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Abstract
Ortholog identification is used in gene functional annotation, species phylogeny estimation, phylogenetic profile con-
struction and many other analyses. Bioinformatics methods for ortholog identification are commonly based on pair-
wise protein sequence comparisons between whole genomes. Phylogenetic methods of ortholog identification have
also been developed; these methods can be applied to protein data sets sharing a common domain architecture or
which share a single functional domain but differ outside this region of homology.While promiscuous domains repre-
sent a challenge to all orthology prediction methods, overall structural similarity is highly correlated with proximity
in a phylogenetic tree, conferring a degree of robustness to phylogenetic methods. In this article, we review the
issues involved in orthology prediction when data sets include sequences with structurally heterogeneous domain
architectures, with particular attention to automated methods designed for high-throughput application, and
present a case study to illustrate the challenges in this area.
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INTRODUCTION
In recent years, DNA sequencing technologies

have improved their throughput exponentially, lead-

ing to explosive growth in sequence databases.

Unfortunately, experimental methods to elucidate

gene function have not kept pace with the through-

put of sequencing; analysis of Gene Ontology (GO)

annotations [1] and evidence codes shows that <1%

of genes have any experimental support for their

annotations [2]. For these reasons, bioinformatics

methods to predict gene function have played central

roles in biological research. Problematically, the

standard functional annotation protocol—transfer-

ring the annotation of the top BLAST [3] hit—has

been shown to be fraught with systematic error [4]:

as much as 25% of genes are estimated to be misan-

notated [5].

What accounts for such large error rates? The

fundamental assumption underlying an annotation

transfer protocol is that evolution conserves function,

and that sequence similarity implies homology (i.e. a

common ancestry) and can thus be used as a basis for

inferring function. As in most of biology, the reality

is a bit more complicated.

It is known that protein function is mediated by

protein 3D structure, and that structural similarity is

conserved over large evolutionary distances even

when sequence similarity is undetectable. Protein

structural domains—contiguous stretches of the

polypeptide chain that fold independently into com-

pact globular structures—comprise the building

blocks of a protein’s overall structure. The ordered

series of these domains is a protein’s ‘multi-domain

architecture’ (reviewed in [6]). Changes in domain

architecture, produced by gene fusion and fission

events and other evolutionary processes, are a signifi-

cant source of error in transitive annotation pipelines

[4, 7, 8]. Of particular relevance to the task of pro-

tein function prediction is the presence of ‘promis-

cuous’ domains—domains found in many different
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combinations (kinase domains are a well-known

example of this class) [9]. Individual domains in a

multi-domain architecture can have very different

evolutionary rates and functional roles, and taxo-

nomic distributions can also vary widely, with

some domains being conserved throughout the

Tree of Life and others being restricted to particular

lineages. See references [10–12] for reviews of struc-

tural domain distributions and characteristics and the

CATH [13] and SCOP [14] databases for classifica-

tions of domains into structural hierarchies.

Proteins can also diverge functionally from a

common ancestor through gene duplication events

and mutations at key positions, producing protein

superfamilies containing groups of orthologs and

paralogs spanning many distinct functions; existing

annotation errors also complicate any annotation-

transfer protocol [4, 15–17].

Fortunately, a ‘structural phylogenomic’ analysis,

combining evolutionary and structural analyses, pro-

vides an overarching framework to address the limi-

tations of simple annotation transfer protocols [18].

For instance, knowledge of protein domain architec-

ture can be used to restrict predicted orthologs to

those that share the same series of structural or func-

tional domains. Other applications of structural phy-

logenomics include using 3D structure and gene

trees to predict enzyme active sites [19].

The term ‘phylogenomics’ was proposed initially

by Eisen [20] to describe the use of phylogenetic

analysis to improve the accuracy of gene functional

annotation; it is also used to describe species phyl-

ogeny estimation using multiple genes (e.g. as in a

concatenated gene matrix approach) [21]. A related

approach was developed for the functional annota-

tion of the human genome [22], using the SCI-PHY

algorithm [23] to identify functional subfamilies, and

subsequently extended into two phylogenomic data-

bases of gene family phylogenies: the PANTHER

tools [24] and the PhyloFacts resource [25, 26].

The term ‘ortholog’ was first proposed by Walter

Fitch [27] to differentiate genes related by speciation

from those related by duplication events: ‘Where the

homology is the result of gene duplication so that

both copies have descended side by side during the

history of an organism. . .the genes should be called

paralogous (para¼ in parallel). Where the homology

is the result of speciation so that the history of the

gene reflects the history of the species. . .the genes

should be called orthologous (ortho¼ exact).’

Duplication events provide a release from

evolutionary constraints, allowing genes to explore

novel functions [28]. Note that orthology is a phylo-

genetic term, but is used in practice as a surrogate for

functional equivalence; in fact, orthologs in distantly

related species may have diverged functionally from

their common ancestor.

These terms and concepts were quickly revealed

to be insufficient to model the actual biological com-

plexity of gene family evolution, and a host of new

terms and concepts have since been developed.

Ohno [28] proposed a model for functional diversi-

fication following gene duplication: in ‘neo-functio-

nalization’, genes acquire novel functions (e.g. bind

to new ligands), while in ‘sub-functionalization’,

genes partition the ancestral function, potentially

specializing for different tissues or developmental

stages.

Since orthology is not transitive (i.e. if X and Y

are orthologs, and Y and Z are orthologs, it does not

necessarily follow that X and Z are orthologs) [29],

Zmasek and Eddy [30] proposed a more restrictive

definition of orthology that explicitly disallows any

duplication events: two genes X and Y are ‘super-

orthologs’ if and only if every node on the evolu-

tionary tree relating them corresponds to a speciation

event. The super-orthology relation has the advan-

tage of being transitive as it partitions the gene family

tree into super-orthologous subtrees. Sonnhammer

and Koonin developed related terms to describe

in-species duplication events (called ‘inparalogs’)

and other types of paralogy [31]. Orthology,

super-orthology and inparalog relationships are illu-

strated in Figure 1.

Comparison of major
orthology-prediction methods
Orthology-prediction methods fall into two main

classes: ‘graph-based’ and ‘phylogenetic tree-based’

(or simply ‘phylogenetic’) [32, 33]. Graph-based

methods perform pair-wise sequence comparisons

between whole genomes, typically using all-versus-

all BLAST, and then construct a graph with genes as

nodes and edges weighted by pair-wise similarity

scores. Each method uses its own technique to clus-

ter this graph to identify orthologs. Reciprocal

BLAST Hit (RBH), COGs [34], InParanoid [35],

OrthoMCL [36], eggNOG [37], ClusTr [38],

ProtoNet [39] and Systers [40] are examples of

graph-based methods. Note that since graph-based

orthology prediction methods are based on

BLAST—a local alignment protocol—they are not

414 Sjo« lander et al.



designed to distinguish between sequences sharing a

common domain architecture and those having only

local matches, increasing the potential for annotation

errors.

Phylogenetic methods of orthology prediction

analyze gene trees (or, more precisely, multi-gene

trees containing groups of paralogs and orthologs)

to localize duplication events on the tree and separate

orthologs from paralogs; phylogenetic methods also

enable biologists to perform more fine-tuned ana-

lyses, e.g. to discriminate between orthologs and

super-orthologs [30]. Gene trees are estimated from

multiple sequence alignments (MSAs) of homologs,

although co-estimation of a protein MSA and

Figure 1: Orthology and paralogy subtypes and the use of tree distances in PHOG.We present this toy example of
gene family evolution to illustrate the main orthology subtypes and how the PHOG algorithm uses tree distances
and topology jointly to infer orthologs. ‘Dup’ indicates a duplication event in the animal lineage, and ‘I’ represents a
group of predicted inparalogs. Recall that super-orthology requires that all nodes on a path joining two sequences
correspond to speciation events.The PHOG algorithm for super-orthology identification allows subtrees containing
only members of a single species to be included in a PHOG super-orthology group; some of these will correspond
to actual inparalogs while others will be multiple entries and/or isoforms of the same gene in protein sequence data-
bases.The two boxed subtrees (PHOG-S1and PHOG-S 2) correspond to super-orthology groups by this definition,
with PHOG-S 2 including a possible inparalogous subtree with human genes 2a, 2b and 2c. In contrast, the
Schistosomamansoni and yeast genes have no super-orthologs. Standard phylogenetic orthology prediction protocols
consider only the tree topology, including the S. mansoni gene in an orthology group with the Gene 2 clade.
However, PHOG uses both tree distance and topology to enhance orthology identification precision; since the
tree distances between the S. mansoni gene and genes in PHOG-S 1 are smaller than those between it and genes in
PHOG-S 2, it is excluded from PHOG-S 2. This toy example also illustrates the nontransitivity of the standard
definition of orthology, which requires only that the most recent common ancestor of two genes correspond to a
speciation event. By this definition, the yeast gene is orthologous to Mouse Gene 1 and Mouse Gene 2, and to
Rat Gene 1 and Rat Gene 2 and to all of the other sequences in the tree. However, Mouse Gene 1 is clearly not
orthologous to Rat Gene 2 (they are paralogs, since they are related by gene duplication).
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phylogeny is also possible, [41, 42]. As noted in nu-

merous studies, phylogenetic methods have been

shown to have greater precision than graph-based

methods [43], but the combined dependency on

human expertise and the computational cost of

phylogenomic analyses has limited their large-scale

application [44].

Most phylogenetic orthology prediction methods

employ a process called ‘tree reconciliation’, overlay-

ing the gene tree with a trusted species tree, to

parsimoniously infer speciation, duplication and

gene loss events; examples of these include

EnsemblCompara [45], RIO [30], Orthostrapper

[46] and NOTUNG [47]. Tree reconciliation may

be complicated for any number of reasons. First, a

reliable species tree may not be available; this is par-

ticularly true in microbes, due to rampant horizontal

gene transfer. Second, incongruence between the

gene tree and species tree [48] is a frequent problem.

Incongruence may stem from ‘incomplete lineage

sorting’ (see e.g. [49]), horizontal gene transfer,

errors in the MSA, sequence fragments or insufficient

information available to the phylogenetic recon-

struction (e.g. a small number of sites [50, 51], as

shown in Figure 2). Phylogenetic methods making

use of a gene tree but not requiring reconciliation

with a species tree include LOFT [52], PhylomeDB

[53], COCO-CL [54] and PHOG [55].

The Berkeley PhyloFacts Orthology Group

(PHOG) [55] algorithm makes use of both tree

topology and tree edge lengths to identify orthologs

based on gene trees in the PhyloFacts Phylogenomic

Encyclopedia [11]; a tree-distance threshold allows

biologists control over the precision–recall trade-off

and to target specific taxonomic distances. The

PHOG webserver is available at http://phylofacts

.berkeley.edu/orthologs/.

The KEGG resource [56] uses a novel approach to

cluster proteins into orthologous groups that is dis-

tinct from both phylogenetic and graph-based

approaches: new sequences are included based on

local similarity to sequences already in a KEGG

orthology group.

Orthology prediction based on
phylogenies for individual domains
We present here a simple protocol that can be

applied in high-throughput to identify orthologs

for a protein sequence of interest.

Clustering protocols designed to retrieve proteins

agreeing at the domain architecture level have

been proposed. A popular solution to this problem

uses a simple coverage criterion, e.g. requiring pro-

teins to align over 70% of their lengths; this rule of

thumb is reasonable for moderately sized proteins but

may fail on longer proteins. FlowerPower [57] uses

subfamily hidden Markov models [23] to iteratively

retrieve and align homologous proteins followed by

alignment analysis to provide high precision in se-

lecting homologs with the same domain architecture.

However, there are circumstances under which a

domain-based phylogeny may be preferable to one

that is based on global similarity. First, requiring

homologs to align well over their entire lengths—

neither much longer nor shorter, and making very

few insertions or gaps relative to other sequences in a

cluster—can be overly restrictive, such that even

orthologs from closely related species can sometimes

be rejected. Disagreement with the consensus struc-

ture for the family most commonly arises from errors

in the underlying gene model(s) but can also stem

from natural structural variability, particularly at the

N- and C-termini. In other cases, a reasonable

number of homologs may be retrieved but none

may be functionally informative. In such cases, it

can be desirable to restrict the region used for phylo-

genetic analysis and orthology identification to one

or more evolutionarily conserved subregions.

Given the ubiquity of domain architecture re-

arrangements and the problems associated with pro-

miscuous domains, does it make sense to infer

orthology on the basis of a single domain? In fact,

orthology-prediction methods such as InParanoid

and OrthoMCL are based on BLAST scores and

thus, inherently local, and domain-based orthology

prediction is the specific objective of some methods

and resources (e.g. RIO [30], Orthostrapper [58], the

HOPS resource [59] and PHOG [55]).

A domain-based phylogeny estimation protocol is

relatively straightforward. In the first step, functional

or structural domains are identified for a protein of

interest; functional domains are typically identified

using Pfam [60] while structural domains can be

identified using protein structure prediction methods

such as PHYRE [61]. Each functional or structural

domain can then be used as a starting point to iden-

tify homologs in sequence databases such as UniProt

[62] using BLAST, PSI-BLAST [63] or related tools.

The homologous subregions of database hits (i.e.

subsequences of the full-length proteins) are ex-

tracted, and a multiple sequence alignment is con-

structed. A gene tree can then be estimated from the
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Figure 2: Phylogenetic analysis of a human Lamin-B receptor (UniProt sequence Q14739). Orthologs selected by
TreeFam in mouse and zebrafish (Danio rerio) are indicated with an asterisk. Sequence fragments are marked with a
dagger. (A) Pfam domain architecture for Q14739. (B) Maximum likelihood (ML) tree of proteins sharing the same
domain architecture identified using FlowerPower. (C) ML tree of proteins aligning to the N-terminal LBR_tudor
domain; a subtree of the full tree is shown, restricted to the vertebrate lineage. Pfam domains found for the
full-length amino acid sequences are displayed at right. (D) and (E) ML trees of sequences matching the C-terminal
ERG4/ERG24 domain (restricted as in C to the vertebrate lineage) constructed using RAxML (D) and FastTree (E)
respectively. Super-orthology groups are boxed with dashed lines; sequences within each super-orthology
group have identical domain architectures and functions. In both D and E, the upper subtree contains the human
Lamin-B receptor and orthologs; sequences in the lower subtree are missing the N-terminal LBR-tudor domain.
Note that zebrafish protein A9ULT1 included by RAxML (albeit with low bootstrap support) was excluded by
FastTree, allowing predicted super-orthologs in the lower subtree of E to expand to include the two Xenopus
sequences. Homologs to Q14739 were retrieved using the PhyloBuilder webserver [25]; FlowerPower global^
global homology clustering (i.e. requiring a common domain architecture) was used for the tree shown in B, and
global^local mode was used for the domain phylogenies shown in C and D. Multiple sequence alignments for B^D
were constructed with MAFFT [71], followed by masking columns with >70% gaps. Maximum likelihood trees were
constructed using RAxML [64] with the JTTþ� model and 20 discrete g-rate categories, and for E using FastTree
[72] with the same parameters. The statistical support of branches was evaluated by 100 bootstrap replicates.
Trees were rooted using the mid-point method.
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MSA constructed for this domain; many methods are

available for this step, including maximum likelihood

(e.g. RAxML [64]), neighbor-joining [65] and

Bayesian approaches (e.g. MrBayes [66]). Trees con-

structed using this protocol are likely to include se-

quences whose overall domain architectures differ,

particularly if the selected domain is promiscuous.

The tree is then used as input to a phylogenetic

ortholog identification method.

The primary advantage of using a domain-based

phylogenetic ortholog prediction protocol over a

phylogenetic analysis based on whole proteins is

the increased number of sequences that can be

included in a phylogenetic reconstruction. A

domain-based clustering protocol requires only that

sequences agree along the selected domain; variabil-

ity outside this region is tolerated. Due to this relaxed

criterion for homolog selection, domain-based clus-

tering protocols have increased robustness to both

gene model errors and natural structural variation

across a family, provided these occur outside the

selected domain. Gene model errors are quite

common in eukaryote genomes due to the presence

of introns in many genes, but are also found in bac-

terial genomes (�10% of bacterial genes and a higher

fraction of eukaryotic genes have gene model errors)

[67]. As shown in Figure 2 and explained below,

domain-based phylogenies can help biologists flag

possible gene model errors for examination and

revision.

Including additional homologs in a phylogenetic

analysis is valuable for two reasons. First, thorough

taxon sampling is known to be important for phylo-

genetic tree accuracy [68–70]. Second, because of

the sparsity of experimental data [2], including add-

itional homologs in a phylogenetic reconstruction

increases the likelihood of a functionally informative

ortholog being identified.

The main limitation of a domain-based phylogen-

etic analysis, whether for orthology identification or

for other purposes, is the dependence of phylogen-

etic methods on sufficient site data (i.e. the length of

the input multiple sequence alignment) as a source of

phylogenetic signal [50, 51]. In phylogenomic meth-

ods of species phylogeny estimation, many ortholo-

gous genes can be concatenated into a supermatrix

with thousands of sites providing ample phylogenetic

signal [21], but in reconstructing phylogenies for

protein superfamilies, we are limited to a far more

finite quantity: protein structural domains range from

a low of approximately 50 residues to a few hundred

residues in length [12], and Pfam functional domains

can be much smaller; some represent short repeat

regions of only 20-odd amino acids. Phylogenies

estimated from such short MSAs are rarely accurate,

simply due to insufficient information. In some cases,

the errors may be relatively minor, such that ortho-

logous sequences cluster correctly into subtrees, but

with errors in the branching order (i.e. the branching

order relating these orthologs may not agree with the

known species phylogeny). However, orthology

prediction methods that require gene tree topologies

for predicted orthologous groups to agree with

trusted trees may fail on these data. This is illustrated

in Figure 2.

Promiscuous domains present a significant chal-

lenge to orthology prediction: all methods of

orthology prediction that are based either implicitly

(as in graph-based methods) or explicitly (as in

domain-based phylogenetic methods) on local align-

ment can incorrectly cluster proteins with different

domain architectures into orthology groups. Since

changes in domain architecture can dramatically

change the function of a protein, and proteins with

different multi-domain architectures will have non-

homologous regions, such predicted orthologs are

clearly errors and should be rejected.

How robust are phylogenetic methods of orthol-

ogy prediction to these data? In fact, domain-

architecture intermingling is infrequent within sub-

trees corresponding to super-orthologs, due to the

extreme stringency of this evolutionary relationship.

We expect that this correspondence between domain

architecture and proximity in the phylogenetic tree is

due to the evolutionary pressures at the domain level

to maintain a particular subfamily-specific function,

i.e. a functional and/or structural variant that is tuned

for that particular domain architecture.

A final complication in phylogenetic orthology

prediction (whether based on a single domain or

for full-length proteins) is the presence of sequence

fragments and alternate isoforms or duplicate entries

of the same gene. Each of these types of data com-

plicates a phylogenetic analysis. For sequences in

fully sequenced genomes, it can be possible to

remove duplicate entries and to select one represen-

tative protein for each gene. But, when these dupli-

cates are not culled at the outset, or when a whole

genome is not available to enable this kind of redun-

dancy filtering, duplicate entries can appear to be

duplicated genes in the same genome (i.e. inparalogs)

instead of the same gene in different forms. In fact,
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sequence fragments can cause actual errors in the

phylogenetic tree topology; in some cases, these

will result in discordance between the gene tree top-

ology and a trusted species tree.

These issues are illustrated in Figure 2, in which

we constructed phylogenies for homologs to human

Lamin-B receptor, a 615-amino acid protein with an

N-terminal LBR_tudor domain 55 amino acids in

length and a C-terminal ERG4_ERG24 domain

roughly 430 amino acids in length. Phylogenies

were estimated based on sequences aligning globally

to the human Lamin-B receptor and for the two

domains separately. Comparing the three different

estimated phylogenies and their impact on orthology

prediction reveals the challenges of domain-based

phylogenies versus those based on global similarity,

and the advantages of using different domains for

phylogenetic analysis.

As one would expect, all of the orthologs found

in the common domain architecture phylogeny

are also found in the Pfam domain trees. However,

the N-terminal LBR_tudor domain phylogeny in-

cludes proteins from chicken (Gallus gallus),
human and pufferfish (Tetraodon nigroviridis) not

found in the two other phylogenies; all are fragments

containing only the amino-terminal LBR_tudor

domain. Genome locus analysis shows the novel

human and chicken sequences to correspond to in-

correct gene models for the same gene for which

the correct (full length) protein was included in

all three trees. In contrast, neither of the other phy-

logenies included any orthologs from pufferfish,

demonstrating the utility of using domain-based

phylogenies to increase ortholog-identification

recall (of the three pufferfish proteins, two were

removed from UniProt since the phylogeny was

constructed; only Q4TIF3 remains, annotated by

UniProt as a fragment).

Figure 2 also demonstrates the impact of limited

site data on the accuracy of the phylogenetic tree

topology. For instance, the phylogenetic placement

of the mouse ortholog (Q3U9G9) is incorrect (albeit

with high bootstrap support) in the tree estimated

from the LBR_tudor domain, but is correct in the

other two phylogenies, which were estimated using

many more sites. Phylogenetic methods of ortholog

identification that require subtree topologies to agree

with trusted species phylogenies might reject these

orthologs.

Finally, analysis of the Pfam domains of full-length

proteins included in a phylogeny shows a close

correspondence between proximity in the phylogen-

etic tree and agreement at domain architecture,

allowing the inference of overall domain architecture

for sequence fragments and increasing the reliability

of domain-based orthology prediction.

DISCUSSION
In this article, we have presented some of the chal-

lenges involved in reconstructing phylogenies for

protein functional domains and in inferring

orthologs based on those phylogenies. We have

focused on specific issues in automated methods

of orthology identification for high-throughput ap-

plication, e.g. for functional annotation of whole

genomes.

There are two main advantages of domain-based

orthology prediction. First, the relaxed criterion of

local clustering protocols tends to result in many

more sequences being included than when global

similarity is required. This enhances taxon

sampling, with resulting potential improvements to

the phylogenetic tree topology accuracy and to

ortholog prediction based on these trees. Second, if

the aim of ortholog identification is functional an-

notation, including additional sequences in a phylo-

genetic reconstruction also increases the likelihood

that functionally informative sequences will be

retrieved.

Improvements to taxon sampling using domain-

based phylogenies must be balanced against the

dependency of phylogenetic reconstruction on suffi-

cient site data. This is generally not a problem in

reconstructing species phylogenies, where phyloge-

nomic methods can incorporate data from many

genes into a gene matrix with thousands of sites,

but is a definite problem with protein sequences

that are at most a few hundred residues in length.

If the number of sites is restricted further to a single

functional domain, which may be a few dozen

amino acids in length, accuracy can degrade signifi-

cantly. These short domains are also challenging to

phylogenetic ortholog-identification methods that

compare subtrees in gene trees against trusted species

phylogenies. As we have shown, phylogenies based

on short domains can have errors in branching order

within orthologous subtrees due to limited phylo-

genetic signal; incongruities with trusted species phy-

logenies should be expected for these types of

alignments.
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A related issue is the presence of sequence frag-

ments stemming from gene model errors; these can

cause a subtree topology to disagree with a trusted

species phylogeny with corresponding errors in

phylogenetic orthology-prediction methods that re-

quire gene trees to agree with species phylogenies.

However, as we have shown, domain-based phylo-

genies can help flag proteins with gene model errors

so that these can be examined and potentially

revised.

An additional challenge arises in the context of

domain-based phylogenies: when sequences with

different overall multi-domain architectures are

included in a phylogenetic reconstruction, the po-

tential for errors increases dramatically. This risk is

mitigated by the strong tendency for sequences shar-

ing a common domain architecture to cluster closely

on a phylogenetic tree, provided that the domain

selected as the basis for the phylogenetic tree top-

ology is sufficiently long.

How long must a domain be for an accurate

phylogeny? Our observations, admittedly based on

a relatively small sample of phylogenetic trees esti-

mated for Pfam domains of different lengths, support

the findings reported in the literature that ‘size mat-

ters’. We cannot provide any general rules, but

advise caution in using phylogenies based on do-

mains of <70 amino acids in length. Additional stu-

dies are needed to quantify the correspondence

between protein domain length and phylogenetic

accuracy.

Interpreting domain-based phylogenies, when se-

quences included are drawn from different multi-

domain architectures, requires particular attention:

in a standard gene family phylogeny, internal nodes

of a tree will correspond to either speciation or

duplication events, but in domain-based phylogenies

a third node label may be necessary to represent gene

fusion and fission events.

In summary, domain-based phylogenetic ortholog

identification can confer real advantages over phylo-

genetic methods based on whole proteins, but with

some caveats: domains should be long enough to

prevent problems with insufficient site data and

care must be taken in interpreting phylogenies

when data sets are drawn directly from standard se-

quence databases due to the high frequency of gene

model errors, sequence fragments and multiple

entries for the same gene. With these issues in

mind, ortholog-prediction accuracy can be enhanced

using a domain-based phylogenetic protocol.

Key Points

� Proteins are composedof structural domains that fold independ-
ently in solution; the ordered series of these structural domains
is a protein’s ‘domain architecture’.

� Domain architectures can be modified by evolutionary pro-
cesses such as gene fusion and fission events; changes in domain
architecture can be accompanied by dramatic shifts in protein
function.

� Most orthology-prediction methods are based on local align-
ment scores, and phylogenetic methods of orthology prediction
can be derived from phylogenetic trees for individual functional
domains; both graph-based and phylogenetic approaches can be
prone to error whenproteins includedin the analysis have differ-
ent domain architectures, with errors particularly likely to
happen in the case of promiscuous domains.

� Advantages of domain-based phylogenies include improved tree
topology accuracy from increased taxon sampling, a greater
degree of experimental data supporting functional annotations
and the detection of genemodel errors.

� Phylogenetic ortholog identification methods that require gene
tree topologies to agree with trusted species phylogenies may
have limited accuracy when sequence fragments are included in
an analysis or when the domain used as the basis of evolutionary
tree construction is short, reducing the phylogenetic signal.
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