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Abstract
Diabesity-associated metabolic stresses modulate the development of Alzheimer’s disease

(AD). For further insights into the underlying mechanisms, we examine whether the genetic

background of APPswe/PS1dE9 at the prodromal stage of AD affects peripheral metabo-

lism in the context of diabesity. We characterized APPswe/PS1dE9 transgenic mice treated

with a combination of high-fat diet with streptozotocin (HFSTZ) in the early stage of AD.

HFSTZ-treated APPswe/PS1dE9 transgenic mice exhibited worse metabolic stresses

related to diabesity, while serum β-amyloid levels were elevated and hepatic steatosis

became apparent. Importantly, two-way analysis of variance shows a significant interaction

between HFSTZ and genetic background of AD, indicating that APPswe/PS1dE9 trans-

genic mice are more vulnerable to HFSTZ treatment. In addition, body weight gain, high

hepatic triglyceride, and hyperglycemia were positively associated with serum β-amyloid,

as validated by Pearson’s correlation analysis. Our data suggests that the interplay

between genetic background of AD and HFSTZ-induced metabolic stresses contributes to

the development of obesity and hepatic steatosis. Alleviating metabolic stresses including

dysglycemia, obesity, and hepatic steatosis could be critical to prevent peripheral β-amyloid

accumulation at the early stage of AD.

Introduction
Alzheimer’s disease (AD) involves aberrant protein processing and is characterized by exces-
sive accumulation of β-amyloid (Aβ), which is derived from cleavage of the amyloid precursor
protein (APP) [1]. Approximately 99% of AD patients have the sporadic form of the disease
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(with no known genetic basis). The environmental risk factors for sporadic AD are believed to
include insulin resistance-related diseases, such as type 2 diabetes mellitus, obesity, non-alco-
holic fatty liver disease, and metabolic syndrome [2–6].

Intact insulin and insulin-like growth factor 1 (IGF-1) signal transduction in the central ner-
vous system (CNS) may preserve normal brain structure and function by attenuating tau pro-
tein hyperphosphorylation, Aβ accumulation, and neuronal death [7]. On the other hand,
systemic insulin signaling plays a major role in nutrient metabolism. However, the role of sys-
temic insulin resistance in AD pathogenesis remains controversial and is currently under
intensive investigation [8, 9].

By studying transgenic mice, acceleration of AD pathogenesis in model systems has been
achieved by introducing systemic insulin resistance conditions, including dietary manipulation
(e.g., high-fat diet [HFD]), leptin knockout (ob/ob), mutant leptin receptor (db/db), and nitro-
samine exposure (i.e., administration of streptozotocin [STZ]) [10–13]. AD mice subjected to
these additional manipulations showed increased Aβ plaque burdens, tau protein hyperpho-
sphorylation, cerebrovascular inflammation, and structural alterations in the brain.

Interestingly, accumulating evidence from investigations of the etiological roles of systemic
diseases in AD mouse models has revealed an overlooked situation: that AD genetic back-
ground may also conversely affect systemic insulin sensitivity and metabolism [14]. First, when
fed an HFD, the weight gain and glucose intolerance in APP/PS1(A246E) double-transgenic
mice became more severe than in wild-type mice and PS1(A246E) single-transgenic mice [15].
Second, when APP+-ob/ob mice were generated by crossing ob/ob (leptin homozygous
mutants) mice with APP23 transgenic mice [11], further increases in hyperglycemia, hyperin-
sulinemia, and insulin resistance were observed. Furthermore, APP+-ob/ob and APP/PS1-db/
+ mice have shown increased glucose intolerance and insulin resistance compared with ob/ob
mice [11, 12]. And third, increased plasma Aβ levels have been found in AD patients with
hyperglycemia, and Aβ directly induced hepatic insulin resistance [16, 17]. Intracerebral ven-
tricle injection of soluble Aβ induces peripheral glucose intolerance and insulin resistance in
muscle [18]. Therefore, current research evidence indicates that metabolic dysfunction and AD
genetic background may interact reciprocally to exacerbate systemic metabolism and AD
pathologies.

Among the current paradigms to induce metabolic disorders, the model combining dietary
manipulation (HFD) and nitrosamine exposure (STZ) can cause most of the symptoms related
to diabetes mellitus, including hyperglycemia, obesity, insulin resistance, glucose intolerance,
and hepatic steatosis. In addition, this HFSTZ model is responsive to major anti-diabetic medi-
cations, such as glipizide and pioglitazone [19, 20]. Therefore, this inducible model reflects dia-
betes mellitus-related metabolic stresses.

As many cellular and behavioral abnormalities presumably occur far in advance of the
appearance of AD pathology, elucidating the regulatory mechanisms of peripheral metabolic
stresses in the prodromal stage of AD is critical for the development of effective AD therapies.
To assess the impact of AD’s genetic background on metabolic index at the onset of AD patho-
genesis, we comprehensively examined the metabolic characteristics of young adult APPswe/
PS1dE9 transgenic mice subjected to HFSTZ treatment.

Methods

Animal handling
Male APPswe/PS1dE9 transgenic mice (No. 005864) were purchased from Jackson Laboratory
(Bar Harbor, ME, USA) to breed with female wildtype C57BL/6J mice. Animals were housed
under controlled room temperature (24 ± 1°C) and humidity (55–65%) with a 12:12-h (07:00–
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19:00) light-dark cycle. Experiments were conducted using male C57BL/6J wild-type (WT) sib-
lings and APPswe/PS1dE9 transgenic (AD) mice. The present investigation was approved by
the Animal Research Committee at the National Yang-Ming University (IACUC 1021271).

Inducing metabolic stress with HFSTZ
HFSTZ has been shown to induce metabolic stresses such as hyperglycemia, obesity, insulin
resistance, and glucose intolerance [19–21]. Male C57BL/6J wild-type (WT) siblings and
APPswe/PS1dE9 transgenic (AD) mice were fed with a normal chow diet (NCD, MF-18, Ori-
ental Yeast Co. Ltd., Tokyo, Japan) with water ad libitum. At the age of 10 weeks, half of WT
and AD mice randomly chosen were fed with an HFD (60% energy from fat, TestDiet,
St. Louis, MO, USA). After 2 weeks, HFD-fed mice were intraperitoneally injected with 50 mg/
kg STZ as the HFSTZ induction group. NCD-fed mice were injected with vehicle (0.1 M citrate
buffer, pH 4.5). Four experimental groups including NCDWT, NCD AD, HFSTZWT, and
HFSTZ ADmice were sacrificed after 11 weeks of dietary manipulations. The average weight
of NCDWT, NCD AD, HFSTZWT, and HFSTZ ADmice prior to the dietary manipulations
were not significantly different (24.70 ± 0.69, 23.85 ± 0.93, 26.07 ± 0.65, and 25.73 ± 0.62,
respectively).

Oral glucose tolerance test
Mice were fasted for 16 h before oral glucose tolerance tests (OGTTs) after 6 weeks of dietary
manipulations. Glucose solution (3 g/kg; Sigma Aldrich, St. Louis, MO, USA) was administered
to WT and AD mice by oral gavage. Blood glucose was measured using a glucometer (Bioptik
Technology, Taipei, Taiwan).

Serum analysis. Mice were injected with 80 mg/kg sodium pentobarbital intraperitoneally
for deep anesthesia perfused with 50 ml saline and blood samples were collected by the cardiac
puncture after 11 weeks of dietary manipulations. Serum triglyceride (TG), glutamate oxaloac-
etate transaminase (GOT), and glutamic-pyruvic transaminase (GPT) were measured by FUJI
DRI-CHEM 3000 analyzer (Fujifilm, Tokyo, Japan). In addition, HDL, LDL, and VLDL choles-
terol were measured by commercial kits (Abcam, Cambridge, UK). Furthermore, free fatty
acids and leptin were measured by commercial kits purchased from BioVision (Miltipas, CA,
USA) and R&D Systems (Minneapolis, MN, USA) after 11 weeks of dietary manipulation.
Plates were read at a wavelength of 450 nm using the TECAN GENios plate reader and results
were analyzed with Magellan version 7.0 software.

Serum insulin levels were determined with an Insulin-Kit HTRF (Cisbio, Codolet, France).
The fluorescence intensities were measured on a SpectraMax M5 microplate reader (Molecular
Devices, Sunnyvale, CA, USA). HOMA-IR (fasting blood glucose [mM] × fasting insulin [U/
mL]/22.5) scores were then calculated.

Measurement of hepatic triglyceride
Liver samples were homogenized in 100 mg/mL water containing 5% NP-40 (Sigma Aldrich);
and TG in samples was assessed as recommended by the manufacturer (BioVision, Milpitas,
CA, USA). Plates were read at a wavelength of 570 nm using the TECAN GENios plate reader.

Aβmeasurement by ELISA
The serum levels of Aβ40 and Aβ42 were measured with an Aβ ELISA kit purchased from Invi-
trogen (Carlsbad, CA, USA). Plates were read at a wavelength of 450 nm using the TECAN
GENios plate reader.
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The densitometric values were normalized to the total protein concentration.

Histological analysis
Liver and epididymal fat tissues were postfixed in 4% formaldehyde at 4°C overnight. Epididy-
mal fat tissues were paraffin embedded. 5-μm-thick fat tissue sections were stained with hema-
toxylin and eosin (HE). 30-μm-thick frozen liver sections were stained with Oil Red O. The
images of HE- and Oil Red O-stained sections in four random fields were taken under a light
field microscope (BX63, Olympus, Tokyo, Japan). Adipocyte size was measured using ImageJ
software (National Institutes of Health, Bethesda, MD, USA).

Statistical Analysis
Statistics were performed using GraphPad Prism (GraphPad, La Jolla, CA, USA) and SPSS
(IBM, Armonk, NY, USA) software. All values are given as mean ± standard error of the mean
(SEM). Data was analyzed by one-way analysis of variance (ANOVA) followed by Tukey’s
honest significant difference (HSD) post hoc test. Comparisons of serum Aβ were performed
using unpaired Student’s t-tests. The interaction and effect between factors were analyzed by
two-way ANOVA (general linear model). For all tests, p< 0.05 was considered significant. The
correlation between serum Aβ and metabolic markers was assessed with Pearson’s correlation
analysis.

Results

HFSTZ-mediated metabolic stress was exacerbated in APPswe/
PS1dE9 mice
That employing a combination of a high fat diet and low-dose streptozotocin injections pro-
duced synergistic effects on metabolic disorders was first confirmed by two-way ANOVA anal-
ysis (S1 Table). HFSTZ resulted in significantly increased fasting blood glucose levels in both
WT and APPswe/PS1dE9 transgenic (AD) mice 3 weeks after STZ injection (Fig 1A). In con-
trast, no differences in blood glucose were observed among NCDWT and ADmice. At the end
of the experiment, the fasting blood glucose of HFSTZ ADmice was significantly higher than
that of HFSTZWTmice. When comparing glucose tolerance among the groups after 6 weeks,
HFSTZ-induced glucose intolerance was worse in AD mice (higher area under the curve
[AUC]) compared with that of WT mice (Fig 1B). For serum insulin concentration, we
observed a stepwise increment of serum insulin levels in the following order: NCDWT, NCD
AD, HFSTZWT, and HFSTZ AD (Fig 1C). Although the mean HOMA-IR score of HFSTZ
ADmice was consistently higher than that of HFSTZWT mice, there was no difference in
HOMA-IR between the NCDWT and NCD AD groups (Fig 1D). Interestingly, the glycated
hemoglobin (HbA1c) percentage among the four groups was all approximately 4% and
remained unchanged throughout the experiment (Fig 1E). Two-way ANOVA analysis indi-
cated that the interaction of genetic type difference (APPswe/PS1dE9 vs. WT) and induced
metabolic disorder (NCD vs. HFSTZ) was associated with increased fasting blood glucose (F

interaction (1, 75) = 6.641, p< 0.05) and glucose intolerance (F interaction (1, 41) = 7.966, p< 0.01).

HFSTZ ADmice became more obese and exhibited adipocyte
hypertrophy and increased serum leptin concentrations
As shown in Fig 2A, the initial body weights of WT and AD mice were not different prior to
the dietary manipulations. However, during the 11 weeks of the experiment, body weight gain
in HFSTZ ADmice was significantly higher than that of HFSTZWTmice. In contrast, there
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was no difference in body weight gain between NCDWT and NCD ADmice. The ratio of epi-
didymal fat weight to body weight was significantly increased in HFSTZWT and HFSTZ AD
mice compared with NCDWT and ADmice at the end of experiment (Fig 2B). The mean size
of adipocytes in HFSTZ ADmice was significantly enlarged compared with that of the other
groups (Fig 2C).

Furthermore, the mean serum leptin concentration of HFSTZ ADmice was significant
higher than that of HFSTZWTmice (Fig 2D). There was no significant difference in serum
free fatty acid among the groups (Fig 2E). Two-way ANOVA indicated that the interaction
between genetic type and induced metabolic disorder lead to an increase of body weight gain
(F interaction (1, 75) = 4.835, p< 0.05) rather than fat mass.

Dyslipidemia and hepatic steatosis was exacerbated in HFSTZ ADmice.HFD consumption
has been shown to lead to obesity and dyslipidemia [22]. Therefore, we continued to analyze
serum lipid profiles at the end of our experiment. The serum level of TG significantly increased
in HFSTZ ADmice, but not HFSTZWTmice, as compared with NCDWT and ADmice (Fig
3A). In addition, the serum total cholesterol of HFSTZ-treated mice was significantly higher
than that of NCD-fed mice, and HFSTZ ADmice had higher total cholesterol concentrations
than HFSTZWTmice (Fig 3B). HFSTZ treatment significantly increased the serum concentra-
tions of VLDL and LDL as compared with the NCD groups; but there was no difference
between AD and WTmice (Fig 3C). Interestingly, the pattern of changes in serum HDL was
similar to that in the total cholesterol (Fig 3D). Two-way ANOVA revealed that AD genetic
background interacted with HFSTZ to increase serum cholesterol levels (F interaction (1, 28) =

Fig 1. Impact of HFSTZ on glycemic control.WT or AD transgenic mice were treated with NCD or HFSTZ. (A) Fasting glucose levels by week. (B) Oral
glucose tolerance testing was performed 6 weeks after dietary manipulation, and AUC values (right panel) were calculated. (C) Fasting insulin, (D) HOMA-IR,
and (E) HbA1c%were determined at the end of the experiment. Bars represent the mean ± SEM. Experimental groups labeled with different letters are
significantly different from each other (p < 0.05).

doi:10.1371/journal.pone.0134531.g001
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6.598, p< 0.05). HFSTZ condition is known to cause dyslipidemia and increase hepatic TG
levels in rodents [19]. Therefore, we performed histological and tissue TG assays to examine
the extent of TG accumulation. There was severe hepatic TG staining in HFSTZ ADmice as
shown by Oil Red O staining (Fig 3E, left panel). Consistently, liver TG content in HFSTZ AD
mice was significantly higher than those measured in the other three groups (Fig 3E, right
panel). In contrast, there were no differences in TG content in skeletal muscle among the four

Fig 2. Characterization of obese conditions among each experimental group.WT or AD transgenic
mice were treated with NCD or HFSTZ (A) Body weights were recorded by week. (B) Epididymal fat tissue
was collected, fat mass estimation based on the percentage of epididymal fat of total body weight at after 11
weeks of dietary manipulations. (C) Representative histological microphotographs of HE-stained epididymal
fat sections (scale bar, 50 μm). Adipocyte size was measured by ImageJ. (D) Serum leptin and (E) free fatty
acid were quantified by ELISA after 11 weeks of dietary manipulation. Bars represent the mean ± SEM of at
least three independent experiments. Experimental groups labeled with different letters are significantly
different from each other (p < 0.05).

doi:10.1371/journal.pone.0134531.g002
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groups (data not shown). Two-way ANOVA analysis confirmed an interaction between
APPswe/PS1dE9 genotype and HFSTZ on hepatic TG levels (F interaction (1, 61) = 8.648,
p< 0.05). In terms of liver function, serum GOT was significantly increased in HFSTZ AD and
WTmice (Fig 3F). However, there was no significant difference in serum GPT among the
groups (Fig 3G).

Serum Aβ levels are correlated with metabolic indexes
Serum Aβ levels were higher in HFSTZ ADmice and were associated with the extent of hepatic
steatosis, obesity, and elevated blood glucose. A previous study suggested that the serum level of

Fig 3. Analysis for serum lipid and hepatic steatosis. The levels of (A) serum TG, (B) total cholesterol, and cholesterol in (C) VLDL and LDL, as well as
(D) HDL measured after 11-week dietary manipulations. (E) Representative histological microphotographs of liver sections stained with Oil Red O (scale bar,
50 μm) and hepatic TG contents of mice were quantified. (F) SerumGOT and (G) SerumGPT were also measured. Bars represent the mean ± SEM.
Experimental groups labeled with different letters are significantly different from each other (p < 0.05).

doi:10.1371/journal.pone.0134531.g003
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Aβ in ADmice increases with elevated glucose intolerance and insulin resistance [16]. To assess
whether hyperglycemia and hyperinsulinemia in HFSTZ ADmice correlated with serum Aβ,
serum levels of Aβ40 (Fig 4A) and Aβ42 (Fig 4B) were measured. Both of them were signifi-
cantly increased in ADmice after 11 weeks of HFSTZ treatment. Furthermore, the mean serum
Aβ40 concentration in NCD ADmice was 10-fold higher than that of Aβ42. However, there
was only a 5-fold difference between Aβ40 and Aβ42 in HFSTZ ADmice. The potential correla-
tions between serum Aβ and weight gain, blood glucose, leptin, and hepatic TG from the data
pool of ADmice under NCD and HFSTZ conditions were assessed by Pearson’s correlation
analysis. As shown in Table 1, serum Aβ40 and Aβ42 levels were moderately correlated
(R = 0.751). Both serum Aβ40 and Aβ42 levels were moderately correlated with body weight
gain (R = 0.578 for Aβ40 and 0.727 for Aβ42) and blood glucose (R = 0.629 for Aβ40, 0.599 for
Aβ42), and weakly correlated with leptin (R = 0.457 for Aβ40 and 0.445 for Aβ42). On the other
hand, serum Aβ40 and Aβ42 levels were moderately and weakly correlated with hepatic TG,
respectively (R = 0.511 for Aβ40 and 0.490 for Aβ42). However, serum Aβ40 and Aβ42 levels
were not correlated with serum TG. Consistently, weight gain, blood glucose, leptin, and epidid-
ymal fat weight (% of body weight) were more correlated with hepatic TG than serum TG.

Discussion
Previous studies have shown that diabetic and/or hyperlipidemic conditions could have signifi-
cant impacts on CNS pathology in aged AD mice. This study is focused on the interaction of
APPswe/PS1dE9 genetic background and metabolic stresses in mice at the prodromal stage of
AD. Our data suggests that HFSTZ-induced metabolic stresses are aggravated in young adult
AD mice compared with WTmice. Furthermore, hepatic steatosis was exacerbated in HFSTZ-
treated ADmice, and peripheral Aβ levels were positively correlated with HFSTZ-induced met-
abolic changes, including hepatic steatosis. Ours is the first study to reveal the synergistic inter-
action between APPswe/PS1dE9 genetic background and HFSTZ in exacerbating a broad
spectrum of metabolic stresses including hepatic steatosis at the early stage of AD
pathogenesis.

Fig 4. SerumAβ40 and Aβ42 quantification. The levels of (A) Serum Aβ40 and (B) Serum Aβ42 of NCD
and HFSTZ ADmice were measured after 11weeks of dietary manipulations by ELISA. Bars represent the
mean ± SEM of at least three independent experiments. Significant differences (p < 0.001, unpaired t-tests)
among the groups are labeled as ***.

doi:10.1371/journal.pone.0134531.g004
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High fat diet or genetic manipulations of leptin signaling such as the mutation of leptin and
leptin receptor increase AD-like pathology at the advanced stage in AD mouse models [11, 12,
15, 23]. In contrast to other models of metabolic disorders, HFSTZ utilized in this study
induces mild metabolic disturbance. For example, the fasting blood glucose levels in HFSTZ
WTmice fluctuate around 150 mg/dL; however, levels in db/db mice usually exceed 400 mg/
dL at the same age. The HbA1c percent in HFSTZ-treated mice also appears to be within the
normal range [12]. These data suggest that the HFSTZ treatments in general introduce a mild
metabolic disturbance. Furthermore, the mild but significant alterations of liver functions
could lead to the increased peripheral Aβ in HFSTZ ADmice. The statistical analyses from our
results reveal an important message: the reciprocal interactions among hepatic steatosis, meta-
bolic stresses, and elevated serum Aβ exist in mice bearing both mutant APPswe/PS1dE9 trans-
genes and diabesity.

It has been shown that the liver is the major organ for the clearance of plasma Aβ [24, 25].
The observation of elevated peripheral Aβ in HFSTZ-treated AD mice might indicate a vicious
cycle between hepatic steatosis and Aβ clearance to exacerbate existing metabolic stresses. The
accumulation of peripheral Aβ in HFSTZ-treated AD mice found in our study can be at least
partly attributed to abnormal liver function. Thus, mild but significant alterations of liver

Table 1. Pearson correlation analysis of serumAβ andmetabolic markers of APP/PS1 transgenic mice after 11-week dietary manipulations.

Aβ40 Aβ42 BW gain Blood glucose leptin hepatic TG fat(% of BW) serum TG

Aβ40 R 1 0.75** 0.58** 0.63** 0.46* 0.51* 0.30 0.10

Sig <0.001 <0.001 <0.001 0.022 0.011 0.143 0.681

N 33 33 30 25 24 25 18

Aβ42 R 1 0.73** 0.60** 0.45* 0.49* 0.47* -0.36

Sig <0.001 <0.001 0.026 0.015 0.019 0.125

N 33 30 25 24 25 18

BW gain R 1 0.56** 0.84** 0.82** 0.71** 0.13

Sig <0.001 <0.001 <0.001 <0.001 0.481

N 43 26 24 26 30

Blood glucose R 1 0.45** 0.72** 0.68** 0.40*

Sig 0.031 <0.001 <0.001 0.03

N 23 21 23 30

leptin R 1 0.71** 0.63** 0.77**

Sig <0.001 0.001 0.009

N 24 26 10

hepatic TG R 1 0.72** 0.67*

Sig <0.001 0.036

N 24 10

fat (% of BW) R 1 0.80**

Sig 0.005

N 10

serum TG R 1

Sig

N

**P< 0.01 level (2-tailed) and

* P< 0.05 level (2-tailed).

BW: body weight; fat (% of BW): epididymal fat weight (% of body weight); R: regression coefficient.

doi:10.1371/journal.pone.0134531.t001
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function, especially pertaining to Aβ degradation and/or excretion, are likely to take place. Sub-
sequently, Aβ species in the blood are incorporated into HDL for delivery to the liver. Thus,
hypercholesterolemia might be associated with elevated serum Aβ. Indeed, higher serum Aβ is
reported among cognitively normal non-statin users in AD family history-enriched cohorts.
The same study also found that the levels of serum Aβ and HDL were positively associated
[26]. Our study further demonstrates that HFSTZ ADmice at the early stage of AD were
hypercholesterolemic and had higher levels of both total and HDL cholesterol as compared
with the other three groups. These findings suggest that peripheral HDL may play an impor-
tant role in peripheral Aβ homeostasis as well as in the development of AD. Regulation of Aβ
drain out from CNS is linked to peripheral Aβ level. And Aβ degradation by the liver appears
to play important role for such dynamic regulation [27]. Therefore, we may expect that ele-
vated peripheral Aβ in HFSTZ ADmice would exacerbate Aβ burden in CNS at later stage.

In conclusion, we present evidence that APPswe/PS1dE9 genetic background interacts with
the development of peripheral metabolic stresses induced by HFSTZ at the early stage of AD.
The consequential effects are exacerbated dysglycemic control, obesity, and hepatic steatosis.
We speculate that mild but significant alteration of liver function coupled with worsened meta-
bolic stresses in HFSTZ ADmice might contribute to the elevated levels of serum Aβ. Our find-
ings suggest that treating hepatic steatosis could be of clinical importance, especially in the
prodromal stage of AD.
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