T cells and non-malignant
infiltrating T cells are both confined in the same lesional sites. However, recent advances in
the next-generation sequencing approaches are adding drastic suggestions concerning the
disease pathogenesis.
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Skin is a large barrier tissue which serves to prevent foreign antigens from entering
the body. Skin serves as both a structural and an immunological barrier, and healthy
human skin contains an estimate of 20 billion memory T cells [5]. Over half of these
skin T cells are understood to remain in the skin for a long period without recirculating
to and from blood and lymphoid tissues, and this subpopulation is now called resident
memory T cells (TRM) [6,7]. TRM provide a stronger local adaptive defense compared to
circulating memory T cells [8–11], and they can exert a sufficient response to the local
antigen re-exposure without the aid of circulating T cells [12]. In addition to the function
as a local defense against antigens, recent studies suggest that TRM also provide a systemic
response upon re-exposure to antigens by proliferating and baring circulating memory T
cell populations [13,14]. Besides infectious diseases, the involvement of skin TRM is now
recognized in many cutaneous conditions, such as allergic contact hypersensitivity [15],
chronic immune-mediated inflammatory diseases, including vitiligo and psoriasis [16–18],
fixed drug eruption [19], and cutaneous malignancies [20]. The engagement of malignant
and benign TRM in the pathogenesis of CTCL is also being elucidated [7,21,22].

In this review, we first describe the property of skin TRM, and then provide the
characteristics of malignant and benign T cells in MF/SS from the aspects of TRM and T-cell
phenotypes. We also mention the oncogenic mechanisms and the tumor microenvironment
which would affect both malignant and benign T cells in CTCL.

2. The Development of Skin TRM

Only a few T cells exist in newborn human skin [22], and the population of TRM is
presumed to be built by the recruitment of circulating T cells according to the repeated expo-
sure to various antigens. The global characteristic of TRM is tissue retention, and this prop-
erty can be developed by complex factors, including cytokines, chemokines, their receptors,
other cell-surface molecules for tissue homing and retention, and transcription factors.

The cell-surface molecules CD69 and CD103 are the most frequently used markers for
recognizing TRM. CD69 interferes with sphingosine-1-phosphate (S1P) receptor-1, which
senses the density gradience of S1P and helps the cells to exit from peripheral tissues to
lymphoid organs and blood [23,24]. CD103 is a ligand of E-cadherin which is expressed
on epithelial cells [22,25]. However, the existence of TRM without the expression of CD69
and/or CD103 has been reported [26,27], and TRM with CD103 expression can also be
found in the sites which lack E-cadherin expression, such as the dermis and central nervous
system [22,28]. Thus, these two molecules are not the universal markers for TRM.

TRM can also be identified by the expression of transcription factors. For instance, skin
TRM highly express the aryl hydrocarbon receptor (AhR) compared with naïve T cells and
splenic T cells, and AhR presumably contributes to the long-term persistence of epidermal
TRM [29]. As for the TRM in other tissues, the maintenance of intestinal CD4 TRM may be
related to Hobit and Blimp-1, and the deletion of these molecules results in functional
impairment of CD4 TRM in the murine model of inflammatory bowel disease (IBD) [30].
Furthermore, circulating effector T cells expressing Hobit are identified as TRM precursors,
which preferably form CD8 TRM during antigen exposure [31]. These findings might
be adapted to skin TRM too. The upregulation of Notch [32], Hypoxia-inducible factor-
1α [33], Runx3 [34], and basic helix-loop-helix family member E40 [35] have also been
reported to be involved in the differentiation and/or maintenance of TRM. However, as, for
instance, lung CD8 TRM are shown not to rely on Hobit expression [36], it is also possible
that the transcription factors involved in the development and persistence of TRM vary
among tissues.

While skin TRM has a common property with the TRM in other organs, they are shown
to express distinct molecules related to skin tropism. For instance, CCR6 is highly expressed
by CD8 TRM in psoriasis lesions [16,17], and CCR6+ CD8 TRM precursors possibly enter
the skin according to the concentration gradient of the ligand CCL20 that is upregulated
in psoriatic keratinocytes [37]. The chemokine receptors, such as cutaneous lymphocyte-
associated antigen [5], CCR4 [38], CCR8 [39], CCR10 [40], CXCR3 [26,37], and CXCR6 [41]
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have also been reported to play important roles in homing and/or retention in skin. The
contribution of some of these molecules to MF pathogenesis and prognosis has been
demonstrated [7,42,43], supporting the skin-tropic phenotype of malignant T cells in MF
and the involvement of the tumor microenvironment in disease manifestation, as described
in Section 7. However, although the malignant T cells in CTCL are in most cases CD4
T cells, the information on the development of CD4 TRM is still limited.

IL-7 and IL-15 are major cytokines that enable TRM to stay in the skin for the long
term [44]. IL-7 binds to a heterodimer of the IL-7 receptor α (IL-7Rα, also named CD127)
and IL-2Rγ (also named CD132) and is involved in T-cell survival and proliferation via
downstream molecules, such as Janus kinase (JAK) 1, JAK3, and phosphoinositide 3-kinase
(PI3K) [45]. IL-7 is also required for the development [46] and maintenance [47,48] of
memory T cells. The receptor of IL-15 is a heterodimer of IL-2Rβ (also named CD122)
and CD132 [49]. IL-15 signaling is also transmitted via JAK1 and JAK3 and leads to the
promotion of T-cell survival, proliferation, and cytokine production. IL-15 supports the
generation of memory T cells from naïve T cells and enables memory T cells to proliferate
rapidly in response to antigen re-exposure [50,51]. In the skin, the major sources of IL-7 and
IL-15 are fibroblasts and keratinocytes, and the upregulated production of IL-7 is reported
in the hair follicles of both MF and SS [52,53], suggesting the role of IL-7 in the recruitment,
survival, and proliferation of malignant T cells in CTCL lesions. Deletion of IL-7 or IL-15
attenuates the skin inflammation caused by CD8 TRM in the murine contact hypersensitivity
model [44], and administration of the CD132-neutralizing antibody decreases the number
of CD4 TRM in the murine allergic airway models [54]. Besides, the CD122-neutralizing
antibody reverses the diseases of a murine model of vitiligo, a chronic skin depigmenting
disorder, by the suppression of CD8 TRM [55]. As JAK1, JAK3, and the signal transducer and
activator of transcription (STAT) are the overlapped molecules which are involved in the
signaling pathways of IL-7 and IL-15, they have been hypothesized to play important roles
for TRM maintenance [56]. At the same time, considering the recent study demonstrating
that the development of skin CD8 TRM is not efficiently impaired by the administration
of a JAK inhibitor in a murine vitiligo model [57], JAK-independent signaling pathways
of IL-7/IL-15 are also suggested to be involved in the construction of TRM. As for CTCL,
the activation of the JAK/STAT pathways leads to MF progression accompanied by the
upregulation of the cell cycle in malignant T cells [58,59]. The suppressive effects of
JAK inhibitors are also reported in the proliferation of CTCL cell lines and SS PBMC
T cells [60,61].

3. The Function of Skin TRM

Among TRM, the CD8 fraction has been clarified more thoroughly compared to the
CD4 fraction. Just like the general effector CD8 T cells, CD8 TRM can be classified into
Tc1, Tc2, Tc9, Tc17, and Tc22 by the cytokines they produce [62]. Besides their roles in the
defense against pathogens in the barrier tissue, their functional characteristics are known
to be related to some inflammatory skin disorders and tumor immunity. For example, in
the pathogenesis of vitiligo, IFNγ-producing CD8 TRM has been shown to play a major
role [16,55,63]. CD49a, which binds to collagen IV in the basement membrane, is reported
to be expressed by CD8 TRM in vitiligo lesions [16]. CD49a+ CD103+ CD8 TRM are localized
to the epidermis, are excelled at IFNγ production, and rapidly gain a cytotoxic property in
response to IL-15 stimulation. These TRM are also involved in alopecia areata (AA), and the
granzyme B production from them is related to treatment resistance [64]. Thus, the CD8
TRM found in vitiligo and AA are characterized as Tc1-like cells, whereas in the lesional
skin of psoriasis, CD8 TRM express IL-17A, IL-22, and IFNγ [17,65,66]. IL-17A-producing
CD8 TRM show a high expression level of CCR6, IL-23 receptor, and/or CD49a [16] and
remain in the cured sites for the long term [17].

The investigation on the contribution of CD8 TRM to the tumor immunity is also
progressing rapidly from the aspect of tumor-infiltrating lymphocytes, and tumor-engrafted
murine models have revealed the antitumor function of TRM in multiple tumor strains [67,68].
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In the actual human solid cancer settings, the property of TRM is associated with prognosis.
For instance, the infiltration of CD103+ CD8 TRM positively correlates with good prognosis
in various solid tumors, including breast cancer, esophageal cancer, gastric cancer, lung
cancer, and malignant melanoma [69–74]. Various subpopulations of the tumor-infiltrating
T cells express the TRM marker CD103, possibly reacting with E-cadherin expressed by
cancer cells and residing in the tumor [68,75], and the expression of CD103 correlates with
the cytotoxic function of these T cells with the production of IFNγ and granzymes [67,68,76].
TRM also facilitate the antitumor immunity by the activation of dendritic cells, natural killer
cells, and non-specific T cells via the production of the effector cytokines [32,77–79]. The
involvement of this population in CTCL is mentioned in Section 6.

Although the characterization of TRM has been clarified more in CD8 than in the
CD4 fraction, both in the murine models and in humans, research on CD4 TRM has also
progressed in recent years. Compared to CD8 T cells, CD4 T cells in skin generally express
less molecules related to tissue residency and are presumed to be more mobile [22,80,81].
At the same time, recent research has demonstrated that CD4 TRM are also involved in
immune reactions against pathogens such as mycobacterium tuberculosis, herpes simplex
virus-2, and the varicella zoster virus and immune-related disorders, including IBD and
allergic asthma [30,82–85]. The functional characteristics of CD4 TRM varies depending on
the disease condition, mostly in concordance with the characteristics of co-existing CD8
TRM. The malignant T cells in MF typically arise from the CD4 fraction and possess the
TRM phenotype, especially in the early stage [2,7], and the varied properties of CD4 TRM
might be reflected in the disease manifestation of MF.

4. Distinguishment of Malignant and Benign T Cells in CTCL

In many cases of the early-stage MF, the majority of T cells in the skin lesions are
benign T cells [86]. These benign T cells are supposed to exert antitumor immunity against
malignant cells as tumor-infiltrating T cells [87]. However, it is difficult to distinguish the
benign T cells from the malignant T cells because both share the same nature as T cells.
Both malignant and benign T cells include TRM fractions and the definition by TRM markers
is impossible [7,22]. There are some surrogate cell-surface markers to distinguish between
malignant and benign T cells, such as CD5, CD7, and CD26 [88,89].

Among them, the most frequently used marker in the clinical settings is CD7. Loss
of CD7 is regarded as the characteristic property of malignant T cells in the skin lesions
of MF [90] and the peripheral blood of SS [91]. CD5 is a scavenger receptor cysteine-
rich family transmembrane glycoprotein expressed on all T cells [92]. Antigen-specific
T cells overexpressing CD5 reportedly persist better as memory T cells after peripheral
activation [93]. The loss of CD5 is sometimes seen in the advanced stages of MF [94].
However, the expression of CD5 is also reported to be higher in the malignant T cells of
SS compared to the benign T cells [89]. Although the expression of this molecule is used
in the diagnosis of CTCL, combined with the other information, it would be difficult to
reach the diagnosis solely depending on CD5 expression. CD26 is a multifunctional type II
cell surface glycoprotein widely expressed on a variety of CD4 T cells [95]. Malignant T
cells frequently lose CD26 expression in both the skin and the peripheral blood of SS and
MF, and thus can be a good surrogate marker for distinguishing malignant and benign
T cells [88,95].

Malignant and benign T cells in skin lesions could also be distinguished by the size
and complexity of the cells, not only in histology, but also in flow cytometry analysis [2,96].
The large cells with complex nuclear shape are usually regarded as malignant T cells. In
practice, however, skin malignant T cells are as small as their benign counterparts in some
MF and other CTCL subtypes. The change of the sizes of malignant T cells could also be
experienced. The combination of the cell-surface molecules and cell sizes would be helpful
for the detailed distinction.

As the malignant cells in CTCL are rather heterogeneous, with multiple mutant
subclones in the same lesions [97,98], and exist along with their benign counterparts, it was



Int. J. Mol. Sci. 2021, 22, 12933 5 of 15

difficult to identify the common and specific characteristics of the malignant cells. Recently,
clarifying malignant T cells and their properties by high-throughput sequencing analyses,
including single-cell RNA sequencing, has enabled the discovery of the common gene
expression signatures of malignant T cells. For instance, highly proliferating malignant
T cells, with the expression of the thymocyte selection-associated, high-mobility group box,
share the increased gene expression signature involving cell-cycle progression, proliferation,
metabolic processes, and resistance to apoptosis [99,100]. The expression of multiple
inhibitory receptors is also confirmed in benign T cells from the advanced-stage MF [100].
While it would be currently difficult to separate the live malignant and benign T cells
depending on these intracellular molecules, the further progression in analytical techniques
would enable the elucidation of the biological characteristics of both the malignant and the
benign T cells in the near future.

5. Malignant T Cells in CTCL

The malignant T cells in the early-stage MF skin lesions typically represent the TRM
phenotype [7]. In a rare case of CD8 MF, the malignant T cells were also demonstrated to
have CD8 the TRM phenotype, characterized by the high expression of CD69 and CD103
and the low expression of CD62L and CCR7 [101]. On the other hand, malignant T cells
from the skin and blood of SS patients typically show the TCM phenotype [7,102]. The
recirculation pattern of TCM is similar to that of the naïve T cells, and they migrate between
the blood and the secondary lymphoid organs [103]. TCM are also understood to enter the
peripheral tissues according to their tissue-tropic molecules [104]. The difference in the
clinical appearance and the sensitivity to the systemic therapies can partially be explained
by this phenotypic difference of malignant T cells in CTCL [22] (Figure 1).
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Figure 1. The cell-surface molecules characteristic of the malignant T cells found in mycosis fungoides
(MF) and Sézary syndrome (SS). (A) The malignant T cells in a well-demarcated patch or plaque
lesions of MF typically show the resident memory T cells (TRM) phenotype with CD69 and CD103
expression. (B) The malignant T cells found in diffuse erythema of SS typically show the central
memory T cells (TCM) phenotype with CCR7 and CD62L expression. Created by BioRender.com.
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As for the immunophenotype, while the malignant T cells generally represent the
Th1 profile in the early stage of MF, they shift to Th2 property according to the disease
progression. For instance, in the patch to plaque stage of MF, the ratio of the cells positive
for the Th1 master regulator t-box family of transcription factors (t-bet) is higher than that
of the positive for the Th2 master regulator gata-binding factor 3 (gata-3). In contrast, gata-3
outdoes t-bet expression in the tumor stage of MF [86]. As the Th2 cytokine, the lesional IL-
4 expression, which is comparable with healthy control skin in the early stage, gets higher
in the advanced stage of MF [105]. The malignant T cells in SS are also understood to show
a Th2 profile with a high IL-4/IL-13 expression and a low TNFα/IFNγ expression [106].
Recent research demonstrates that the phenotypical change of the malignant T cells is
affected by the tumor microenvironment (TME), as mentioned in Section 7.

IL-7 is high in the lesional skin of CTCL, both in the mRNA and the protein level,
and this skin-derived IL-7 contributes to the proliferation of malignant T cells with high
IL-7Rα expression. Another study revealed that IL-15 prolongs the survival of malignant
T cells from SS [107]. IL-15 is highly expressed in CTCL lesions and blood, including the
T cells [52], and the overexpression of IL-15 in CTCL T cells is reported to be due to the
disruption of epigenetic modification [108]. Interestingly, the deletion of IL-7 suppresses the
development of the CD4 TRM population in a murine CTCL model, which represents the
pathological manifestation mimicking MF, where the epidermotropic T cells show increased
IL-7Rα expression [44]. IL-15 transgenic mice also develop skin lesions representing the
pathological characteristics of MF [108]. These results imply the importance of IL-7 and
IL-15 in the development of malignant TRM in CTCL, especially in MF.

Recently, two models of the TRM cell lineage divergence have been reported [109]. The
first model is called the ‘local divergence’ model, which is based on the concept that the
circulating memory precursor pool is composed of the cells that are equal in their potential
to contribute to both the TRM cell pool and the circulating memory T-cell pool [110,111].
According to this concept, TRM are replenished rather randomly from the memory precur-
sors in circulation by the assistance of the microenvironment, including the enrichment
of TGFβ [112,113], IL-7, and IL-15 [44,111,114] signaling. The other model is called the
‘systemic divergence’ model, which is based on the concept that the memory precursor cells
are destined to differentiate into TRM or circulating memory T cells within the lymphoid
tissues or blood [34,115]. In this concept, the cellular fate of the TRM precursors is already
decided at the time of differentiation into memory precursors, possibly shifting to the gene
expression profiles similar to those of TRM [115,116] and waiting for the differentiation
into TRM until the local inflammation or antigen exposure occurs. The disease course of
CTCL, including lesion expansion both in size and in number and the changes of clinical
manifestation, and the fact that multiple subclones on the same evolutionary tree of T-cell
clones are found in different skin lesions, regardless of the well-demarcated patch/plaques
or ill-demarcated tumors, may possibly be explained by the ‘systemic divergence’ model.
In other words, parts of the TRM precursors might acquire or already have acquired the
malignant property in the lymph nodes or blood before infiltrating into the skin and form-
ing MF lesions. Further studies are awaited as the reliable methods for distinguishing TRM
precursors from the other memory T cell precursors have not been established. Reveal-
ing the relationship between TRM precursors and CTCL development might lead to the
establishment of predicting indexes for disease progression.

6. Benign T Cells in CTCL

The non-clonal benign T cells in CTCL lesions are understood to exert antitumor
immunity against their malignant counterparts. The early-stage MF lesions contain benign
Th1 cells and Tc1 cells [86,117], which are supposed to produce cytotoxic molecules, such as
granzymes, perforin, and IFNγ. Thus, benign T cells surrounding CTCL lesions might play
a role in suppressing the progression of CTCL. While the expression of TRM markers, espe-
cially CD103, in tumor-infiltrating T cells is associated with a stronger antitumor effect in
various solid malignant tumors, as described above [69–74], benign T cells in CTCL lesions
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possess less TRM (CD69+ CD103+) phenotype [97,118]. From the perspective of suppressive
functions in antitumor immunity, these benign Th1 cells more frequently express immune
checkpoint molecules, such as the programmed cell death 1, lymphocyte activation gene
3 (LAG-3), and cytotoxic T-lymphocyte-associated protein 4 [97]. The benign Tc1 cells
also highly express LAG-3, consistent with their less inflammatory phenotype, with the
decreased production of cytotoxic molecules [97]. Furthermore, as the disease progresses,
CTCL lesions are shifted to the Th2 environment [119]. In skin, Th2 cells are dominated
in the dermal fraction with less expression of TRM markers [22]. Th2 cytokines have been
reported to show tumor-promoting effects in some solid tumors [120–122], and among
these cytokines, IL-13 and thymic stromal lymphopoietin (TSLP) are shown to be directly
involved in the progression of CTCL. These studies imply that benign TRM in CTCL lesions
are decreased both in number and antitumor function with stronger immune-suppressive
property. The profiles of benign T cells also change according to the disease progression.

CTCL is treated with various modalities, including topical therapies, ultraviolet (UV)
therapies, radiation therapies, and systemic therapies [94]. It has been reported that
the cytokine profile of benign T cells is significantly changed before and after effective
treatments. While IL-4 production is dominant in benign T cells before treatments, it
starts producing IL-2, IFNγ, and TNFα after treatments such as UV, alemtuzumab, and
gemcitabine [106]. It has also been revealed that the expression of Th1-related genes,
including CXCL9, CXCL10, and CXCL11, correlates with the number of benign T cells in
the cured lesions after psoralen and UVA therapy [21], which suggests that the modified
expression profile of cytokines and chemokines in the skin microenvironment may lead to
the profile shift of benign T cells from Th2 to Th1 after treatments.

A recent study revealed that c-Kit+ dendritic cells produce CCL18, which recruits
benign Th2 cells, including both TRM and non-TRM, and creates an inflammatory synapse
among dendritic cells, benign T cells, and malignant T cells [21]. Interactions between
the benign OX40+ Th2 cells and the OX40L+ c-Kit+ dendritic cells, and between CD40 on
benign Th2 cells and CD40L on malignant T cells, may drive the antigen-independent
activation of benign Th2 cells, leading to the visible skin inflammation. This inflammation is
diminished after UV therapy, with the loss of correlation between the CCL18 and benign T
cells in the CTCL lesions. Considering other studies suggesting that CCL18 expression from
macrophages and dendritic cells in the lesions is related to the severity and progression of
CTCL [123,124], the benign Th2 cells within CTCL lesions might serve as pro-tumorigenic
T cells and might be associated with the tumor progression of CTCL.

7. Tumor Microenvironment in CTCL

The difficulty in the clarification of malignant and benign T cells can be caused by the
effects of TME on both the malignant and the benign T cells [125,126]. Among the various
cells constituting TME, for example, tumor-associated macrophages (TAM) are increased
in MF and SS lesions with the increased expression of CCL18 and CCL22, which promote a
Th2-biased microenvironment, as mentioned above [123,127]. Indeed, malignant T cells of
CTCL highly express CCR4, which is a receptor of CCL18 and CCL22 and also serves as a
TRM marker [7,97]. Additionally, in a murine CTCL model, depletion of TAM results in a
decrease in tumor size and an increase in tumor-infiltrating CD8 T cells and in the level of
antitumor cytokines [128].

Cancer-associated fibroblasts (CAF) isolated from the lesional skin of CTCL are also
reported to promote tumor progression and the Th2 environment by the production of
various mediators [129,130]. Among these mediators, eotaxins are considered to contribute
to tumor migration via interaction with CCR3+ lymphocytes and the promotion of the Th2
environment in CTCL [129]. It has also been reported that CAF decrease Th1 chemokine,
leading to a Th2-dominant microenvironment, via the production of the herpes virus entry
mediator (HVEM) [130]. Another study suggests that CAF protect the malignant T cells
from chemotherapy-induced cell death and increase their migration by the interaction of
CXCL12 with CXCR4 expressed on the malignant T cells [131]. Actually, normal fibroblasts
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and CAF show the opposite effects on the CTCL cell line [132]. Normal fibroblasts suppress
the expression of MF biomarkers such as twist-related protein 1 (TWIST1) and thymocyte
selection associated high mobility group box (TOX) and enhance the expression of the Th1-
related gene, including IFNγ and T-bet, although CAF promote the expression of these
molecules and suppress the expression of the Th1-related gene. These studies suggest
that normal fibroblasts can suppress the expression of disease-promoting genes from the
malignant T cells in MF and create an unfavorable environment for their proliferation. The
indolent disease progression in the early stage of MF may be at least partially explained by
these tumor-suppressing effects of normal fibroblasts.

From the aspects of the molecules, the cytokines and chemokines which contribute
to the recruitment and differentiation of TME-related cells, including TAM, CAF, and
TRM (both benign and malignant), would also be counted as constituting TME. IL-7,
IL-15, and TGFβ can develop the population of both the malignant and the benign
TRM [52,107,108,112,113], and TGFβ helps the induction of TAM and CAF [125,133]. TSLP,
IL-4, and IL-13 would accelerate the Th2-dominant environment [134]. As for the associa-
tion of chemokines and their receptors, the infiltration of malignant T cells and the Th2-
biased microenvironment are enhanced by eotaxins and HVEM from CAF, keratinocytes,
and dendritic cells [129,133]. Furthermore, TRM expressing CCR4, CCR8, and CCR10 can be
recruited in the skin, attracted by CCL17, CCL18, CCL22, and CCL27, which are produced
by the TAM, keratinocytes, and dendritic cells [123,124,127,135,136] (Figure 2).
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Figure 2. Tumor microenvironment in CTCL. The recruitment and proliferation of malignant T cells
are promoted by chemokines and cytokines from the tumor-constituting cells, including TAM, CAF,
dendritic cells, keratinocytes, and Th2 cells. IL-15 from the malignant T cells works in the autocrine
manner too. Inflammatory synapses are formed among dendritic cells, benign Th2, and malignant
T cells and contribute to Th2-biased microenvironment and tumor progression. Benign Th1 and Tc1
cells exert antitumor effects by producing IFNγ and granzymes, while they are suppressed by Th2
cytokines, such as IL-4 and IL-13, which benign Th2 and malignant T cells produce. Tumor-promoting
molecules are represented in red, and tumor-suppressive molecules are indicated in blue.

Accordingly, TME in CTCL leads to the Th2-biased condition, affecting both malignant
and benign T cells in the lesions, which would promote the expansion of malignant T cells
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and suppress the antitumor activities of benign T cells, sometimes making the distinction
of these two fractions obscure.

8. Conclusions

Based on these findings, the characteristics of malignant and benign T cells in CTCL
are summarized as below.

- The malignant T cells in MF typically possess the TRM phenotype with a stronger
reactive property to skin-derived IL-7 and/or IL-15.

- Malignant T-cell population in MF consists of multiple subclones sometimes common
between different lesions, suggesting that it might develop according to the repeated
somatic mutations both before and after entering the skin.

- While CD103+ CD8 TRM reportedly contribute to the antitumor immunity with the
production of IFNγ and granzymes in multiple solid cancers, benign T cells in CTCL
lesions possess less TRM phenotype with Th2-biased suppressive property.

- As TME, the recruitment and proliferation of malignant T cells in skin can be sup-
ported by cytokines and chemokines in the skin. In addition, the related cells, such
as TAM and CAF, are involved in the promotion of a Th2-biased microenvironment,
affecting both malignant and benign T cells in CTCL.

Capturing the features of malignant and benign T cells in CTCL is necessary for
understanding the pathogenesis of CTCL and would hopefully lead to new therapeutic
strategies specifically targeting the skin malignant T cells or benign T cells.
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