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Abstract 

Purpose:  There is limited knowledge on how the source of infection impacts the host response to sepsis. We aimed 
to compare the host response in sepsis patients with a single, known source at admission (< 24 h) to the intensive 
care unit.

Methods:  From the molecular diagnosis and risk stratification of sepsis (MARS) prospective cohort, we measured 
16 plasma host response biomarkers reflective of key host response pathways in 621 sepsis patients. In a subgroup 
(n = 335), blood leukocyte transcriptomes were compared between the sources. Differences in clinical patient profiles 
and survival were compared in the whole sepsis cohort (n = 2019).

Results:  The plasma biomarker cohort was categorized into sepsis originating from the respiratory tract (n = 334, 53.8%), 
abdomen (n = 159, 25.6%), urinary tract (n = 44, 7.1%), cardiovascular (n = 41, 6.6%), central nervous system (CNS) (n = 18, 
2.9%), or skin (n = 25, 4%). This analysis revealed stronger inflammatory and cytokine responses, loss of vascular integ‑
rity and coagulation activation in abdominal sepsis relative to respiratory. Endothelial cell activation was prominent in 
urinary, cardiovascular and skin infections, while CNS infection was associated with the least host response aberrations. 
The leukocyte transcriptional response showed the largest overlap between abdominal and pulmonary infections (76% 
in common); notable differences between the sources were detected regarding hemostasis, cytokine signaling, innate 
and adaptive immune, and metabolic transcriptional pathways. After adjustment for confounders, the source of infection 
remained an independent contributor to 30-day mortality (unadjusted p = 0.001, adjusted p = 0.028).

Conclusion:  Sepsis heterogeneity is partly explained by source-specific host response dysregulations and should be 
considered when selecting patients for trials testing immune modulatory drugs.
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Introduction

The incidence of sepsis, defined as life-threatening organ 
dysfunction due to a dysregulated host response to infec-
tion [1], has been estimated at 49 million cases associ-
ated with 11 million sepsis-related deaths in 2017 [2]. 
To develop urgently required treatments, strategies are 
needed to better understand the heterogeneity in the 
host response [3, 4]. The trigger of the dysregulated host 
response is an uncontrolled infection arising from a spe-
cific anatomic source. Knowledge on differences in the 
host response during sepsis originating from different 
sources is limited.

Most research on the source-specific peculiarities of 
sepsis has focused on clinical patient data [5–11]. These 
studies showed significant source-specific differences 
with regard to patient characteristics, organs affected, 
cultured pathogens, supportive treatments, and length 
of hospital stay. Differences in natural killer cell, lym-
phocyte and monocyte counts and apoptosis rates have 
been observed between sepsis patients with different 
sources of infection [12, 13] as well as different expres-
sion of pattern-recognition receptors on neutrophils and 
monocytes [14]. Another study compared blood leuko-
cyte transcriptomes between patients with sepsis due 
to community acquired pneumonia or fecal peritonitis, 
reporting a largely common transcriptomic response 
with the expression of only a modest number of genes 
being dependent on the source of infection [15]. A recent 
study stratified 316 patients admitted to a surgical inten-
sive care unit (ICU) into five groups based on the site of 
their inciting infection [16]. Sequential plasma interleu-
kin (IL)-6 and IL-8 measurements documented a large 
overlap between groups, with more sustained elevations 
in patients with an abdominal source [16].

We hypothesized that the specific source of infection 
at admission to the ICU, categorized into respiratory, 
abdominal, urinary, cardiovascular, central nervous sys-
tem (CNS), and skin infection, is associated with different 
host response aberrations. To address this hypothesis, 
we conducted a prospective observational study in two 
mixed ICUs in the Netherlands during a 3-year period. 
By measuring plasma biomarkers indicative of organ sys-
tems known to be disturbed in sepsis and by applying 
whole-blood leukocyte transcriptome profiling, we pro-
vide an in-depth insight into the dysregulated biologic 
pathways in sepsis patients stratified according to the 
source of infection at ICU admission.

Methods
Study population and design
This study was part of the Molecular Diagnosis and 
Risk Stratification of Sepsis (MARS) project, conducted 

between January 2011 and December 2013 in the mixed 
ICUs of two tertiary teaching hospitals in the Netherlands 
(Academic Medical Center, Amsterdam and University 
Medical Center Utrecht, Utrecht; ClinicalTrials.gov identi-
fier NCT01905033) [17–19]. All consecutive patients with 
sepsis older than 18 years of age were included via an opt-
out consent method approved by the institutional review 
boards (IRBs) of both hospitals (IRB No. 10-056C). Read-
missions within 30  days of ICU discharge and patients 
transferred from another ICU were excluded, except when 
patients were referred to one of the study centers the same 
day of presentation to the first ICU.

Definitions
For every patient, the plausibility of an infection was 
assessed daily using a four-point scale (ascending from 
none, possible, probable, to definite) as described in 
detail [17]. Sepsis was defined according to the most 
recent definition; as the presence of an infection with a 
likelihood of possible, probable or definite) diagnosed 
within 24 h after ICU admission and organ dysfunction(s) 
represented by two or more Sequential Organ Failure 
Assessment (SOFA) points [1].

The source of infection was determined by trained 
research physicians by retrospective case-by-case review 
based on all clinical data, microbiology and radiology 
results, and the Acute Physiology and Chronic Health 
Evaluation IV (APACHE IV) primary diagnosis for ICU 
admission, and further categorized into “pure” sources 
without coinfection or “mixed” infections (more than 
one source); sources were respiratory, abdominal, uri-
nary tract, cardiovascular, CNS, skin, unknown source, 
and other. “Other” consisted of several categories with 
few patients (eTable 1, electronic supplemental material). 
Categorization of infections and clinical definitions are 
described in more detail in the electronic supplemental 
material (eTable 2; eMethods, respectively).

Biomarker assays
In the subgroup of patients enrolled during the first 
2.5 years with a probable or definite likelihood of infec-
tion [17], we analyzed 16 plasma biomarkers reflecting 
key pathways implicated in sepsis pathogenesis. Urinary 
tract and skin infections were case-by-case reviewed by 

Take‑home message 

The heterogeneity of the host response to sepsis makes stratifica‑
tion of patients into subgroups with more similar pathobiological 
profiles a major challenge. Our results suggest that the source of 
infection partly explains sepsis heterogeneity and should be taken 
into account when selecting patients for trials testing immune 
modulatory drugs.
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the research team to assure these were the reason for 
ICU admission rather than a comorbid condition. For the 
urinary tract infection group, this resulted in selection of 
infections with a definite likelihood only [20], whereas in 
the skin infection group fasciitis necroticans and erysip-
elas were selected as described [21]. Assays are described 
in the electronic supplemental material (eMethods).

Whole‑blood transcriptomic analyses
Microarray, RNA processing and bioinformatic analytic 
strategies are described in the electronic supplemental 
material (eMethods).

Statistical analyses
Baseline characteristics were compared with ANOVA for 
normally distributed and Kruskal–Wallis test for non-
normally distributed continuous variables. Categorical 
data were analyzed using Fisher’s exact test. Crude and 
adjusted 30-day mortality outcome in different source 
of infection groups were compared as described in the 
electronic supplemental material (eMethods), which also 
includes selection of confounders and handling of miss-
ing data. Differences in (log-transformed) plasma bio-
marker distributions between source of infection groups 
upon ICU admission were compared using linear regres-
sion with contrast dummy coding. As plasma biomarkers 
are often proportional to disease severity during sepsis 
[22], results are also adjusted for confounders corre-
sponding to the mortality analyses with a similar impu-
tation approach for missing clinical data as described in 
the electronic supplemental material (eMethods). Calcu-
lation of principal component analysis (PCA) plots was 
done by a singular value decomposition of the centered 
and scaled data matrix including the (logged) protein 
plasma biomarkers for each key immune pathway. Data 
analyses were performed in R (v3.6.1). Significance level 
was set to 5%.

Results
Patient characteristics and outcome
Of the 8313 ICU admissions enrolled, 6294 were 
excluded because they did not have sepsis, involved read-
missions or were transfers from another ICU (Figure 
S1, electronic supplementary material). In the remain-
ing 2019 sepsis patients, six single known sources were 
categorized and clinical characteristics were compared 
between them (eTable 2; eTable 3, respectively, electronic 
supplementary material). The mean age was 59.7  years 
(SD 15.9) and 39.4% were female. Most patients had a 
respiratory tract infection (n = 853, 42.2%), followed by 
abdominal (n = 297, 14.7%), urinary tract (n = 131, 6.5%), 
skin infection (n = 77, 3.8%), CNS (n = 71, 3.5%), then 
cardiovascular (n = 68, 3.4%); 74 patients (3.7%) had a 

relatively rare source of infection, grouped as ‘other’ (eTa-
ble 1, electronic supplementary material) and 74 patients 
(3.7%) had an unknown source. Multiple sources of infec-
tion at ICU arrival were found in 373 (18.5%) patients 
(eTable 4, electronic supplementary material).

The Charlson comorbidity index score was similar 
in patients with different sources of infection with the 
exception of CNS, which was associated with a lower 
score. The type of chronic comorbidity was heterogene-
ous between sources, e.g., urosepsis was more frequent 
among female patients and in those with renal insuffi-
ciency or diabetes, while skin sepsis occurred more often 
in patients with a high BMI and diabetes. On admission 
to the ICU, shock was more common among patients 
with abdominal (34.1%), skin (41.7%) or mixed infections 
(34.3%). Modified SOFA scores were relatively similar 
between groups apart from CNS infections (relatively 
low). Blood cultures were most likely to be positive in 
urosepsis (37.4%) whereas they were least likely to be 
positive in respiratory (11.5%). Regarding therapy within 
24 h of admission, CNS infections had the highest use of 
mechanical ventilation and lowest use of vasopressors, 
demonstrating this source’s specific indications for criti-
cal care.

Crude mortality at day 30 after admission was signifi-
cantly higher in respiratory, abdominal, cardiovascular, 
skin, unknown source, and mixed infections compared 
to urinary, CNS, and other infections (p = 0.002; Table 1). 
Adjustment for factors that could influence survival 
only modestly altered the incidence of 30-day mortal-
ity in different groups, with exception of CNS infection 
(higher adjusted mortality) due to low disease severity 
(Fig.  1). Table  2 shows unadjusted and adjusted hazard 
ratios of 30-day mortality of pairwise comparisons of 
the six known sources of infection (eTable 5 with inclu-
sion of unknown, other and mixed sources). Mortality 
up to 1 year was highest in mixed and unknown source, 
and cardiovascular was highest out of the known sources 
(Figure S2).

Plasma host response biomarkers
Biomarkers indicative of host response pathways impli-
cated in sepsis pathogenesis were measured on admission 
to the ICU in a subgroup of patients enrolled during the 
first 2.5 years (n = 621, 30.8%). The clinical characteristics 
of this subgroup were comparable to the whole cohort 
(Table 1). Figure 2 shows admission biomarker levels in 
patients with different sources across three pathophysi-
ological domains: systemic inflammation, endothelial 
cell activation and dysfunction, and coagulation activa-
tion. Pairwise unadjusted comparisons between sources 
are depicted in the electronic supplementary material 
(eTable 6).
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Table 1  Plasma biomarker cohort: baseline characteristics and  outcome of  patients with  sepsis stratified according 
to source of infection

ALL Respiratory Abdominal Urinary Cardiovascular CNS Skin p value

n 621 334 159 44 41 18 25

Demographics
 Age, years, mean 

(SD)
60.9 (14.7) 60.5 (15.5) 62.1 (12.6) 61.8 (14.8) 61.6 (13.1) 58.4 (15.1) 56.7 (16.6) 0.539

 Gender, female 
(n, %)

260 (41.9) 123 (36.8)L 72 (45.3) 29 (65.9)H 14 (34.1) 6 (33.3) 16 (64) 0.001

 BMI, mean (SD) 25.5 (6.3) 24.6 (5.6)L 26.1 (6.9) 28.4 (7.2)H 25.1 (4.5) 25.7 (4.1) 28.9 (9.6)H  < 0.001

 Race, white, n (%) 540 (87) 290 (86.8) 140 (88.1) 38 (86.4) 35 (85.4) 16 (88.9) 21 (84) 0.991

 Surgical admission, 
n (%)

160 (25.8) 29 (8.7)L 87 (54.7)H 4 (9.1)L 22 (53.7)H 4 (22.2) 14 (56)H  < 0.001

Chronic comorbid‑
ity, n (%)

 None 158 (25.4) 73 (21.9) 52 (32.7)H 6 (13.6) 11 (26.8) 10 (55.6)H 6 (24) 0.002

 Cardiovascular insuf‑
ficiency

20 (3.2) 9 (2.7) 6 (3.8) 3 (6.8) 1 (2.4) 0 (0) 1 (4) 0.699

 Renal insufficiency 89 (14.3) 43 (12.9) 23 (14.5) 17 (38.6)H 2 (4.9) 1 (5.6) 3 (12)  < 0.001

 Respiratory insuf‑
ficiency

51 (8.2) 44 (13.2) 3 (1.9)L 2 (4.5) 1 (2.4) 0 (0) 1 (4)  < 0.001

 Immune deficiency 140 (22.5) 91 (27.2)H 25 (15.7)L 11 (25) 5 (12.2) 3 (16.7) 5 (20) 0.041

 Malignancy 146 (23.5) 81 (24.3) 48 (30.2)H 6 (13.6) 5 (12.2) 1 (5.6) 5 (20) 0.026

 COPD 97 (15.6) 75 (22.5)H 11 (6.9)L 6 (13.6) 4 (9.8) 0 (0) 1 (4)  < 0.001

 Diabetes 131 (21.1) 64 (19.2) 34 (21.4) 15 (34.1)H 8 (19.5) 1 (5.6) 9 (36) 0.047

 Charlson score 
(median [IQR])

4 [3, 6] 4 [2, 6] 4 [3, 6] 4.5 [3, 5.2] 4 [3, 5] 3 [2, 4] 4 [2, 5] 0.376

Causative patho‑
genA

 Gram-positive 
bacteria

267 (43) 105 (31.4)L 91 (57.2)H 8 (18.2)L 32 (78)H 10 (55.6) 21 (84)H  < 0.001

 Gram-negative 
bacteria

296 (47.7) 125 (37.4)L 111 (69.8)H 41 (93.2)H 4 (9.8)L 4 (22.2) 11 (44)  < 0.001

 Fungi 49 (7.9) 32 (9.6) 14 (8.8) 1 (2.3) 1 (2.4) 0 (0) 1 (4) 0.210

 Virus 44 (7.1) 41 (12.3)H 2 (1.3)L 1 (2.3) 0 (0) 0 (0) 0 (0)  < 0.001

 Unknown 112 (18) 80 (24)H 21 (13.2) 2 (4.5)L 6 (14.6) 3 (16.7) 0 (0) 0.001

 Other 7 (1.1) 2 (0.6) 3 (1.9) 0 (0) 1 (2.4) 1 (5.6) 0 (0) 0.283

 Blood culture posi‑
tive (%)

156 (25.1) 48 (14.4)L 53 (33.3)H 21 (47.7)H 13 (31.7) 9 (50)H 12 (48)H  < 0.001

Severity of disease 
on admission

 mSOFA score, 
median [IQR]B

7 [5, 9] 7 [4, 9]L 8 [6, 10]H 8 [5, 10] 7 [5, 8] 3.5 [3, 5]L 7 [6, 9]  < 0.001

 APACHE IV Score, 
mean (SD)

82.1 (28.8) 82 (28.9) 83.1 (30.4) 87.4 (26.4) 77.5 (29.1) 74.7 (22.1) 79.6 (23.5) 0.530

 APS, mean (SD) 68.9 (27.3) 68.1 (27.4) 70.8 (28.7) 73.7 (26) 65.4 (27.7) 62.6 (18.1) 69.1 (25.2) 0.542

 AKI, n (%) 161 (25.9) 66 (19.8)L 57 (35.8)H 19 (43.2)H 9 (22) 1 (5.6) 9 (36)  < 0.001

 ARDS, n (%) 139 (22.4) 101 (30.2)H 22 (13.8)L 8 (18.2) 4 (9.8) 1 (5.6) 3 (12)  < 0.001

 Septic shock, n (%) 183 (29.5) 86 (25.7) 68 (42.8)H 9 (20.5) 9 (22.5) 0 (0)L 11 (44)  < 0.001

Therapy during the 
first 24 h

 Mechanical ventila‑
tion (n, %)

509 (82) 286 (85.6)H 130 (81.8) 25 (56.8)L 32 (78) 16 (88.9) 20 (80)  < 0.001

 Renal replacement 
therapy (n, %)

56 (9) 24 (7.2) 23 (14.5)H 3 (6.8) 1 (2.4) 2 (11.1) 3 (12) 0.078

 Vasopressors (n, %) 378 (60.9) 192 (57.5) 113 (71.1)H 24 (54.5) 25 (61) 3 (16.7)L 21 (84)  < 0.001
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In addition to a shared host response, differences were 
observed across sources. Comparison of the two most 
common sources (respiratory versus abdominal) demon-
strated stronger host response anomalies in abdominal 
sepsis across all three pathophysiological domains. Of all 
groups, CNS infection was associated with the least host 
response aberrations. Markers of systemic inflammation 
were highest in abdominal and skin infections. Endothe-
lial cell activation markers were largely similar across 
sources except for CNS (lower), whereas loss of vas-
cular integrity, reflected by increased angiopoietin-2/1 
ratio, was more profound in urinary, cardiovascular and 
skin infections. Stronger activation of the coagulation 
system was observed in abdominal and urinary infec-
tions, as indicated by lower levels of the natural antico-
agulants protein C and antithrombin, and higher levels 
of D-dimer, as well as more prolongation of prothrom-
bin time (PT) and activated partial thromboplastin time 
(aPTT). Similar results were obtained across sources 
after adjustment for confounders (group adjusted p val-
ues shown below unadjusted p values in Fig. 2; eTable 7, 
electronic supplementary material).

Data presented as median [interquartile range], or n (%). Continuous variables were compared using the analysis of variance test or Kruskal–Wallis rank-sum test when 
appropriate, resulting in overall p value. Associations between categorical variables were tested using the  Fisher’s exact test, resulting in overall p value

CNS central nervous system, APS acute physiology score, ARDS acute respiratory distress syndrome, AKI acute kidney injury, APACHE acute physiology and chronic 
health evaluation, ICU intensive care unit, SOFA sequential organ failure assessment
H  If significantly higher than the grand mean (mean of means of sources) of the plasma biomarker cohort
L  If significantly lower than the grand mean (mean of means of sources) of the plasma biomarker cohort
A  In 100 patients (16.1%) more than one cultured organism was assigned as causative
B  mSOFA modified sequential organ failure assessment (excluding central nervous system component)
C  Complications were defined as ICU-acquired when diagnosed more than 48 h after admission to the ICU

Table 1  (continued)

ALL Respiratory Abdominal Urinary Cardiovascular CNS Skin p value

Outcomes
 ICU LOS, days, 

median [IQR]
4 [2, 9] 5 [2, 10]H 3 [1, 8.5] 2 [1, 5]L 3 [2, 5] 5 [2, 8] 3 [2, 9]  < 0.001

 Hospital LOS, days, 
median [IQR]

15 [8, 32] 14 [7, 25]L 19 [8, 45]H 12.5 [7.8, 23.2] 26 [8, 42] 18.5 [10.2, 41] 20 [11, 41] 0.022

ICU-acquired com‑
plications, n (%)C

 None 421 (67.8) 225 (67.4) 102 (64.2) 37 (84.1)H 26 (63.4) 13 (72.2) 18 (72) 0.215

 AKI 114 (18.4) 64 (19.2) 28 (17.6) 3 (6.8) 13 (31.7) 2 (11.1) 4 (16) 0.084

 ARDS 59 (9.5) 38 (11.4)H 18 (11.3) 1 (2.3) 1 (2.4) 0 (0) 1 (4) 0.081

 ICU-acquired infec‑
tion

60 (9.7) 32 (9.6) 18 (11.3) 3 (6.8) 4 (9.8) 2 (11.1) 1 (4) 0.866

Mortality, n (%)
 ICU 116 (18.7) 64 (19.2) 31 (19.5) 6 (13.6) 12 (29.3) 0 (0) 3 (12) 0.119

 Hospital 193 (31.1) 104 (31.1) 52 (32.7) 12 (27.3) 15 (36.6) 5 (27.8) 5 (20) 0.762

 30 days 171 (27.5) 98 (29.3) 46 (28.9) 9 (20.5) 11 (26.8) 2 (11.1) 5 (20) 0.421

 90 days 240 (38.6) 133 (39.8) 64 (40.3) 13 (29.5) 19 (46.3) 6 (33.3) 5 (20) 0.235

 1 year 306 (49.3) 174 (52.1) 78 (49.1) 18 (40.9) 22 (53.7) 7 (38.9) 7 (28) 0.161

Fig. 1  30-day mortality incidence (%) among sepsis patients with dif‑
ferent sources of infection; p values calculated by type-III overall Wald 
test. Data are presented as bars with 95% confidence bands. Adjusted 
model included age, sex, ethnicity, BMI, Charlson comorbidity score 
(without age), admission type, hospital site, blood culture positivity, 
type of causative pathogen, mSOFA score, Acute Physiology Score 
and shock
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Whole‑blood leukocyte transcriptome analysis
Further insight into the host response to infections from 
different sources was gained by studying the leukocyte 
blood transcriptome in a subgroup of sepsis patients 
enrolled during the first 1.5  years of the study period 
(N = 335, 16.7%). This subgroup was comparable to the 
whole cohort (eTable 8, electronic supplementary mate-
rial). First, we compared the transcriptome from each 
source of infection group against a group of healthy sub-
jects (N = 42), and observed a strongly altered response 
for all sources (Figure S3, electronic supplementary 
material). Most differentially expressed genes (DEGs) 
were common among all sources; the total number of 
common DEGs was 4,126 (20.6% of all genes measured) 
(Fig. 3A). Pathway enrichment analysis of these common 
DEGs revealed a number of significant pathways when 
compared to healthy which are consistent with earlier 
studies in sepsis patients (Fig. 3C) [18].

A large number of DEGs were unique to particular 
sources (Fig.  3A): 1188 DEGs were unique to cardio-
vascular, 1087 unique to CNS, 660 unique to skin and 
182 unique to abdominal infections. Notably, there 
were no unique DEGs associated with pulmonary or 
urinary tract infections. Pairwise comparisons showed 
the largest overlap in the transcriptional response in 
abdominal and pulmonary infections (78% of DEGs 
in common), whereas CNS and cardiovascular infec-
tions were most different (50% of DEGs in common) 
(Fig.  3B). Next, we compared the transcriptional 
responses between the different sources of infection 

for targeted pathways using gene set enrichment anal-
ysis (Fig. 3D). We noted a heightened transcription of 
hemostasis pathways in abdominal and a dampened 
response in urosepsis, which was especially driven 
by the sub-pathway “platelet activation, signaling and 
aggregation”. In contrast, when assessing the “cytokine 
signaling in the immune system” pathway, abdominal 
infections had a dampened response with prominent 
low interferon signaling. For “innate immune system” 
pathways, there was an overall heightened response 
in abdominal and skin infections and a dampened 
response in respiratory, urinary, and cardiovascu-
lar infections, which was driven by the sub-pathway 
“neutrophil degranulation”. In addition, the “adaptive 
immune system” transcriptional response was height-
ened in abdominal, CNS, and skin infection compared 
to respiratory. Metabolism pathways were relatively 
downregulated in respiratory and upregulated in 
abdominal and skin infections, which was especially 
driven by differences in the sub-pathway “the TCA 
cycle and respiratory electron transport”.

Discussion
The vast majority of sepsis cases originate from a specific 
anatomic source and part of the heterogeneity of sepsis 
has been attributed to differences in the primary site of 
infection. Nonetheless, sepsis trials that evaluated strate-
gies manipulating the host response mostly did not take 
the primary site of infection into account. The primary 
objective of the current study was to determine to which 

Table 2  Pairwise comparison of 30-day mortality among sepsis patients with differences sources of infection

Only known single sources of infection shown (see eTable 5 for unknown, other and mixed sources). Model adjusted for age, sex, BMI, Charlson comorbidity score 
(without age), admission type, hospital site, causative pathogen, blood culture positive, the Acute Physiology Score, mSOFA score, and septic shock

OR odds ratio, CI confidence interval, ref reference category, na not applicable

*p < 0.05 versus the reference category

Unadjusted Respiratory Abdominal Urinary Cardiovascular CNS Skin
OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Respiratory (ref ) na 0.89 (0.66–1.2) 0.53 (0.33–0.85)* 0.9 (0.51–1.57) 0.67 (0.37–1.2) 0.86 (0.51–1.46)

Abdominal (ref ) 1.12 (0.83–1.52) na 0.6 (0.36–0.99)* 1.01 (0.56–1.84) 0.75 (0.4–1.41) 0.97 (0.55–1.71)

Urinary (ref ) 1.88 (1.17–3.02)* 1.67 (1–2.81)* na 1.69 (0.84–3.41) 1.26 (0.61–2.6) 1.62 (0.82–3.19)

Cardiovascular (ref ) 1.11 (0.64–1.95) 0.99 (0.54–1.8) 0.59 (0.29–1.19) na 0.74 (0.34–1.63) 0.96 (0.46–2.01)

CNS (ref ) 1.5 (0.83–2.70 1.33 (0.71–2.49) 0.8 (0.38–1.64) 1.34 (0.61–2.94) na 1.29 (0.6–2.76)

Skin (ref ) 1.16 (0.68–1.97) 1.03 (0.58–1.83) 0.62 (0.31–1.22) 1.04 (0.5–2.19) 0.78 (0.36–1.67) na

Adjusted OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Respiratory (ref ) na 0.68 (0.47–0.98)* 0.46 (0.27–0.78)* 0.95 (0.51–1.77) 1.12 (0.59–2.14) 0.81 (0.44–1.49)

Abdominal (ref ) 1.47 (1.02–2.11)* na 0.68 (0.38–1.21) 1.33 (0.69–2.54) 1.64 (0.81–3.32) 1.14 (0.6–2.14)

Urinary (ref ) 2.17 (1.28–3.69)* 1.48 (0.83–2.66) na 2.12 (0.98–4.55) 2.43 (1.09–5.44)* 1.81 (0.86–3.83)

Cardiovascular (ref ) 1.05 (0.56–1.96) 0.75 (0.39–1.44) 0.47 (0.22–1.02) na 1.22 (0.52–2.85) 0.86 (0.38–1.93)

CNS (ref ) 0.89 (0.47–1.71) 0.61 (0.3–1.23) 0.41 (0.18–0.92)* 0.82 (0.35–1.91) na 0.7 (0.3–1.62)

Skin (ref ) 1.23 (0.67–2.25) 0.88 (0.47–1.66) 0.55 (0.26–1.17) 1.17 (0.52–2.64) 1.43 (0.62–3.30) na
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Fig. 2  Host response biomarkers in patients with sepsis on admission stratified according to the source of infection. Biological parameters are classified 
as A inflammatory responses, B endothelial cell activation, and C coagulation activation biomarkers. Data are presented as principal component analysis 
(PCA) plots (far left side of each row), and box and whiskers (with dotted lines in box plots representing median values obtained in 27 healthy age-matched 
healthy subjects). Ellipse circles of infection groups in PCA plots are drawn around patient data points (not shown here for clarity), wherein the centroid is 
the barycenter of the patient data points belonging to the same source of infection; arrows in PCA plots indicate direction of correlation of plasma mark‑
ers with loadings of PCA components. p values in box plots represent type-III Wald tests for the source of infection groups derived from linear regression 
models, wherein the adjusted model included age, sex, ethnicity, BMI, Charlson comorbidity score (without age), admission type, hospital site, blood culture 
positivity, type of causative pathogen, mSOFA score, Acute Physiology Score and shock. ANG angiopoietin, aPTT activated partial thromboplastin time, IL 
interleukin, MMP matrix metalloproteinase, PT prothrombin time, sE-Selectin soluble E-selectin, sICAM soluble intercellular adhesion molecule

extent systemic host response deviations differ between 
sepsis patients with distinct origins of infection. In this 
prospectively enrolled cohort of critically ill patients 
with sepsis, the anatomic source of infection was catego-
rized by specified criteria and retrospective case-by-case 
review into ‘pure’ sources without coinfection or mixed 
infections with multiple sources [17]. By measuring 16 
host response biomarkers providing insight into patho-
physiological mechanisms implicated in sepsis and by 
analyzing transcriptomic profiles in blood leukocytes, we 
show that the specific source of infection triggers notable 
differences in host response aberrations in key pathways 
of the immune system.

Previous studies reported on the association between 
the source of infection and sepsis mortality [5–8, 10, 16, 
23]. Consistent with our cohort, these investigations—if 
conducted on mixed ICUs—documented the respiratory 
tract as the most common infectious source, followed 
by the abdomen [5–7]. The source-specific mortality 
reported here is in agreement with earlier publications: 
several studies found a high mortality in sepsis patients 
with pneumonia, whereas sepsis originating from the uri-
nary tract has been associated with a relatively low mor-
tality [5, 6]. An investigation entailing 7974 ICU patients 
showed that mortality due to abdominal sepsis varies 
between distinct diagnoses, with sepsis resulting from an 
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Fig. 3  Blood transcriptomics response in patients with sepsis on admission stratified according to the source of infection. A Venn–Euler diagram 
illustrating the shared and distinct leukocyte transcriptional responses between source of infection groups relative to health (with differential 
expressed genes according to high effect size > 0.8 with Hedges g). Number of overlapping genes are shown if above 65. B Pairwise comparison of 
source of infection groups showing common transcriptional response (with differential expressed genes according to medium effect size > 0.4 with 
Hedges g). C Pathway analysis of the common response to sepsis (4126 genes common to all sources) relative to health. Canonical signaling sub-
pathways were grouped into their parent pathway according to Reactome pathway database. D Comparing the blood transcriptional responses 
between the source of infection groups for targeted pathways. For every gene, expression values were scaled across all sepsis samples. Then, for 
each source of infection, the vector of mean expression values was ordered for gene set enrichment analysis implementing 1000 permutations. For 
each selected pathway, we summarize its enrichment by magnitude, using the BH adjusted p value correcting for all existing Reactome database 
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ischemic bowel bearing the worst prognosis and sepsis 
secondary to cholangitis having a relatively low mortal-
ity [8]. Most patients with abdominal sepsis in our cohort 
suffered from peritonitis following bowel perforation; 
hospital mortality did not differ between patients with 
respiratory infection and those with a perforated viscus 
in the afore mentioned study [8], which is in line with 
our finding of similar unadjusted 30-day mortalities in 
patients with respiratory and abdominal sepsis. Out of 
the known sources, 30-day survival was worst in cardio-
vascular infection patients, in agreement with an earlier 
study [16]. In our cohort differences in mortality across 
infection sources remained after adjustment for con-
founding, corroborating earlier analyses showing inde-
pendent associations between mortality and primary site 
of infection [5, 6, 8].

Aberrations in key host response pathways implicated 
in sepsis pathogenesis differed across infectious sources, 
even after adjustments for factors that might impact the 
direction and/or extent of the host response, suggesting 
that the primary source at least in part drives the sys-
temic reaction to infection. Hence, while the more pro-
nounced proinflammatory response in abdominal and 
skin infections may have been related to the high propor-
tion of shock in these groups, this does not fully explain 
host response differences between these sources. The 
circulating levels of the anti-inflammatory cytokine IL-10 
were higher in abdominal sepsis than all other sources 
indicating a more disturbed immune response entailing 
both pro- and anti-inflammatory reactions. Endothelial 
cell activation and loss of vascular integrity were largely 
similar albeit prudently higher in urinary tract, skin and 
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of infection. Nonetheless, a bias may have remained 
due to unmeasured confounders. Data were collected in 
two ICUs in The Netherlands, which may limit the gen-
eralizability. Leukocyte transcriptomes were analyzed 
by micro-arrays rather than by RNA sequencing. Host 
response parameters were determined in patients with a 
high likelihood of infection only.

Conclusions
The heterogeneity of patients with sepsis makes stratifica-
tion into subgroups with more similar pathobiological pro-
files a major challenge. We here show that after rigorous 
adjustments for confounders the source of infection remains 
an independent contributor to the extent and particularities 
of the host response. Our results provide further under-
standing of sepsis heterogeneity and suggest that the source 
of infection should be taken into account when selecting 
patients for trials testing immune modulatory drugs.
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cardiovascular infections, with exception of CNS infec-
tion, which was less affected. Two endothelial cell acti-
vation markers, sE-selectin and sICAM-1, were highest 
in urinary tract infections, possibly due to high inci-
dence of chronic renal insufficiency and diabetes in these 
patients [24]. Activation of the coagulation system was 
especially present in abdominal sepsis, as reflected by 
elevated D-dimer levels and reduced levels of the antico-
agulant factors antithrombin and protein C. This obser-
vation is in agreement with a previous study reporting 
that patients with abdominal infections were more likely 
to have early coagulation failure than patients with res-
piratory infections (17.3% vs. 9.5% respectively) [9]. Of 
interest, however, markers for so-called “sepsis-induced 
coagulopathy” (i.e., PT and platelet counts) [25] did not 
differ or only marginally differed between groups.

Knowledge of the association between blood leukocyte 
transcriptomes and source of infection in sepsis is lim-
ited and focused on differences between respiratory and 
abdominal sepsis [15, 26]. In our cohort, besides finding 
a substantial common response, pairwise comparisons 
revealed unique source-specific DEGs. Abdominal and 
respiratory infections showed the largest overlap (76% 
DEGs in common), which is in agreement with previous 
studies [15, 26]. CNS and cardiovascular infections were 
the most different (47% in common). We demonstrated 
enrichment of gene expression related to interferon sign-
aling in respiratory sepsis, which is in accordance with 
a study that compared patients with sepsis due to com-
munity-acquired pneumonia (CAP) or fecal peritonitis 
[15]. Enhanced interferon signaling may be driven by a 
preponderance of viral infections in respiratory sepsis 
[27]. Pathways reflecting immune suppression, including 
T-cell receptor (TCR) signaling and major histocompat-
ibility complex (MHC) class I and II, were particularly 
downregulated in abdominal sepsis, which may have rel-
evance for selection of patients for immune stimulatory 
therapies.

Our study has strengths and limitations. We studied 
a large prospectively enrolled cohort in which patients 
were characterized according to strict criteria. Data were 
collected several years ago (2011–2013) and guidelines 
for the management of sepsis (followed in both institu-
tions) have changed in some aspects since then [28]. 
Therapeutic interventions and causative pathogens differ 
between sources, which may impact host response char-
acteristics. Classification of sources into eight categories 
may be an oversimplification. We took low sample sizes 
in CNS and skin infections into account for analyzing the 
transcriptional host response using effect sizes instead of 
p values. We robustly corrected the analyses for predis-
posed patient characteristics, infection-related informa-
tion, and disease severity between the different sources 
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