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for identifying the morphological characteristics
of dMMR/MSI-H gastric cancer
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Qinghua Cao,10 Hong Zeng,11 Jinling Duan,1 Yuanliang Luo,1 Zhicheng Li,1 Wuhao Lin,1 Runcong Nie,12

Yishu Deng,2 Jingping Yun,1 Chaofeng Li,2,* Dan Xie,1,* and Muyan Cai1,14,*
SUMMARY

Accurate tumor diagnosis by pathologists relies on identifying specific morphological characteristics.
However, summarizing these unique morphological features in tumor classifications can be challenging.
Although deep learning models have been extensively studied for tumor classification, their indirect
and subjective interpretation obstructs pathologists from comprehending the model and discerning the
morphological features accountable for classifications. In this study, we introduce a newapproach utilizing
Style Generative Adversarial Networks, which enables a direct interpretation of deep learning models to
detect significant morphological characteristics within datasets representing patients with deficient
mismatch repair/microsatellite instability-high gastric cancer. Our approach effectively identifies distinct
morphological features crucial for tumor classification, offering valuable insights for pathologists to
enhance diagnostic accuracy and foster professional growth.

INTRODUCTION

Diagnostic pathology is universally regarded as the gold standard for tumor identification, and its efficacy relies heavily on the ability of pa-

thologists to recognize the morphological characteristics of various tumor subtypes and make accurate diagnoses.1 However, pathologists,

particularly those in small centers, may have limited opportunities to encounter diverse tumor classifications, and even experienced pathol-

ogists face the challenge of summarizing specific morphological characteristics due to the abundance of information contained within path-

ological slides. As a result, the development of an effective tool that can aid pathologists in identifying the histopathological characteristics of

tumor classifications and help them gain the necessary expertise is of paramount importance.

Convolutional neural networks have shown great potential as a promising tool for extracting relevant features from histology slides, which

can be used to accurately classify tumors with high precision.2,3 Despite the promising diagnostic performances of deep learning models in

tumor diagnosis,4,5 their black-box nature often limits the comprehensibility of the features extractedby themodels. This presents a challenge

for pathologists who require clear and comprehensive features to understand the reasoning behind the model’s decision.6,7 The lack of clear

interpretation raises important questions about the effectiveness of deep learning models in aiding pathologists to recognize the morpho-

logical characteristics of various tumor subtypes.4,8 To address this issue, it is critical to develop new methods that can help interpret deep

learning models and extract meaningful features to facilitate the growth of pathologists.
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Table 1. Diagnostic performance of MMRNet predicting MMR/MSI status in gastric cancer cohorts

Cohorts AUROC Sensitivity Specificity NPV PPV

Internal-STAD 0.930 (0.923, 0.938) 0.761 (0.685, 0.837) 0.955 (0.925, 0.985) 0.954 (0.942, 0.967) 0.776 (0.671, 0.881)

MutiCenter-STAD 0.895 (0.874, 0.917) 0.711 (0.636, 0.787) 0.844 (0.825, 0.864) 0.963 (0.955, 0.972) 0.337 (0.307, 0.367)

TCGA-STAD 0.844 (0.830, 0.858) 0.655 (0.548, 0.762) 0.868 (0.799, 0.937) 0.905 (0.885, 0.926) 0.582 (0.501, 0.663)

95% confidence intervals were included in brackets. MMR, mismatch repair protein; MSI, microsatellite instability; Internal-STAD, an internal cohort from a single

medical center; MultiCenter-STAD, an external cohort frommultiple medical centers; TCGA-STAD, an external cohort from The Cancer Genome Atlas. AUROC,

area under the receiver operating curve; NPV, negative predictive value; PPV, positive predictive value.
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Generative adversarial network (GAN)model is currently proposed for generating realistic images. GANconsists of twomain components:

the Generator and the Discriminator.9 The Generator is responsible for creating synthetic images similar to real images by learning statistical

features and structures from the dataset, while the Discriminator acts as a binary classifier to evaluate the authenticity of images. Through

learning features from images, the GAN obtains the latent space,10 which shows an interpretable structure and allows semantic vector op-

erations that translate into tissue feature transformations. This capability of GAN finds extensive applications in model interpretation, which

may help visualize how the deep learning model make decisions.

In this study, we have developed a framework to visualize the dynamic diagnostic process of the deep learning model and capture histo-

pathological features of tumor classifications, thus aiding the growth of pathologists. Our approach involved building a deep learning model

MMRNet to extract patch-level and then slide-level diagnosis of deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H)

gastric cancer (GC), a distinct GCmolecular subtype which can benefit from immunotherapy. Themodel performances were further validated

on whole slide images (WSIs) from two external cohorts. To reveal the decision-making progress of MMRNet, we introduced a model inter-

pretationmethod. First, we trained a Style Generative Adversarial Network (StyleGAN)11model to generate realistic images capturing the rich

tissue structures of dMMR/MSI-H GC. Then, using the MMRMapping conditional regression-based mapping model, we manipulated the

morphological transformation fromdMMR/MSI-HGC images to proficientmismatch repair (pMMR)/nonMSI-HGC images in the latent space

of StyleGAN, explicitly displaying the morphological features responsible for MMRNet’s classifications. To localize significant histopatholog-

ical characteristics related to the classification, we developed the classification activation map (CAM)-blending algorithm in the inference

stage, which calculated the CAMof MMRNet12 to guide the local blending of original image and the transformed image. The CAM-blending

algorithm facilitated the transformation in the high-attention areas while inhibiting transformation in the low-attention areas, thus helping

pathologists review and recognize significant morphological characteristics of dMMR/MSI-H GC. Finally, we further evaluated the diagnostic

performances of junior pathologists in predicting dMMR/MSI-H GC before and after learning the morphological characteristics.
RESULTS

Study participants

Our method for identifying morphological features of dMMR/MSI-H GC was designed to be broadly applicable across various tumor classi-

fications. The Internal-STADdataset comprised 202 hematoxylin & eosin (H&E)-stainedWSIs from 105 patients diagnosedwith dMMR/MSI-H

GC and 1060 WSIs from 562 patients with pMMR/non-MSI-H GC. In the MultiCenter-STAD dataset, 180 WSIs were gathered from 180 pa-

tients, including 18 patients with dMMR/MSI-H GC and 162 patients with pMMR/non-MSI-H GC. Conversely, the TCGA-STAD dataset en-

compassed 284 WSIs obtained from 284 GC patients, with 60 patients diagnosed with dMMR/MSI-H GC and 224 patients with pMMR/

non-MSI-H GC.
Diagnostic performances of MMRNet

Given the morphological features like lymphocytic aggregates might be indicative of the tumor response contributing to dMMR/MSI-H sub-

type, as previously descripted in relevant studies,4,8 we did not present objective metrics for the tumor tissue classifier. To predict MMR/MSI

status from GC WSIs, we built MMRNet using ResNet1813 for training and internal validation. The 5-fold cross-validation on each fold pro-

duced an AUROC range from 0.919 to 0.971 (Table S1) on Internal-STAD. Upon all test folds, the MMRNet obtained an averaged AUROC

of 0.930 [95% confidence interval (CI): 0.923–0.938], sensitivity of 0.761 (95%CI: 0.685–0.837), specificity of 0.955 (95%CI: 0.925–0.985), positive

predictive value (PPV) of 0.776 (95%CI: 0.671–0.881) and negative predictive value (NPV) of 0.954 (95%CI: 0.942–0.967). OnMultiCenter-STAD,

MMRNet achieved an averaged AUROC of 0.895 (95% CI: 0.874–0.917), sensitivity of 0.711 (95%CI: 0.636–0.787), specificity of 0.844 (95%CI:

0.825–0.864), PPV of 0.337 (95%CI: 0.307–0.367), and NPV of 0.963 (95%CI: 0.955, 0.972). On TCGA-STAD, MMRNet yielded an averaged

AUROC of 0.844 (95%CI: 0.830–0.858), sensitivity of 0.655 (95%CI: 0.548–0.762), specificity of 0.868 (95%CI: 0.799–0.937), PPV of 0.582 (95%

CI: 0.501–0.663), and NPV of 0.905 (95%CI: 0.885, 0.926) (Table 1; Figures 1 and S1).

Model interpretation summarizing histopathological characteristics of dMMR/MSI-H GC

To summarize histopathological characteristics of dMMR/MSI-H GC, we employed MMRMapping to transform dMMR/MSI-H images to

pMMR/nonMSI-H images to output themanipulation direction vector of the input imagegeneratedby StyleGAN.CAM-blendingwas utilized
2 iScience 27, 109243, March 15, 2024
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Figure 1. Performance of MMRNet on internal and external testing cohorts

(A) On internal test set of Internal-STAD dataset, the MMRNet achieved an averaged AUROC of 0.930 (95%CI: 0.923–0.938).

(B) On MultiCenter-STAD dataset, the MMRNet achieved an averaged AUROC of 0.895 (95%CI: 0.874–0.917).

(C) On TCGA-STAD dataset, theMMRNet achieved an averaged AUROCof 0.844 (95%CI: 0.830–0.858). MMR, mismatch repair; Internal-STAD, an internal cohort

from a single medical center; MultiCenter-STAD, an external cohort from multiple medical centers; TCGA-STAD, an external cohort from The Cancer Genome

Atlas; CI, confidence interval.
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to localize the morphological changes in the high-attention areas of the heatmap, where pathologists can recognize the morphological fea-

tures that were closely related to the results of MMRNet. After reviewing 10,000 patch groups generated by StyleGAN, two expert patholo-

gists identified seven features associated with dMMR/MSI-H GC, including syncytial cells, tumor infiltrative lymphocytes, lymphoid stroma,

medullary histology, vacuolar nucleus, recognizable nucleolus and mucinous differentiation (Figures 2 and S2–S8).

To investigate the correlation between the previously mentioned morphological features and dMMR/MSI-H GC, two senior pathologists

collaborated to determine the presence of each feature in WSIs of two external cohorts. Results from the MultiCenter-STAD cohort showed

that dMMR/MSI-H GCs were more likely to presence of syncytial cells (p = 0.023), tumor infiltrative lymphocytes (p = 0.026), vacuolar nucleus

(p = 0.004), and recognizable nucleolus (p = 0.001) compared to pMMR/non MSI-H GCs. Similar findings were observed on the TCGA-STAD

cohort, with dMMR/MSI-H GCs possessing the same significant features, including syncytial cells (p = 0.006), tumor infiltrative lymphocytes

(p < 0.001), vacuolar nucleus (p < 0.001), and recognizable nucleolus (p < 0.001) (Figure 3; Table 2). These data suggest that the interpretable

method used to summarize the morphological features is reliable and can be used to identify dMMR/MSI-H GCs.

Model interpretation aiding the growth of young pathologists

To assess the effectiveness of the interpretable method in aiding the growth of young pathologists, a reader study was conducted. A test set

of 60 WSIs was reviewed by four junior pathologists who were asked to classify each GC image as either dMMR/MSI-H GC or pMMR/non

MSI-H GC based on their experience. They were then provided with a visual presentation illustrating distinct summarized morphological fea-

tures and asked if they wanted to change their initial assessment. Before learning morphological features, Junior Pathologist 1 achieved an

AUROC of 0.517 (95%CI: 0.384–0.648), which improved significantly to an AUROC of 0.683 (95%CI: 0.550–0.797) after learning morphological

features (p = 0.004). Junior Pathologist 2 yielded AUROCs of 0.567 (95%CI: 0.432–0.694) and 0.650 (95%CI: 0.516–0.769) before and after

learning the morphological features, respectively. Junior Pathologist 3 obtained AUROCs of 0.550 (95%CI: 0.416–0.679) and 0.733 (95%CI:

0.603–0.839) before and after learning themorphological features, respectively, with a significant improvement (p = 0.042). Junior Pathologist

4 also showed a significant improvement with an AUROC of 0.667 (95%CI: 0.533–0.783) after learning, compared to an AUROC of 0.550 (95%

CI: 0.416–0.679) before learning (p = 0.016). The diagnostic performances of the junior pathologists were summarized in Table S2, indicating

that the interpretable method of the deep learning model can be a valuable tool in improving the performance of young pathologists.

DISCUSSION

We introduce a new method for interpreting deep learning models that allows pathologists to identify morphological characteristics of

dMMR/MSI-H GC in an understandable and interpretable manner. This report marks the initial examination of pathologists’ abilities in iden-

tifying MMR/MSI status through H&E-stained slides. While deep learning models have shown superior performance in tumor classifications,

surpassing even human experts,14,15 their lack of interpretability has hindered their clinical application.2 The ability to identify the properties

that contribute to the model’s predictions can help advance the understanding of underlying biological processes. To address this issue, we

propose a new mapping approach based on StyleGAN-generated images to interpret the deep learning model. GANs have achieved state-

of-the-art performance in various image processing and analysis tasks.9 We leverage this technology for model interpretability by designing

an offset vector for the target latent code, which visualizes how the deep learning model makes decisions. This is the first attempt to apply a

mapping method in GANs, which provides an explainable way to highlight significant morphological features of the predictive targets.

Identifying morphological characteristics of different tumor subtypes is a critical aspect of accurate pathological diagnosis. It is indeed

pertinent to acknowledge that while some pathologists might possess inherent abilities to distinguish between dMMR/MSI-H GC based

on their expertise and prior knowledge, this capability might not be universally consistent across all pathologists or diagnostic settings.
iScience 27, 109243, March 15, 2024 3
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Figure 2. The morphological features related to dMMR/MSI-H gastric cancer detected by synthetic patch groups

(A–G) Each patch group contained five H&E-stained patches (upper panels) and their corresponding heatmaps (lower panels), with a scale bar of 0.3mm. By

manipulating morphological changes in the high-attention areas of heatmap (indicated by the red boxes in H&E-stained patches), MMRMapping gradually

decreased the predictive scores of the H&E-stained patches from dMMR/MSI-H scores to pMMR/non MSI-H scores. Pathologists reviewed these patch

groups and summarized seven features associated with dMMR/MSI-H gastric cancer, including syncytial cells, tumor infiltrative lymphocytes, lymphoid

stroma, medullary histology, vacuolar nucleus, recognizable nucleolus, and mucinous differentiation, labeled from A to G. H&E, hematoxylin & eosin; dMMR,

deficient mismatch repair; MSI-H, microsatellite instability-high; pMMR, proficient mismatch repair.
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Therefore, the summarization of features should consider the diverse expertise levels and variations in the interpretative abilities of pathol-

ogists, ensuring that the results and conclusions are not solely dependent on this variable factor. Our method is not limited to dMMR/MSI-H

GC but can be applied to a broad range of tumor subtypes. By learning the diagnostic mechanism of deep learning models and capturing

significant morphological features of different tumor subtypes with the aid of our interpretation method, junior pathologists can improve the

efficiency and accuracy of their diagnoses.
A

B

C

D

Figure 3. The morphological features related to dMMR/MSI-H gastric cancer in whole slide images

(A–D) The left panels of figure displayed representative H&E-stained WSIs (scale bar, 3mm) of patients with dMMR/MSI-H gastric cancer. The heatmaps

overlapped on these WSIs (middle panels) showed that tumor tiles were mainly predicted as dMMR/MSI-H gastric cancer with a high score (red color). Tiles

with a high score (black circle corresponding in H&E-stained WSIs) were mainly focused on the areas (right panels; scale bar, 50um) of syncytial cells (black

arrowhead), tumor infiltrative lymphocytes (orange arrowhead), vacuolar nucleus (white arrowhead) and recognizable nucleolus (yellow arrowhead), from A to

D. H&E, hematoxylin & eosin; WSI, whole slide images; dMMR, deficient mismatch repair; MSI-H, microsatellite instability-high; pMMR, proficient mismatch

repair.

iScience 27, 109243, March 15, 2024 5



Table 2. Validation of the morphological features associated with dMMR/MSI-H gastric cancer on two external cohorts

Morphological features

MultiCenter-STAD TCGA-STAD

pMMR/non

MSI-H (n = 162)

dMMR/MSI-H

(n = 18) p value

pMMR/non

MSI-H (n = 218)

dMMR/MSI-H

(n = 58) p value

Syncytial cells Absence 143 (88.3%) 12 (66.7%) 0.023* 198 (90.8%) 44 (75.9%) 0.006*

Presence 19 (11.7%) 6 (33.3%) 20 (9.2%) 14 (24.1%)

Tumor infiltrative lymphocytes Absence 91 (56.2%) 5 (27.8%) 0.026* 154 (70.6%) 5 (8.6%) <0.001*

Presence 71 (43.8%) 13 (72.2%) 64 (29.4%) 53 (91.4%)

Lymphoid stroma Absence 134 (82.7%) 17 (94.4%) 0.314 209 (95.9%) 58 (100%) 0.212

Presence 28 (17.3%) 1 (5.6%) 9 (4.1%) 0 (0%)

Medullary histology Absence 149 (92%) 17 (94.4%) 1.000 213 (97.7%) 58 (100%) 0.587

Presence 13 (8%) 1 (5.6%) 5 (2.3%) 0 (0%)

Vacuolar nucleus Absence 49 (30.2%) 0 (0%) 0.004* 86 (39.4%) 2 (3.4%) <0.001*

Presence 113 (69.8%) 18 (100%) 132 (60.6%) 56 (96.6%)

Recognizable nucleolus Absence 56 (34.6%) 0 (0%) 0.001* 102 (46.8%) 3 (5.2%) <0.001*

Presence 106 (65.4%) 18 (100%) 116 (53.2%) 55 (94.8%)

Mucinous differentiation Absence 137 (84.6%) 17 (94.4%) 0.478 180 (82.6%) 43 (74.1%) 0.188

Presence 25 (15.4%) 1 (5.6%) 38 (17.4%) 15 (25.9%)

Percentage was included in brackets. MultiCenter-STAD, an external cohort from multiple medical centers; TCGA-STAD, an external cohort from The Cancer

Genome Atlas; dMMR, deficient mismatch repair; MSI-H, microsatellite instability-high; pMMR, proficient mismatch repair. *p < 0.05 was considered significant

difference.
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Limitations of the study

While our study demonstrates promising results, we also acknowledge some limitations that need to be addressed. First, relative to magni-

fications of 203 or 403, employing a 103magnification level in image patches tends to capture larger-scale visual features, potentially lead-

ing to the loss or reduction of finer details within these patches.14 Second, whileMMRNet has delivered satisfactory results, we acknowledged

the importance of tailoring the threshold for specific clinical purposes, including attainment of high sensitivity to allow reliable identification of

patients who definitely should not undergo furtherMMR/MSI testing. This personalized threshold adjustment could enhance the clinical utility

of the algorithm, especially in distinguishing between different molecular subtypes of GC. Third, we used synthetic patches to summarize

morphological features instead of real patches. While synthetic patches have been shown to be useful in complementing real data, subtle

differences between synthetic and real patches exist. However, the fidelity of synthetic patches generated by StyleGAN has been well studied

and are commonly used as a complement of real data with more manipulatable properties.16,17 Fourth, the modified offset vector’s influence

on multiple features simultaneously posed challenges in isolating them individually. To navigate this, pathologists collected all discernible

features that gradually faded from the patch group. Fifth, we did not conduct further validation on the accuracy of the tumor detection pro-

cess since previous study has demonstrated its effectiveness in distinguishing between tumor and normal tissue using deep learningmodels,

which might potentially influence the results of MMRNet. Lastly, the morphological features identified in our study were limited to those

recognizable by the naked eye, and there may be more subtle features that the deep learning model uses, which could result in the perfor-

mance differences between the model and young pathologists. Incorporating more objective methods in the future involves modifying just

one histopathological characteristic within a specific patch group or automating feature aggregation from generated patches. Although

there is still a long way in terms of model interpretability, our study represents a promising attempt to address this issue and lays foundation

for future research.

In summary, we have presented a new method for interpreting deep learning models, which can aid pathologists in efficiently capturing

specific morphological characteristics and thus facilitate their growth.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Whole slide images This paper N/A

Source code This paper Data S1

Software and algorithms

Python (version 3.8.13) Python software https://www.python.org/

Medcalc (vesion 15.2.2) Medcalc software https://www.medcalc.org/

IBM SPSS Statistics (version 20.0) IBM SPSS Statistics software https://www.ibm.com/cn-zh/products/spss-statistics
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Muyan Cai (caimy@sysucc.

org.cn).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� All data reported in this paper will be shared by the lead contact upon reasonable request. TCGA slides can be obtained from the

Genomic Data Commons portal (https://portal.gdc.cancer.gov/).

� The underlying code for this study is available in the Data S1 in a standalone ZIP file.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human subjects

To develop and validate MMRNet, we used three distinct cohorts: the Internal-STAD cohort from a single medical center, the MultiCenter-

STAD cohort from multiple medical centers, and the TCGA-STAD public cohort from The Cancer Genome Atlas. Internal-STAD was used as

the training dataset, which included all available slides from the patients with dMMR/MSI-HGC and randomly-selected slides from the pool of

all patients with pMMR/nonMSI-HGC in a singlemedical center. TheMultiCenter-STAD includedGCpatients with availableMMR/MSI status

from multiple medical centers. For the TCGA-STAD, slides were obtained from the Genomic Data Commons portal (https://portal.gdc.

cancer.gov/). Patients in our centers were selected based on the following criteria: (1) patients who underwent primary gastrectomy between

January 1, 2014 and December 31, 2020; (2) having known MMR/MSI status; (3) having availability to the clinical data and H&E-stained tumor

slides. We excluded patients who received preoperative therapy (e.g., neoadjuvant radiotherapy or chemotherapy), those with incomplete

clinical information, and those with unqualifiedWSIs (e.g., slides out of focus, or obvious tissue folds). The study was approved by Sun Yat-sen

University Cancer Center Ethics Committee and all experiments were carried out in accordance with existing guidelines of ethics committee.

The average age within Internal-STAD was 61 years old, and the male-to-female ratio stood at 2.06. In the MultiCenter-STAD dataset, the

average age was 58 years old, with a male-to-female ratio of 2.36. In the TCGA-STAD dataset, the average age was 66 years old, and

the male-to-female ratio was 1.97. The sample size of this study was estimated through previously-published paper.14 All patients in the

Internal-STAD were included for MMRNet model training through random five-fold cross-validation. All patients in the MultiCenter-STAD

and TCGA-STAD were included to externally validate the MMRNet.
METHOD DETAILS

Slide scanning

To obtain WSIs in SVS format, one or two representative H&E-stained tumor slides that contained a substantial portion of tumor tissue were

scanned at 403magnification (0.25 mm/pixel) using an Aperio AT2 scanner (Leica Biosystems;Wetzlar, Germany) fromboth the Internal-STAD

and the MultiCenter-STAD.
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Determination of MMR/MSI status

Immunohistochemistry (IHC) was used to confirm the MMR status of patients in Internal-STAD and MultiCenter-STAD. Using antibodies

tagged with MMR proteins, IHC allowed for the visualization and localization of MMR proteins within the tissue. If any of the four major

MMR proteins (MLH1, PMS2, MSH2, and MSH6) were absent, the sample was classified as dMMR/MSI-H tumors. Otherwise, they were clas-

sified as pMMR/nonMSI-H type. In TCGA-STAD cohort, theMSI status of patients was determined through genetic sequencing, as previously

published.18
Tumor detector

In this study, we aimed to automate the analysis of the MMR/MSI status fromGCWSIs. To achieve this, we developed a tumor detector using

the Internal-STAD and used it to automatically identify tumor regions in the external cohorts. The tumor detector was constructed using

CLAM19 in a weakly supervised pattern with a backbone of ImageNet pretrained ResNet50. A total of 1407 slides from Internal-STAD

were included for training the tumor detector, which were divided into three parts for training, validation and testing set with a proportion

of 8:1:1, and 10-fold cross-validation was performed. These slides comprised 202 dMMR/MSI-H GC slides, 1060 pMMR/nonMSI-H GC slides,

and 145 normal gastric tissue slides. Tiles with size of 256-by-256 pixels and amagnification310were cropped fromWSIs and fed to the tumor

detector. ResNet50 extracted 2048-dimensional features for each tile, and the attention head of the tumor detector aggregated the features

of all tiles in the same slide to obtain a slide-level tumor probability. Cross-entropy loss was used as the loss function. and the Adam optimizer

was used for the optimization of the model parameters, with an initial learning rate of 0.0001 for 200 epochs. After 10 individual tumor de-

tectors were developed, we used the 10 trainedmodels formodel ensemble prediction, which took the averageof the scores of the 10models

as the final tumor score. For any tile from the external cohorts, 10 probability outputs of the classifiers were averaged as the final tumor score.

Any region with the probability greater than 0.5 was taken as one tumor region of the slide.
MMRNet development and validation

To developMMRNet, we extracted tiles fromeach slide according to their tumor score, ensuring that at least 40 tiles were extracted fromeach

slide. To balance the data, we ultimately extracted a total of 219,143 dMMR/MSI-H tiles and 219,882 pMMR/non MSI-H tiles for model

training, and 43,073 dMMR/MSI-H tiles and 43,371 pMMR/non MSI-H tiles for internal validation on Internal-STAD.

Similarly, we extracted 179,958 tiles from theMultiCenter-STAD cohort and 794,766 tiles from TCGA-STAD cohort. Each tile in the external

cohorts was normalized using Macenko algorithm.20 For MMRNet, we used ResNet18 with ImageNet pretrained weights as the backbone to

predict the MSI/MMR status of each tumor tile. Data augmentation was applied to the training data, including random scaling and cropping,

random horizontal flipping, random vertical flipping, random grayscale transformation, and random color transformations which include en-

hancements in brightness, contrast, hue, and saturation. Model finetuning adopted Adaptive Moment Estimation Weight (AdamW) as the

optimizer with a batch size of 512 and an initial learning rate of 0.00001 for 300 epochs. To ensure model robustness, we performed a

five-fold cross-validation for model training, which resulted in five well-trained sub-models. The MMRNet ensemble then averaged the out-

puts of these five sub-models to generate the final MMR/MSI status prediction for each slide. Additionally, we averaged the tile scores in the

tumor area of a slide to obtain the MSI/MMR score for that slide.
Model interpretability

The StyleGAN21 has been proven to generate highly realistic imageswith rich tissue structures. Due to the disentanglement of its latent space,

several methods for latent space editing have been developed.22,23We aim to identify themorphological features that affect the classification

outcomes of theMMRNet bymanipulating the transformation fromdMMR/MSI-H images to pMMR/nonMSI-H images in the latent space. To

achieve this, we implemented Alaluf et al.’s24 approach and developed a conditional regression model, named MMRMapping. This model

output a manipulation direction vector of the input image based on the category control signal, while preserving the overall structural sim-

ilarity with an auxiliary similarity constraint.

We first trained a StyleGANmodel on GC tiles in the Internal-STAD to obtain the latent space. We then performed 80,000 sampling iter-

ations for each of the two categories, dMMR/MSI-H and pMMR/non MSI-H, to obtain their corresponding latent codes and generated im-

ages. The class labels of the images were reversed to obtain the control signals. The images and control signals were fed into the mapping

networkMMRMapping, which output the offset vectors.We added the offset vectors to the source latent codes to generate new pathological

images. To guide the new generated images to have class labels opposite to the original labels, we utilized the MMRNet model as a super-

vised loss. In addition, we used the LILPS25 loss to encourage the new images to have similar structures to the original images (Figure S9). To

improve the training stability, we employed a cycle consistency pass to recover the source latent vector. The training process adopted the

Ranger optimizer26 with a learning rate of 1e-3 and a batch size of 8 images, and was performed for 30 epochs.

The MMRMapping was designed to manipulate the mapping direction of the input image based on a category signal. It consisted of a

ResNet18 backbone13 and a Feature Pyramid Network27 module, which extracted multi-scale image features from coarse to fine. The input

to themodel included three RGB channels of the image and one channel for the category control signal, resulting in 512-dimensional features

that were used to generate an offset vector. This vector, when added to the latent code corresponding to the input image itself, allowed for

regeneration of a new image with a class opposite to that of the input image, providing a means to summarize the morphological features of

dMMR/MSI-H GC (Figure S10).
10 iScience 27, 109243, March 15, 2024
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To focus on local areas closely related to classification, the CAM-blending algorithm was developed for the inference stage. Although a

similarity constraint was applied during the training process of MMRMapping, the global characteristic of StyleGAN’s latent code makes it

difficult to manipulate local areas. The CAM-blending combined CAM and alpha-blending28 to generate images that highlighted the

high attention areas of MMRNet. The original latent codes and the offset vector generated by MMRMapping were used as inputs of

StyleGAN, producing a feature output in the network. Grad-CAM912 was then used to generate CAM during MMRNet classification, which

was employed to linearly combine the output features of StyleGAN, resulting in a synthesized image that seamlessly blended the significant

morphological features of dMMR/MSI-H GC while inhibiting transformation in low-attention areas (Figure S11).
Identification and validation of the morphological features related to dMMR/MSI-H GC

Two expert pathologists reviewed 10,000 patch groups generated by StyleGAN to identify the recognizable morphological changes. Each

patch group contained five H&E-stained patches and their corresponding heatmaps. MMRNet predictive scores of the patches gradually

decreased as MMRMapping manipulated the offset vector of high-attention regions. Pathologists recorded only the morphological features

that gradually disappeared in the high-attention regions of the heatmap. To validate these features, two senior pathologists reviewed the

slides from two external cohorts and recorded whether the slide possessed the summarized morphological features. Morphological features

of dMMR/MSI-H slides were then compared to those of pMMR/non MSI-H slides.
Reader study

To evaluate the impact of summarized morphological features on pathologist performance, a reader study was conducted with the partici-

pation of four junior pathologists. Before final evaluation, a visual presentation illustrating distinct morphological features characteristic of

dMMR/MSI-H GC as identified by expert pathologists was served as valuable educational tools, aiding junior pathologists in recognizing

and comprehending these intricate tumor subtypes. Then junior pathologists reviewed a testing set of 60 WSIs randomly selected from

MultiCenter-STAD and TCGA-STAD datasets. The testing set comprised 30 WSIs with dMMR/MSI-H GC and 30 WSIs with pMMR/non

MSI-H GC, representing a total of 60 patients. All pathologists were blinded to all clinical information, including the dMMR/MSI-H and

pMMR/non MSI-H ratio in the dataset. For each WSI, they assessed whether they thought the cancer could be classified as dMMR/MSI-H

or pMMR/non MSI-H, based on their review of the WSI. They were then given the option to change their initial assessment after learning

the summarized morphological features.
QUANTIFICATION AND STATISTICAL ANALYSIS

The study conducted various statistical analyses to evaluate the performance of the MMRNet model and the impact of the summarized

morphological features on pathologist diagnosis. The AUROCs of MMRNet were calculated by Delong et al.29 using the ground-truth

MMR/MSI status as the reference standard. This threshold was predefined in the Internal-STAD and prior to the assessment on external data-

sets. The morphological features of dMMR/MSI-H cases were compared with those of pMMR/non MSI-H cases using the Chi-square test. To

compare the diagnostic performances of pathologists before and after they learned the summarizedmorphological features, the differences

of their performance were compared with Delong et al. method. A difference was considered significant when the P value from a two-tailed

test was less than 0.05. IBM SPSS Statistics (version 20.0) and Medcalc (vesion 15.2.2) were used for statistical analysis, while Python (version

3.8.13) and the deep learning platform PyTroch (version 1.11.0) were performed to build the model and analyze the data.
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